1
|
Ma Q, Zhou Y, Parales RE, Jiao S, Ruan Z, Li L. Effects of herbicide mixtures on the diversity and composition of microbial community and nitrogen cycling function on agricultural soil: A field experiment in Northeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125965. [PMID: 40043878 DOI: 10.1016/j.envpol.2025.125965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Herbicide mixtures application is a widespread and effective practice in modern agriculture; however, a knowledge gap exists regarding the potential ecotoxicological effects of herbicide mixtures in agricultural systems. Here, the effects of various doses of herbicide mixtures (atrazine, nicosulfuron, and mesotrione) under different varieties of maize cultivation on the structure and function of microbial communities and soil chemical parameters were clarified through field experiments. The results showed that the application of herbicide mixtures increased the bacterial and fungal community alpha diversity at jointing and maturity, indicating a prolonged effect of the herbicide mixtures. Moreover, herbicide mixtures alter the composition of bacterial and fungal communities, with sensitive taxa suppressed and herbicide-tolerant taxa enriched. The herbicide mixtures significantly reduced the abundances of Bacillus even at lower doses, but Penicillum was enriched. FAPROTAX analysis and quantitative PCR (qPCR) results showed that herbicide mixtures inhibited the soil nitrogen-cycle process and related genes AOA-amoA, AOB-amoA, and nifH at maize seedling stage. Moreover, network analysis showed that low concentrations of the herbicide mixtures increased bacterial interactions while high concentrations inhibited them, which indicated that the network complexity may be herbicide concentration dependent. A synthetic community (SynCom) consisting of six bacterial strains was established for the biodegradation of the herbicide mixtures based on the analysis of the bacterial network, which resulted in an increase in the degradation efficiency of nicosulfuron by 15.90%. Moreover, potted maize experiment showed that the addition of the SynCom alleviated the toxic effects of herbicide mixtures on the plants. In summary, this study provides a comprehensive perspective for assessing the ecological risk at taxonomic and functional levels and the biodegradation approach of herbicide mixtures residue on agricultural soils in Northeastern China.
Collapse
Affiliation(s)
- Qingyun Ma
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yiqing Zhou
- State Key Laboratory of Efficient Utilization of Arable Land in China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Siyu Jiao
- State Key Laboratory of Efficient Utilization of Arable Land in China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar, 843300, PR China
| | - Zhiyong Ruan
- State Key Laboratory of Efficient Utilization of Arable Land in China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Esmaelzadeh M, Fallah N, Vahabzadeh F. Kinetic study on the degradation of Acid Red 88 azo dye in a constructed wetland-microbial fuel cell inoculated with Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63777-63799. [PMID: 39508946 DOI: 10.1007/s11356-024-35321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024]
Abstract
Removal of Acid Red 88 (AR88) as an azo dye from the synthetic type of wastewater was studied in a laboratory-made constructed wetland microbial fuel cell (CW-MFC) inoculated with Shewanella oneidensis MR-1 (SOMR-1). Plant cultivation was implemented using a typical CW plant known as Cyperus alternifolius. The complexity of the SOMR-1 cell membrane having different carriers of electrons and H+ ions gives the microbe special enzymatic ability to participate in the AR88 oxidation link to the O2 reduction. Nernst equation developed based on analyzing the involved redox potential values in these electron exchanges is describable quantitatively in terms of the spontaneity of the catalyzed reaction. Power density (PD) at 100 mg/L of the AR88 under closed-circuit conditions in the presence of the plant was 11.83 mW/m2. Reduction of internal resistance positively affected the PD value. In determining degradation kinetics, two approaches were undertaken: chemically in terms of first- and second-order reactions and biochemically in terms of the mathematical equations for rate determination developed on the basis of substrate inhibitory concept. The first-order rate constant was 0.263 h-1 without plant cultivation and 0.324 h-1 with plant cultivation. The Haldane kinetic model revealed low ks and ki values indicating effective degradation of the AR88. Moreover, the importance of acclimatization in terms of the crucial role of lactate was discussed. These findings suggest that integrating the SOMR-1 electrochemical role with CW-MFC could be a promising approach for the efficient degradation of azo dyes in wastewater treatment.
Collapse
Affiliation(s)
- Mahdi Esmaelzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Farzaneh Vahabzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| |
Collapse
|
3
|
Song H, Chen WJ, Chen SF, Zhu X, Mishra S, Ghorab MA, Bhatt P, Chen S. Removal of chlorimuron-ethyl from the environment: The significance of microbial degradation and its molecular mechanism. CHEMOSPHERE 2024; 366:143456. [PMID: 39393587 DOI: 10.1016/j.chemosphere.2024.143456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Chlorimuron-ethyl is a selective pre- and post-emergence herbicide, which is widely used to control broad-leaved weeds in soybean fields. However, herbicide residues have also increased as a result of the pervasive use of chlorimuron-ethyl, which has become a significant environmental concern. Consequently, the removal of chlorimuron-ethyl residues from the environment has garnered significant attention in recent decades. A variety of technologies have been developed to address this issue, including adsorption, aqueous chlorination, photodegradation, Fenton, photo-Fenton, ozonation, and biodegradation. After extensive studies, the biodegradation of chlorimuron-ethyl by microorganisms has now been recognized as an efficient and environmentally friendly degradation process. As research has progressed, a number of microbial strains associated with chlorimuron-ethyl degradation have been identified, such as Pseudomonas sp., Klebsiella sp., Rhodococcus sp., Stenotrophomonas sp., Aspergillus sp., Hansschlegelia sp., and Enterobacter sp. In addition, the enzymes and genes responsible for chlorimuron-ethyl biodegradation are also being investigated. These degradation genes include sulE, pnbA, carE, gst, Kj-CysJ, Kj-eitD-2267, Kj-kdpD-226, Kj-dxs-398, Kj-mhpC-2096, and Kj-mhpC-2289, among others. The degradation enzymes associated with chlorimuron-ethyl biodegradation includes esterases (SulE, PnbA, and E3), carboxylesterase (CarE), Cytochrome P450, flavin monooxygenase (FMO), and glutathione-S-transferase (GST). Regrettably, few reviews have focused on the microbial degradation and molecular mechanisms of chlorimuron-ethyl. Therefore, this review covers the microbial degradation of chlorimuron-ethyl and its degradation pathways, the molecular mechanism of the microbial degradation of chlorimuron-ethyl, and the outlook on the practical application of the microbial degradation of sulfonylurea herbicides are all covered in this review's overview of previous studies into the degradation of chlorimuron-ethyl.
Collapse
Affiliation(s)
- Haoran Song
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xixian Zhu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Pankaj Bhatt
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Wang S, Dong M, Xiao Y, Yang B, Zhang H, Wu X. Enhanced bioremediation of soils contaminated with nicosulfuron using the bacterial complex A12. J Appl Microbiol 2024; 135:lxae215. [PMID: 39152091 DOI: 10.1093/jambio/lxae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
AIMS To construct an efficient bacterial complex to degrade nicosulfuron and clarify its degradative characteristics, promote the growth of maize (Zea mays), and provide a theoretical foundation for the efficient remediation of soil contaminated with nicosulfuron. METHODS AND RESULTS Biocompatibility was determined by the filter paper sheet method by mixing Serratia marcescens A1 and Bacillus cereus A2 in a 1:1 ratio, yielding A12. The optimum culture conditions for the bacterial composite were obtained based on a three-factor, three-level analysis using response surface methodology, with 29.25 g l-1 for maltodextrin, 10.04 g l-1 for yeast extract, and 19.93 g l-1 for NaCl, which resulted in 92.42% degradation at 4 d. The degradation characteristics of A12 were clarified as follows: temperature 30°C, pH 7, initial concentration of nicosulfuron 20 mg l-1, and 4% inoculum. The ability to promote growth was determined by measuring the ratio of the lysosphere diameter (D) to the colony diameter (d), and the ability of the complex A12 to promote growth was higher than that of the two single strains. CONCLUSIONS Nicosulfuron degradation in sterilized and unsterilized soils reached 85.4% and 91.2% within 28 d, respectively. The ability of the strains to colonize the soil was determined by extraction of total soil DNA, primer design, and gel electrophoresis. The bioremediation effect of A12 was confirmed by the maximum recovery of fresh weight (124.35%) of nicosulfuron-sensitive crop plants and the significant recovery of soil enzyme activities, as measured by the physiological indices in the sensitive plants.
Collapse
Affiliation(s)
- Siya Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Meiqi Dong
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yufeng Xiao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Bingbing Yang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xian Wu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Gongzhuling 136100, China
| |
Collapse
|
5
|
Zhao Y, Ye F, Fu Y. Herbicide Safeners: From Molecular Structure Design to Safener Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2451-2466. [PMID: 38276871 DOI: 10.1021/acs.jafc.3c08923] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Herbicide safeners, highly effective antidotes, find widespread application in fields for alleviating the phytotoxicity of herbicides to crops. Designing new herbicide safeners remains a notable issue in pesticide research. This review focuses on discussing and summarizing the structure-activity relationships, molecular structures, physicochemical properties, and molecular docking of herbicide safeners in order to explore how different structures affect the safener activities of target compounds. It also provides insights into the application prospects of computer-aided drug design for designing and synthesizing new safeners in the future.
Collapse
Affiliation(s)
- Yaning Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Li L, Wang Y, Liu L, Gao C, Ru S, Yang L. Occurrence, ecological risk, and advanced removal methods of herbicides in waters: a timely review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3297-3319. [PMID: 38095790 DOI: 10.1007/s11356-023-31067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024]
Abstract
Coastal pollution caused by the importation of agricultural herbicides is one of the main environmental problems that directly affect the coastal primary productivity and even the safety of human seafood. It is urgent to evaluate the ecological risk objectively and explore feasible removal strategies. However, existing studies focus on the runoff distribution and risk assessment of specific herbicides in specific areas, and compared with soil environment, there are few studies on remediation methods for water environment. Therefore, we systematically reviewed the current situation of herbicide pollution in global coastal waters and the dose-response relationships of various herbicides on phytoplankton and higher trophic organisms from the perspective of ecological risks. In addition, we believe that compared with the traditional single physical and chemical remediation methods, biological remediation and its combined technology are the most promising methods for herbicide pollution remediation currently. Therefore, we focus on the application prospects, challenges, and management strategies of new bioremediation systems related to biology, such as constructed wetlands, membrane bioreactor processes, and microbial co-metabolism, in order to provide more advanced methods for reducing herbicide pollution in the water environment.
Collapse
Affiliation(s)
- Lingxiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Chen Gao
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Lei Q, Zhong J, Chen SF, Wu S, Huang Y, Guo P, Mishra S, Bhatt K, Chen S. Microbial degradation as a powerful weapon in the removal of sulfonylurea herbicides. ENVIRONMENTAL RESEARCH 2023; 235:116570. [PMID: 37423356 DOI: 10.1016/j.envres.2023.116570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Sulfonylurea herbicides have been widely used worldwide and play a significant role in modern agricultural production. However, these herbicides have adverse biological effects that can damage the ecosystems and harm human health. As such, rapid and effective techniques that remove sulfonylurea residues from the environment are urgently required. Attempts have been made to remove sulfonylurea residues from environment using various techniques such as incineration, adsorption, photolysis, ozonation, and microbial degradation. Among them, biodegradation is regarded as a practical and environmentally responsible way to eliminate pesticide residues. Microbial strains such as Talaromyces flavus LZM1, Methylopila sp. SD-1, Ochrobactrum sp. ZWS16, Staphylococcus cohnii ZWS13, Enterobacter ludwigii sp. CE-1, Phlebia sp. 606, and Bacillus subtilis LXL-7 can almost completely degrade sulfonylureas. The degradation mechanism of the strains is such that sulfonylureas can be catalyzed by bridge hydrolysis to produce sulfonamides and heterocyclic compounds, which deactivate sulfonylureas. The molecular mechanisms associated with microbial degradation of sulfonylureas are relatively poorly studied, with hydrolase, oxidase, dehydrogenase and esterase currently known to play a pivotal role in the catabolic pathways of sulfonylureas. Till date, there are no reports specifically on the microbial degrading species and biochemical mechanisms of sulfonylureas. Hence, in this article, the degradation strains, metabolic pathways, and biochemical mechanisms of sulfonylurea biodegradation, along with its toxic effects on aquatic and terrestrial animals, are discussed in depth in order to provide new ideas for remediation of soil and sediments polluted by sulfonylurea herbicides.
Collapse
Affiliation(s)
- Qiqi Lei
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfeng Zhong
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Guo
- Zhongshan City Garden Management Center of Guangdong Province, Zhongshan, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA.
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Zhong J, Wu S, Chen WJ, Huang Y, Lei Q, Mishra S, Bhatt P, Chen S. Current insights into the microbial degradation of nicosulfuron: Strains, metabolic pathways, and molecular mechanisms. CHEMOSPHERE 2023; 326:138390. [PMID: 36935058 DOI: 10.1016/j.chemosphere.2023.138390] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Nicosulfuron is among the sulfonylurea herbicides that are widely used to control annual and perennial grass weeds in cornfields. However, nicosulfuron residues in the environment are likely to cause long-lasting harmful environmental and biological effects. Nicosulfuron degrades via photo-degradation, chemical hydrolysis, and microbial degradation. The latter is crucial for pesticide degradation and has become an essential strategy to remove nicosulfuron residues from the environment. Most previous studies have focused on the screening, degradation characteristics, and degradation pathways of biodegrader microorganisms. The isolated nicosulfuron-degrading strains include Bacillus, Pseudomonas, Klebsiella, Alcaligenes, Rhodopseudomonas, Ochrobactrum, Micrococcus, Serratia, Penicillium, Aspergillus, among others, all of which have good degradation efficiency. Two main intermediates, 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-aminosulfonyl-N,N-dimethylnicotinamide (ASDM), are produced during microbial degradation and are derived from the C-N, C-S, and S-N bond breaks on the sulfonylurea bridge, covering almost every bacterial degradation pathway. In addition, enzymes related to the degradation of nicosulfuron have been identified successively, including the manganese ABC transporter (hydrolase), Flavin-containing monooxygenase (oxidase), and E3 (esterase). Further in-depth studies based on molecular biology and genetics are needed to elaborate on their role in the evolution of novel catabolic pathways and the microbial degradation of nicosulfuron. To date, few reviews have focused on the microbial degradation and degradation mechanisms of nicosulfuron. This review summarizes recent advances in nicosulfuron degradation and comprehensively discusses the potential of nicosulfuron-degrading microorganisms for bioremediating contaminated environments, providing a reference for further research development on nicosulfuron biodegradation in the future.
Collapse
Affiliation(s)
- Jianfeng Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Xu N, Wu Z, Li X, Yang M, Han J, Lu B, Lu B, Wang J. Effects of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.). PLoS One 2022; 17:e0276606. [PMID: 36269745 PMCID: PMC9586374 DOI: 10.1371/journal.pone.0276606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
The sulfonylurea herbicide nicosulfuron is efficient, harmless and selective at low doses and has been widely used in maize cultivation. In this study, a pair of corn sister lines, HK301 (nicosulfuron-tolerence, NT) and HK320 (nicosulfuron-sensitive, NS), was chosen to study the effect of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.) seedlings. All the experimental samples were subjected to treatment with water or 80 mg kg–1 of nicosulfuron when the sweet maize seedlings grew to the four-leaf stage. Nicosulfuron significantly inhibited the growth of NS line. The content of sucrose and the activities of sucrose phosphate synthase and sucrose synthase in the two inbred lines increased differentially under nicosulfuron stress compared with the respective control treatment. After nicosulfuron treatment, the activities of hexokinase and 6-phosphofructokinase and the contents of pyruvic acid and citric acid in NS line decreased significantly compared with those of NT line, while the content of sucrose and activities of sucrose phosphate synthase and sucrose synthase increased significantly. The disruption of sugar metabolism in NS line led to a lower supply of energy for growth. This study showed that the glycolysis pathway and the tricarboxylic acid cycle were enhanced in nicosulfuron-tolerant line under nicosulfuron stress in enhancing the adaptability of sweet maize.
Collapse
Affiliation(s)
- Ningwei Xu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Zhenxing Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, China
| | - Xiangling Li
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Min Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Jinling Han
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Bin Lu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Bingshe Lu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
- * E-mail: (BL); (JW)
| | - Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
- * E-mail: (BL); (JW)
| |
Collapse
|
10
|
Transcriptomic response of Pseudomonas nicosulfuronedens LAM1902 to the sulfonylurea herbicide nicosulfuron. Sci Rep 2022; 12:13656. [PMID: 35953636 PMCID: PMC9372043 DOI: 10.1038/s41598-022-17982-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022] Open
Abstract
The overuse of the herbicide nicosulfuron has become a global environmental concern. As a potential bioremediation technology, the microbial degradation of nicosulfuron shows much promise; however, the mechanism by which microorganisms respond to nicosulfuron exposure requires further study. An isolated soil-borne bacteria Pseudomonas nicosulfuronedens LAM1902 displaying nicosulfuron, chlorimuron-ethyl, and cinosulfuron degradabilities in the presence of glucose, was used to determine the transcriptional responses to nicosulfuron exposure. RNA-Seq results indicated that 1102 differentially expressed genes (DEGs) were up-regulated and 702 down-regulated under nicosulfuron stress. DEGs were significantly enriched in “ABC transporters”, “sulfur metabolism”, and “ribosome” pathways (p ≤ 0.05). Several pathways (glycolysis and pentose phosphate pathways, a two-component regulation system, as well as in bacterial chemotaxis metabolisms) were affected by nicosulfuron exposure. Surprisingly, nicosulfuron exposure showed positive effects on the production of oxalic acid that is synthesized by genes encoding glycolate oxidase through the glyoxylate cycle pathway. The results suggest that P. nicosulfuronedens LAM1902 adopt acid metabolites production strategies in response to nicosulfuron, with concomitant nicosulfuron degradation. Data indicates that glucose metabolism is required during the degradation and adaptation of strain LAM1902 to nicosulfuron stress. The present studies provide a glimpse at the molecular response of microorganisms to sulfonylurea pesticide toxicity and a potential framework for future mechanistic studies.
Collapse
|
11
|
Zhang W, Fan X, Li J, Ye T, Mishra S, Zhang L, Chen S. Exploration of the Quorum-Quenching Mechanism in Pseudomonas nitroreducens W-7 and Its Potential to Attenuate the Virulence of Dickeya zeae EC1. Front Microbiol 2021; 12:694161. [PMID: 34413838 PMCID: PMC8369503 DOI: 10.3389/fmicb.2021.694161] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Quorum quenching (QQ) is a novel, promising strategy that opens up a new perspective for controlling quorum-sensing (QS)-mediated bacterial pathogens. QQ is performed by interfering with population-sensing systems, such as by the inhibition of signal synthesis, catalysis of degrading enzymes, and modification of signals. In many Gram-negative pathogenic bacteria, a class of chemically conserved signaling molecules named N-acyl homoserine lactones (AHLs) have been widely studied. AHLs are involved in the modulation of virulence factors in various bacterial pathogens including Dickeya zeae. Dickeya zeae is the causal agent of plant-rot disease of bananas, rice, maize, potatoes, etc., causing enormous economic losses of crops. In this study, a highly efficient AHL-degrading bacterial strain W-7 was isolated from activated-sludge samples and identified as Pseudomonas nitroreducens. Strain W-7 revealed a superior ability to degrade N-(3-oxododecanoyl)-l-homoserine lactone (OdDHL) and completely degraded 0.2 mmol/L of OdDHL within 48 h. Gas chromatography-mass spectrometry (GC-MS) identified N-cyclohexyl-propanamide as the main intermediate metabolite during AHL biodegradation. A metabolic pathway for AHL in strain W-7 was proposed based on the chemical structure of AHL and intermediate products. In addition to the degradation of OdDHL, this strain was also found to be capable of degrading a wide range of AHLs including N-(3-oxohexanoyl)-l-homoserine lactone (OHHL), N-(3-oxooctanoyl)-l-homoserine lactone (OOHL), and N-hexanoyl-l-homoserine lactone (HHL). Moreover, the application of strain W-7 as a biocontrol agent could substantially attenuate the soft rot caused by D. zeae EC1 to suppress tissue maceration in various host plants. Similarly, the application of crude enzymes of strain W-7 significantly reduced the disease incidence and severity in host plants. These original findings unveil the biochemical aspects of a highly efficient AHL-degrading bacterial isolate and provide useful agents that exhibit great potential for the control of infectious diseases caused by AHL-dependent bacterial pathogens.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
12
|
Zhang YY, Gao S, Hoang MT, Wang ZW, Ma X, Zhai Y, Li N, Zhao LX, Fu Y, Ye F. Protective efficacy of phenoxyacetyl oxazolidine derivatives as safeners against nicosulfuron toxicity in maize. PEST MANAGEMENT SCIENCE 2021; 77:177-183. [PMID: 32652758 DOI: 10.1002/ps.6005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Herbicide safeners mitigate crop damage without reducing herbicide efficacy. Here, the protective effects of phenoxyacetyl oxazolidine derivatives as potential safeners were evaluated with a view toward reducing injury caused by sulfonylurea herbicide nicosulfuron to sensitive maize varieties. RESULTS Growth indices demonstrated that the bioactivity of compound 9 (N-phenoxyacety-2-methyl-2,4-diethyl-1,3-oxazolidine) was superior to that of R-28725 and all other compounds tested. Compound 9 induced endogenous glutathione and upregulated glutathione-S-transferase (GST) in maize. Thus, it could enhance maize tolerance to nicosulfuron. Compared with the untreated water control group, the maximum reaction rate of GST was increased by 37.62%, while the maximum velocity of GST was decreased by 61.93% after treatment with compound 9. Acetolactate synthase relative activity was significantly enhanced in the case of treatment with compound 9, indicating the excellent protective effects of compound 9 against nicosulfuron in maize. CONCLUSIONS The present work demonstrates that phenoxyacetyl oxazolidine derivatives are potentially efficacious as herbicide safeners and merit further investigation.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Shuang Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Minh-Tu Hoang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Zi-Wei Wang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Xin Ma
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Yue Zhai
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Na Li
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Zhang Z, Yang D, Si H, Wang J, Parales RE, Zhang J. Biotransformation of the herbicide nicosulfuron residues in soil and seven sulfonylurea herbicides by Bacillus subtilis YB1: A climate chamber study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114492. [PMID: 32298935 DOI: 10.1016/j.envpol.2020.114492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Bacillus subtilis YB1 is a strain that can efficiently transform nicosulfuron. In order to study its remediation ability and effects on other microorganisms in the soil, indoor biological remediation experiments and rhizosphere microbial diversity analysis were performed. B. subtilis YB1 granules were prepared and applied to the nicosulfuron contaminated soil. The concentration of nicosulfuron was detected by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and changes in the physiological indicators of wheat were measured. At the same time, the changes in the rhizosphere soil microbial diversity were determined by 16S RNA sequencing. Results showed that the YB1 granules made a contribution to the transformation of nicosulfuron (0.05 mg kg-1) in the soil within 55 days. The physiological indicators of wheat also showed consistent result about nicosulfuron transformation. Rhizosphere soil microbial diversity results indicated the relative abundance of Firmicutes decreased (3.0%-0.35%) and Acidobacteria first decreased (25.82%-22.38%) and then increased (22.3%-26.1%) with nicosulfuron added (N group). The relative abundance of Acidobacteria first decreased (25.8%-15.3%) and then increased (15.3%-21.7%) while Proteobacteria increased (26.5%-38.08%). At the same time, Firmicutes first increased (2.6%-12.3%) and then decreased to original level (12.3%-0.7%) in the N group with YB1 granules (NYB1 group). Members of the genus Bacillus initially increased and then decreased to the original level as the Control group, therefore, they did not become dominant in the rhizosphere soil. Alpha diversity analyses showed no obvious differences in species diversity among the N, NYB1 and Control groups. So YB1 did not have obvious influence on the rhizosphere microbial community structure during nicosulfuron transformation, which only had some effect on species abundance. This study revealed the successful indoor bioremediation of nicosulfuron in the soil, providing a potential strategy for solving the problem of nicosulfuron contamination.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Helong Si
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Jiaying Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
14
|
Zhang YY, Gao S, Liu YX, Wang C, Jiang W, Zhao LX, Fu Y, Ye F. Design, Synthesis, and Biological Activity of Novel Diazabicyclo Derivatives as Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3403-3414. [PMID: 32101688 DOI: 10.1021/acs.jafc.9b07449] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Herbicide safeners selectively protect crops from herbicide damage without reducing the herbicidal efficiency on target weed species. The title compounds were designed by the intermediate derivatization approach and fragment splicing to exploit novel potential safeners. A total of 31 novel diazabicyclo derivatives were synthesized by the microwave-assistant method using isoxazole-4-carbonyl chloride and diazabicyclo derivatives. All synthetic compounds were confirmed by infrared, 1H and 13C nuclear magnetic resonance, and high-resolution mass spectrometry. The bioassay results demonstrated that most of the title compounds could reduce the nicosulfuron phytotoxicity on maize. The glutathione S-transferase (GST) activity in vivo was assayed, and compound 4(S15) revealed an inspiring safener activity comparable to commercialized safeners isoxadifen-ethyl and BAS-145138. The molecular docking model exhibited that the competition at the active sites of target enzymes between compound 4(S15) and nicosulfuron was investigated with respect to herbicide detoxification. The current work not only provided a powerful supplement to the intermediate derivatization approach and fragment splicing in design pesticide bioactive molecules but also assisted safener development and optimization.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Shuang Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yong-Xuan Liu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Chen Wang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Wei Jiang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
15
|
Song J, Han G, Wang Y, Jiang X, Zhao D, Li M, Yang Z, Ma Q, Parales RE, Ruan Z, Mu Y. Pathway and kinetics of malachite green biodegradation by Pseudomonas veronii. Sci Rep 2020; 10:4502. [PMID: 32161360 PMCID: PMC7066194 DOI: 10.1038/s41598-020-61442-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/26/2020] [Indexed: 11/09/2022] Open
Abstract
Malachite green is a common environmental pollutant that poses a great threat to non-target organisms, including humans. This study reports the characterization of a bacterial strain, Pseudomonas veronii JW3-6, which was isolated from a malachite green enrichment culture. This strain degraded malachite green efficiently in a wide range of temperature and pH levels. Under optimal degradation conditions (32.4 °C, pH 7.1, and inoculum amount of 2.5 × 107 cfu/mL), P. veronii JW3-6 could degrade 93.5% of 50 mg/L malachite green within seven days. Five intermediate products from the degradation of malachite green were identified: leucomalachite green, 4-(dimethylamino) benzophenone, 4-dimethylaminophenol, benzaldehyde, and hydroquinone. We propose a possible degradation pathway based on these findings. The present study is the first to report the degradation of malachite green by P. veronii and the identification of hydroquinone as a metabolite in the degradation pathway.
Collapse
Affiliation(s)
- Jinlong Song
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Gang Han
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yani Wang
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Xu Jiang
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, China
| | - Dongxue Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China
| | - Miaomiao Li
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, China.,College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhen Yang
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Qingyun Ma
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, 95156, United States of America
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, China.
| | - Yingchun Mu
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
16
|
Li M, Song J, Ma Q, Kong D, Zhou Y, Jiang X, Parales R, Ruan Z, Zhang Q. Insight into the Characteristics and New Mechanism of Nicosulfuron Biodegradation by a Pseudomonas sp. LAM1902. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:826-837. [PMID: 31895558 DOI: 10.1021/acs.jafc.9b06897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A total of five strains of nicosulfuron-degrading bacteria were isolated from a continuously cultivated microbial consortium using culturomics. Among them, a novel Pseudomonas strain, LAM1902, with the highest degradation efficiency was investigated in detail. The characteristics of nicosulfuron-degradation by LAM1902 were investigated and optimized by response surface analysis. Furthermore, non-targeted metabolomic analysis of extracellular and intracellular biodegradation of nicosulfuron by LAM1902 was carried out by liquid chromatography/mass spectroscopy (LC-MS) and gas chromatography-time-of-flight/mass spectroscopy (GC-TOF/MS). It was found that nicosulfuron was degraded by LAM1902 mainly via breaking the sulfonylurea bridge, and this degradation might be attributed to oxalate accumulation. The results of GC-TOF/MS also showed that the intracellular degradation of nicosulfuron did not occur. However, nicosulfuron exerted a significant influence on the metabolism of inositol phosphate, pyrimidine, arginine/proline, glyoxylate, and dicarboxylate metabolism and streptomycin biosynthesis. The changes of myo-inositol, trehalose, and 3-aminoisobutanoic acid were proposed as a mechanism of self-protection against nicosulfuron stress.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Bioscience and Engineering , Jiangxi Agricultural University , Nanchang 330045 , PR China
| | - Jinlong Song
- Chinese Academy of Fishery Sciences , Beijing 100141 , China
| | - Qingyun Ma
- Institute of Agricultural Resources and Regional Planning , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Delong Kong
- Institute of Agricultural Resources and Regional Planning , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Yiqing Zhou
- Institute of Agricultural Resources and Regional Planning , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Xu Jiang
- Institute of Agricultural Resources and Regional Planning , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Rebecca Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences , University of California, Davis , Davis 95616 , California , United States
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Qinghua Zhang
- College of Bioscience and Engineering , Jiangxi Agricultural University , Nanchang 330045 , PR China
| |
Collapse
|
17
|
Li C, Zhang N, Chen J, Ji J, Liu X, Wang J, Zhu J, Ma Y. Temperature and pH sensitive composite for rapid and effective removal of sulfonylurea herbicides in aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113150. [PMID: 31541823 DOI: 10.1016/j.envpol.2019.113150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Excessive pesticide residues in the environment have caused more and more serious social problems. In this article, the polymer materials and graphene oxide were smoothly grafted together through surface-initiated atom-transfer radical polymerization. A temperature and pH dual-sensitive adsorbent was successfully obtained, which was used for the removal of six sulfonylurea herbicides in the aquatic environment. Experiment results showed that the adsorbent could efficiently remove the tested pesticides in aqueous solution rapidly (only 1 min). The adsorption process was in consist with the pseudo-second-order kinetics equation and Freundlich model, and the thermodynamic parameters were also calculated. Furthermore, the mechanism for removal performance was judged as n-π, π-π, hydrogen bonding, hydrophobic and electrostatic interaction verdict. Exhilaratingly, the material showed no significant toxicity to Daphnia magna on risk assessment.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Nan Zhang
- The Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Jixiao Chen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jiawen Ji
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Xue Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jianli Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jianhui Zhu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Liu Y, Jia L, Wu S, Xu S, Zhang X, Jiang S, Gong J. Polymorphism and molecular conformations of nicosulfuron: structure, properties and desolvation process. CrystEngComm 2019. [DOI: 10.1039/c8ce02074d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nine solid forms of nicosulfuron were found for the first time and their structures and properties were studied in detail.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Lina Jia
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Shijie Xu
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xu Zhang
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Shuang Jiang
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
19
|
Carles L, Rossi F, Besse-Hoggan P, Blavignac C, Leremboure M, Artigas J, Batisson I. Nicosulfuron Degradation by an Ascomycete Fungus Isolated From Submerged Alnus Leaf Litter. Front Microbiol 2018; 9:3167. [PMID: 30619225 PMCID: PMC6305708 DOI: 10.3389/fmicb.2018.03167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/07/2018] [Indexed: 11/14/2022] Open
Abstract
Nicosulfuron is a selective herbicide belonging to the sulfonylurea family, commonly applied on maize crops. Its worldwide use results in widespread presence as a contaminant in surface streams and ground-waters. In this study, we isolated, for the first time, the Plectosphaerella cucumerina AR1 nicosulfuron-degrading fungal strain, a new record from Alnus leaf litter submerged in freshwater. The degradation of nicosulfuron by P. cucumerina AR1 was achieved by a co-metabolism process and followed a first-order model dissipation. Biodegradation kinetics analysis indicated that, in planktonic lifestyle, nicosulfuron degradation by this strain was glucose concentration dependent, with a maximum specific degradation rate of 1 g/L in glucose. When grown on natural substrata (leaf or wood) as the sole carbon sources, the Plectosphaerella cucumerina AR1 developed as a well-established biofilm in 10 days. After addition of nicosulfuron in the medium, the biofilms became thicker, with rising mycelium, after 10 days for leaves and 21 days for wood. Similar biofilm development was observed in the absence of herbicide. These fungal biofilms still conserve the nicosulfuron degradation capacity, using the same pathway as that observed with planktonic lifestyle as evidenced by LC-MS analyses. This pathway involved first the hydrolysis of the nicosulfuron sulfonylurea bridge, leading to the production of two major metabolites: 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-(aminosulfonyl)-N,N-dimethyl-3-pyridinecarboxamide (ASDM). One minor metabolite, identified as 2-(1-(4,6-dimethoxy-pyrimidin-2-yl)-ureido)-N,N-dimethyl-nicotinamide (N3), derived from the cleavage of the C-S bond of the sulfonylurea bridge and contraction by elimination of sulfur dioxide. A last metabolite (N4), detected in trace amount, was assigned to 2-(4,6-dimethoxy-pyrimidin-2-yl)-N,N-dimethyl-nicotinamide (N4), resulting from the hydrolysis of the N3 urea function. Although fungal growth was unaffected by nicosulfuron, its laccase activity was significantly impaired regardless of lifestyle. Leaf and wood surfaces being good substrata for biofilm development in rivers, P. cucumerina AR1 strain could thus have potential as an efficient candidate for the development of methods aiming to reduce contamination by nicosulfuron in aquatic environments.
Collapse
Affiliation(s)
- Louis Carles
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Florent Rossi
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pascale Besse-Hoggan
- Institut de Chimie de Clermont-Ferrand, CNRS, Sigma Clermont, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne (UCA PARTNER), Clermont-Ferrand, France
| | - Martin Leremboure
- Institut de Chimie de Clermont-Ferrand, CNRS, Sigma Clermont, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Joan Artigas
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Isabelle Batisson
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|