1
|
Zheng J, Huang X, Gao L, Xu X, Hou L, Cai T, Jia S. Deciphering the core bacterial community structure and function and their response to environmental factors in activated sludge from pharmaceutical wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123635. [PMID: 38428794 DOI: 10.1016/j.envpol.2024.123635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Pharmaceutical wastewater is recognized for its heightened concentrations of organic pollutants, and biological treatment stands out as an effective technology to remove these organic pollution. Therefore, a comprehensive exploration of core bacterial community compositions, functions, and their responses to environmental factors in pharmaceutical wastewater treatment plants (PWWTPs) is important for understanding the removal mechanism of these organic pollutants. This study comprehensively investigated 36 activated sludge (AS) samples from 15 PWWTPs in China. The results revealed that Proteobacteria (45.41%) was the dominant phylum in AS samples, followed by Bacteroidetes (19.54%) and Chloroflexi (4.13%). While the dominant genera were similar in both aerobic and anaerobic treatment processes, their relative abundances exhibited significant variations. Genera like HA73, Kosmotoga, and Desulfovibrio were more abundant during anaerobic treatment, while Rhodoplanes, Bdellovibrio, and Hyphomicrobium dominated during aerobic treatment. 13 and 10 core operational taxonomic units (OTUs) were identified in aerobic and anaerobic sludge, respectively. Further analysis revealed that core OTUs belonging to genera Kosmotoga, Desulfovibrio, Thauera, Hyphomicrobium, and Chelativorans, were associated with key functions, including sulfur metabolism, methane metabolism, amino acid metabolism, carbohydrate metabolism, toluene degradation, and nitrogen metabolism. Furthermore, this study highlighted the crucial roles of environmental factors, such as COD, NH4+-N, SO42-, and TP, in shaping both the structure and core functions of bacterial communities within AS of PWWTPs. Notably, these factors indirectly affect functional attributes by modulating the bacterial community composition and structure in pharmaceutical wastewater. These findings provide valuable insights for optimizing the efficiency of biochemical treatment processes in PWWTPs.
Collapse
Affiliation(s)
- Jinli Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijun Hou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Ke Z, Tang J, Yang L, Sun J, Xu Y. Linking pharmaceutical residues to dissolved organic matter and aquatic bacterial communities in a highly urbanized bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162027. [PMID: 36740058 DOI: 10.1016/j.scitotenv.2023.162027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceuticals are causing environmental concerns associated with their widespread distribution in aquatic ecosystems. The environmental fate and behavior of pharmaceutical residues are related to dissolved organic matter and bacterial communities, both of which are strongly influenced by human activities. However, the relationships among pharmaceutical pollution, dissolved organic matter pool, and bacterial community structure under the pressure of human activities are still unclear, especially in highly urbanized bay areas. In this study, we investigated the occurrence and distribution of 35 pharmaceuticals in a typical urbanized bay (Hangzhou Bay) in Eastern China, and analyzed their relationships with dissolved organic matter and aquatic bacterial community structure. The target pharmaceuticals were ubiquitously detected in surface water samples, with their concentrations ranging from undetectable to 263 ng/L. The detected pharmaceuticals were mostly sulfonamides, macrolides, antidepressants, and metabolites of stimulants. Significant positive correlations were observed between the concentrations of pharmaceuticals and the intensity of human activities. Strong correlations also emerged between the concentration of antidepressants and the speed of urban expansion, as well as between the concentration of cardiovascular drugs and the population density or nightlight index. Three fluorescent components (protein-like C1, terrestrial humic-like C2, protein tryptophan-like C3) were significantly positively correlated with the total concentration of pharmaceuticals. Pharmaceutical pollution reshaped aquatic bacterial communities, based on the close correlation observed between pharmaceutical concentration and bacterial community structure. The results elucidate the potential dynamics of dissolved organic matter pool and aquatic bacterial communities in response to pharmaceutical pollution in urbanized bay ecosystems.
Collapse
Affiliation(s)
- Ziyan Ke
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China.
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Sun
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yaoyang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| |
Collapse
|
3
|
Aguilar-Romero I, van Dillewijn P, Nesme J, Sørensen SJ, Nogales R, Delgado-Moreno L, Romero E. A novel and affordable bioaugmentation strategy with microbial extracts to accelerate the biodegradation of emerging contaminants in different media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155234. [PMID: 35427621 DOI: 10.1016/j.scitotenv.2022.155234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
This study describes a new bioaugmentation alternative based on the application of aqueous aerated extracts from a biomixture acclimated with ibuprofen, diclofenac and triclosan. This bioaugmentation strategy was assayed in biopurification systems (BPS) and in contaminated aqueous solutions to accelerate the removal of these emerging contaminants. Sterilized extracts or extracts from the initial uncontaminated biomixture were used as controls. In BPS, the dissipation of 90% of diclofenac and triclosan required, respectively, 60 and 108 days less than in the controls. The metabolite methyl-triclosan was determined at levels 12 times lower than in controls. In the bioaugmented solutions, ibuprofen was almost completely eliminated (99%) in 21 days and its hydroxylated metabolites were also determined to be at lower levels than in the controls. The plasmidome of acclimated biomixtures and its extract appeared to maintain certain types of plasmids but degradation related genes became less evident. Several dominant OTUs found in the extract identified as Flavobacterium and Fluviicola of the phylum Bacteroidetes, Thermomicrobia (phylum Chloroflexi) and Nonomuraea (phylum Actinobacteria), may be responsible for the enhanced dissipation of these contaminants. This bioaugmentation strategy represents an advantageous tool to facilitate in situ bioaugmentation.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Pieter van Dillewijn
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rogelio Nogales
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Laura Delgado-Moreno
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Esperanza Romero
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
4
|
Zhang M, Wang X, Zhang D, Zhao G, Zhou B, Wang D, Wu Z, Yan C, Liang J, Zhou L. Food waste hydrolysate as a carbon source to improve nitrogen removal performance of high ammonium and high salt wastewater in a sequencing batch reactor. BIORESOURCE TECHNOLOGY 2022; 349:126855. [PMID: 35176462 DOI: 10.1016/j.biortech.2022.126855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 05/12/2023]
Abstract
The high ammonium and high salt (HAHS) wastewater generated from the anaerobic digestate of food waste is usually difficult to be treated by biological process because of its low C/N ratio. Herein, food waste hydrolysate (FWH) is rich in readily biodegradable organic matter, was utilized as carbon source to enhance the nitrogen removal of HAHS in the activated-sludge system. Results showed that compared with the control average total nitrogen removal efficiency increased from 73.4% to 94.9% and effluent declined from 281.4 mg/L to 53.9 mg/L by adding FWH at the C/N ratio of 6, satisfying the sewage discharge standard regulated by China. Besides, FWH utilization led to higher selectivity of the species responsible for nitrogen removal in related to glucose-adding group, which were dominated by Flavobacteriaceae, Melioribacteraceae, PHOS-HE36, and Rhodobacteraceae after a long-term operation. In general, FWH is an alternative carbon source to enhance nitrogen removal in HAHS wastewater treatment.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangliang Zhao
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenjiang Wu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Yan
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
5
|
Feng Y, Li Z, Long Y, Suo N, Wang Z, Qiu L. Electro/magnetic superposition effects on diclofenac degradation: Removal performance, kinetics, community structure and synergistic mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118357. [PMID: 34653583 DOI: 10.1016/j.envpol.2021.118357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/19/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Electric and magnetic fields characterized by high efficiency, low consumption and environment-friendly performance have recently generated interest as a possible measure to enhance the performance of the biological treatment process used to remove refractory organics. Few studies have been carried out to-date regarding the simultaneous application of electric and magnetic fields on biofilm process to degrade diclofenac. In this study, 3DEM-BAF was designed to evaluate the electrio-magnetic superposition effect on diclofenac removal performance, kinetics, community structure and synergistic mechanism. The results show that 3DEM-BAF could significantly increase the average removal rate of diclofenac by 65.30 %, 57.46 %, 9.48 % as compared with that of BAF, 3DM-BAF, 3DE-BAF, respectively. The diclofenac degradation kinetic constants and dehydrogenase activity of 3DEM-BAF were almost 6.72 and 2.53 times higher than those of BAF. Microorganisms of 3DEM-BAF in the Methylophilus and Methyloversatilis genera were distinctively enriched, which was attributed to the screening function of electric field and propagation effect of magnetic field. Moreover, three processes were found to contribute to diclofenac degradation, namely electro-magnetic-adsorption, electro-chemical oxidation and electro-magnetic-biodegradation. Thus, the simultaneous application of electric and magnetic fields on biofilm process was demonstrated to be a promising technique as well as a viable alternative in diclofenac degradation enhancement.
Collapse
Affiliation(s)
- Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Zichen Li
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Yingying Long
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China; Weifang Architectural Design & Research Institute Co. Ltd, Weifang, 261205, China
| | - Ning Suo
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Zhongwei Wang
- Everbright Water (Jinan) Co., Ltd, Jinan, 250022, China
| | - Lipin Qiu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| |
Collapse
|
6
|
Tang K, Rosborg P, Rasmussen ES, Hambly A, Madsen M, Jensen NM, Hansen AA, Sund C, Andersen HG, Torresi E, Kragelund C, Andersen HR. Impact of intermittent feeding on polishing of micropollutants by moving bed biofilm reactors (MBBR). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123536. [PMID: 32823027 DOI: 10.1016/j.jhazmat.2020.123536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 05/25/2023]
Abstract
Moving bed biofilm reactors (MBBRs) were placed at two wastewater treatment plants, where they were constantly fed with effluent and intermittently fed with primary wastewater. Each reactor was subjected to different feast/famine periods and flow rates of primary wastewater, thus the different organic and nutrient loads (chemical oxygen demand(COD), ammonium(NH4-N)) resulted in different feast-famine conditions applied to the biomass. In batch experiments, this study investigated the effects of various feast-famine conditions on the biodegradation of micropollutants by MBBRs applied as an effluent polishing step. Rate constants of micropollutant removals were found to be positively correlated to the load of the total COD and NH4-N, indicating that higher organic loads were favourable for the growth of micropollutant degraders in these MBBRs. Rate constant of atenolol was five times higher when the biomass was fed with the highest COD and NH4-N load than it was fed with the lowest COD and NH4-N load. For diclofenac, mycophenolic acid and iohexol, their maximum rate constants were obtained with feeding of COD and NH4-N of approximately 570 mgCOD/d and 40∼60 mgNH4-N/d respectively. This also supports the concept that co-metabolism (rather competition inhibition or catabolic repression) plays an important role in micropollutants biodegradation in wastewater.
Collapse
Affiliation(s)
- Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark.
| | - Peter Rosborg
- Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, DK-8000 Århus C, Denmark
| | - Emma S Rasmussen
- Department of Bioscoence-Microbiology, Århus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Adam Hambly
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark
| | | | | | - Aviaja A Hansen
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Christina Sund
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Heidi G Andersen
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Elena Torresi
- AnoxKaldnes Technology, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - Caroline Kragelund
- Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, DK-8000 Århus C, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Kołecka K, Gajewska M, Cytawa S, Stepnowski P, Caban M. Is sequential batch reactor an efficient technology to protect recipient against non-steroidal anti-inflammatory drugs and paracetamol in treated wastewater? BIORESOURCE TECHNOLOGY 2020; 318:124068. [PMID: 32905945 DOI: 10.1016/j.biortech.2020.124068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The tested facility was a wastewater treatment plant (WWTP) in Swarzewo, where the wastewater treatment takes place in aeration chambers with activated sludge using sequential batch reactors (SBRs). The concentration of the following pharmaceuticals: ibuprofen, paracetamol, flurbiprofen, naproxen, diclofenac, and its metabolites 5OH-diclofenac and 4OH-diclofenac was tested in influents and effluents. Simultaneously, the conventional parameters were characterised. The removal of conventional pollutants was high (94.4-99.5%). At the same time, the removal of pharmaceuticals was variable. In the case of diclofenac and its metabolites, the concentration in the effluent was higher than in the influents. The risk quotients (RQs) calculated for analyzed pharmaceuticals suggest low environmental risk for selected species. However, negative impact for the biota due to the chronic presence of diclofenac cannot be excluded. It can be concluded that the SBRs, similarly to traditional flow activated sludge technology, are not efficient in the removal of target pharmaceuticals.
Collapse
Affiliation(s)
- Katarzyna Kołecka
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland.
| | - Magdalena Gajewska
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Stanisław Cytawa
- "SWARZEWO" Water and Wastewater Company, Władysławowska 84, 84-100 Swarzewo, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza St. 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza St. 63, 80-308 Gdańsk, Poland
| |
Collapse
|
8
|
Li D, Sharp JO, Drewes JE. Microbial genetic potential for xenobiotic metabolism increases with depth during biofiltration. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2058-2069. [PMID: 33084698 DOI: 10.1039/d0em00254b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Water infiltration into the subsurface can result in pronounced biogeochemical depth gradients. In this study, we assess metabolic potential and properties of the subsurface microbiome during water infiltration by analyzing sediments from spatially-segmented columns. Past work in these laboratory set-ups demonstrated that removal efficiencies of trace organic pollutants were enhanced by limited availability of biodegradable dissolved organic carbon (BDOC) associated with higher humic ratios and deeper sediment regions. Distinct differences were observed in the microbial community when contrasting shallow versus deeper profile sediments. Metagenomic analyses revealed that shallow sediments contained an enriched potential for bacterial growth and division processes. In contrast, deeper sediments harbored a significant increase in genes associated with the metabolism of secondary metabolites and the biotransformation of xenobiotic water pollutants. Metatranscripts further supported this trend, with increased potential for metabolic attributes associated with the biotransformation of xenobiotics and antibiotic resistance within deeper sediments. Furthermore, increasing ratios of humics in feed solutions correlated to enhanced expression of genes associated with xenobiotic biodegradation. These results provide genetic support for the interplay of dissolved organic carbon limitation and enhanced trace organic biotransformation by the subsurface microbiome.
Collapse
Affiliation(s)
- Dong Li
- NSF Engineering Research Center ReNUWIt, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | | | | |
Collapse
|
9
|
Valverde-Pérez B, Xing W, Zachariae AA, Skadborg MM, Kjeldgaard AF, Palomo A, Smets BF. Cultivation of methanotrophic bacteria in a novel bubble-free membrane bioreactor for microbial protein production. BIORESOURCE TECHNOLOGY 2020; 310:123388. [PMID: 32335344 DOI: 10.1016/j.biortech.2020.123388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Microbial protein is proposed as an alternative protein source with low environmental impact. Methane oxidizing bacteria are already produced at commercial scale from natural gas. However, their productivity is limited because of the creation of explosive atmospheres in the fermenters during production. This work demonstrates the applicability of bioreactors with a membrane-based gas supply via diffusion. Methanotrophic bacteria were successfully cultivated, with growth yields from 0.26 to 0.43 g-VSS g-CH4-1, slightly below those observed in analogous fermenters relying on bubbling. However, ammonia yields ranged from 5.2 to 6.9 g-VSS g-NH3-1, indicating higher nitrogen assimilation than in conventional fermenters. Indeed, protein content increased during the operational period reaching up to 51% of dry weight. The amino acid profile included the majority of the essential amino acids, demonstrating suitability as feed ingredient. Never during the operational period was an explosive atmosphere established in the reactor. Thus, bubble-free membrane bioreactors are a promising technology for microbial protein production relying on explosive gas mixtures.
Collapse
Affiliation(s)
- Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark.
| | - Wei Xing
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark; School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - August A Zachariae
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark
| | - Monika M Skadborg
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark
| | - Astrid F Kjeldgaard
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark
| | - Alejandro Palomo
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
10
|
House JS, Motsinger-Reif AA. Fibrate pharmacogenomics: expanding past the genome. Pharmacogenomics 2020; 21:293-306. [PMID: 32180510 DOI: 10.2217/pgs-2019-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fibrates are a medication class prescribed for decades as 'broad-spectrum' lipid-modifying agents used to lower blood triglyceride levels and raise high-density lipoprotein cholesterol levels. Such lipid changes are associated with a decrease in cardiovascular disease, and fibrates are commonly used to reduce risk of dangerous cardiovascular outcomes. As with most drugs, it is well established that response to fibrate treatment is variable, and this variation is heritable. This has motivated the investigation of pharmacogenomic determinants of response, and multiple studies have discovered a number of genes associated with fibrate response. Similar to other complex traits, the interrogation of single nucleotide polymorphisms using candidate gene or genome-wide approaches has not revealed a substantial portion of response variation. However, recent innovations in technological platforms and advances in statistical methodologies are revolutionizing the use and integration of other 'omes' in pharmacogenomics studies. Here, we detail successes, challenges, and recent advances in fibrate pharmacogenomics.
Collapse
Affiliation(s)
- John S House
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Department of Health & Human Services, Research Triangle Park, NC 27709, USA
| | - Alison A Motsinger-Reif
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Department of Health & Human Services, Research Triangle Park, NC 27709, USA
| |
Collapse
|
11
|
Shrestha P, Zhang Y, Chen WJ, Wong TY. Triclosan: antimicrobial mechanisms, antibiotics interactions, clinical applications, and human health. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:245-268. [PMID: 32955413 DOI: 10.1080/26896583.2020.1809286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The large-scale applications of Triclosan in industrial and household products have created many health and environmental concerns. Despite the fears of its drug-resistance and other issues, Triclosan is still an effective drug against many infectious organisms. Knowing the cross-interactions of Triclosan with different antibiotics, bacteria, and humans can provide much-needed information for the risk assessment of this drug. We review the current understanding of the antimicrobial mechanisms of Triclosan, how microbes become resistant to Triclosan, and the synergistic and antagonistic effects of Triclosan with different antibiotics. Current literature on the clinical applications of Triclosan and its effect on fetus/child development are also summarized.
Collapse
Affiliation(s)
- Prabin Shrestha
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| | | | - Wen-Jen Chen
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| | - Tit-Yee Wong
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|