1
|
Yao JH, Ortega EF, Panda A. Impact of zinc on immunometabolism and its putative role on respiratory diseases. IMMUNOMETABOLISM (COBHAM, SURREY) 2025; 7:e00057. [PMID: 40051614 PMCID: PMC11882175 DOI: 10.1097/in9.0000000000000057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025]
Abstract
Zinc is the second most abundant trace mineral in the human body and plays a critical role in immune cell function and metabolism. Zinc deficiency impairs immune cell function and is associated with increased susceptibility to respiratory diseases, including pneumonia, influenza, and COVID-19. Zinc homeostasis, maintained by numerous zinc transporters and metal-binding proteins (ie, metallothionein), is essential for coordinating immune cell signaling, gene expression, and enzymatic activities in response to respiratory infections. This article highlights the emerging role of zinc in various aspects of immune function, particularly through its influence on cellular metabolism. Given the significant global burden of respiratory diseases, there is a need to identify effective nutritional interventions that could be readily leveraged to prevent and/or mitigate respiratory disease risk, particularly in older adults who are prone to zinc deficiency. However, the immunometabolic mechanisms underlying zinc's protective effects remain poorly characterized. Future research should focus on elucidating how micronutrients, such as zinc, can support changes in immune cell metabolism in response to infections. Such efforts will help determine how zinc metabolism and zinc intervention strategies may best be leveraged to prevent or mitigate respiratory disease.
Collapse
Affiliation(s)
- Jonathan H. Yao
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Edwin F. Ortega
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Alexander Panda
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Involvement of Oxidative Stress in Protective Cardiac Functions of Calprotectin. Cells 2022; 11:cells11071226. [PMID: 35406797 PMCID: PMC8997643 DOI: 10.3390/cells11071226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Calprotectin (CLP) belonging to the S-100 protein family is a heterodimeric complex (S100A8/S100A9) formed by two binding proteins. Upon cell activation, CLP stored in neutrophils is released extracellularly in response to inflammatory stimuli and acts as damage-associated molecular patterns (DAMPs). S100A8 and S100A9 possess both anti-inflammatory and anti-bacterial properties. The complex is a ligand of the toll-like receptor 4 (TLR4) and receptor for advanced glycation end (RAGE). At sites of infection and inflammation, CLP is a target for oxidation due to its co-localization with neutrophil-derived oxidants. In the heart, oxidative stress (OS) responses and S100 proteins are closely related and intimately linked through pathophysiological processes. Our review summarizes the roles of S100A8, S100A9 and CLP in the inflammation in relationship with vascular OS, and we examine the importance of CLP for the mechanisms driving in the protection of myocardium. Recent evidence interpreting CLP as a critical modulator during the inflammatory response has identified this alarmin as an interesting drug target.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
- Correspondence:
| | - Geoffrey Dogon
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Eve Rigal
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Marianne Zeller
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Yves Cottin
- Service de Cardiologie, CHU-Dijon, 21000 Dijon, France;
| | - Catherine Vergely
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| |
Collapse
|
3
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
4
|
Monteith AJ, Skaar EP. The impact of metal availability on immune function during infection. Trends Endocrinol Metab 2021; 32:916-928. [PMID: 34483037 PMCID: PMC8516721 DOI: 10.1016/j.tem.2021.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
Nutrient transition metals are required cofactors for many proteins to perform functions necessary for life. As such, the concentration of nutrient metals is carefully maintained to retain critical biological processes while limiting toxicity. During infection, invading bacterial pathogens must acquire essential metals, such as zinc, manganese, iron, and copper, from the host to colonize and cause disease. To combat this, the host exploits the essentiality and toxicity of nutrient metals by producing factors that limit metal availability, thereby starving pathogens or accumulating metals in excess to intoxicate the pathogen in a process termed 'nutritional immunity'. As a result of inflammation, a heterogeneous environment containing both metal-replete and -deplete niches is created, in which nutrient metal availability may have an underappreciated role in regulating immune cell function during infection. How the host manipulates nutrient metal availability during infection, and the downstream effects that nutrient metals and metal-sequestering proteins have on immune cell function, are discussed in this review.
Collapse
Affiliation(s)
- Andrew J Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Kuźmicka W, Manda-Handzlik A, Cieloch A, Mroczek A, Demkow U, Wachowska M, Ciepiela O. Zinc Supplementation Modulates NETs Release and Neutrophils' Degranulation. Nutrients 2020; 13:nu13010051. [PMID: 33375275 PMCID: PMC7823768 DOI: 10.3390/nu13010051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Zinc plays an important physiological role in the entire body, especially in the immune system. It is one of the most abundant microelements in our organism and an essential component of enzymes and antibacterial proteins. Zinc levels were reported to be correlated with the intensity of innate immunity responses, especially those triggered by neutrophils. However, as the results are fragmentary, the phenomenon is still not fully understood and requires further research. In this study, we aimed to perform a comprehensive assessment and study the impact of zinc on several basic neutrophils’ functions in various experimental setups. Human and murine neutrophils were preincubated in vitro with zinc, and then phagocytosis, oxidative burst, degranulation and release of neutrophil extracellular traps (NETs) were analyzed. Moreover, a murine model of zinc deficiency and zinc supplementation was introduced in the study and the functions of isolated cells were thoroughly studied. We showed that zinc inhibits NETs release as well as degranulation in both human and murine neutrophils. Our study revealed that zinc decreases NETs release by inhibiting citrullination of histone H3. On the other hand, studies performed in zinc-deficient mice demonstrated that low zinc levels result in increased release of NETs and enhanced neutrophils degranulation. Overall, it was shown that zinc affects neutrophils’ functions in vivo and in vitro. Proper zinc level is necessary to maintain efficient functioning of the innate immune response.
Collapse
Affiliation(s)
- Weronika Kuźmicka
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091 Warsaw, Poland;
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091 Warsaw, Poland; (A.M.-H.); (A.M.); (U.D.); (A.C.)
| | - Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091 Warsaw, Poland; (A.M.-H.); (A.M.); (U.D.); (A.C.)
| | - Adrianna Cieloch
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091 Warsaw, Poland; (A.M.-H.); (A.M.); (U.D.); (A.C.)
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 63 Street, 02-091 Warsaw, Poland
| | - Agnieszka Mroczek
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091 Warsaw, Poland; (A.M.-H.); (A.M.); (U.D.); (A.C.)
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091 Warsaw, Poland; (A.M.-H.); (A.M.); (U.D.); (A.C.)
| | - Małgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091 Warsaw, Poland; (A.M.-H.); (A.M.); (U.D.); (A.C.)
- Correspondence: (M.W.); (O.C.); Tel.: +48-223179503 (M.W.); +48-225992405 (O.C.)
| | - Olga Ciepiela
- Department of Laboratory Medicine, Medical University of Warsaw, Banacha 1a Street, 02-097 Warsaw, Poland
- Correspondence: (M.W.); (O.C.); Tel.: +48-223179503 (M.W.); +48-225992405 (O.C.)
| |
Collapse
|
6
|
Reshetnikov V, Hahn J, Maueröder C, Czegley C, Munoz LE, Herrmann M, Hoffmann MH, Mokhir A. Chemical Tools for Targeted Amplification of Reactive Oxygen Species in Neutrophils. Front Immunol 2018; 9:1827. [PMID: 30150984 PMCID: PMC6099268 DOI: 10.3389/fimmu.2018.01827] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
A number of chemical compounds are known, which amplify the availability of reactive oxygen species (ROS) in neutrophils both in vitro and in vivo. They can be roughly classified into NADPH oxidase 2 (NOX2)-dependent and NOX2-independent reagents. NOX2 activation is triggered by protein kinase C agonists (e.g., phorbol esters, transition metal ions), redox mediators (e.g., paraquat) or formyl peptide receptor (FPR) agonists (e.g., aromatic hydrazine derivatives). NOX2-independent mechanisms are realized by reagents affecting glutathione homeostasis (e.g., l-buthionine sulfoximine), modulators of the mitochondrial respiratory chain (e.g., ionophores, inositol mimics, and agonists of peroxisome proliferator-activated receptor γ) and chemical ROS amplifiers [e.g., aminoferrocene-based prodrugs (ABPs)]. Since a number of inflammatory and autoimmune diseases, as well as cancer and bacterial infections, are triggered or enhanced by aberrant ROS production in neutrophils, it is tempting to use ROS amplifiers as drugs for the treatment of these diseases. However, since the known reagents are not cell specific, their application for treatment likely causes systemic enhancement of oxidative stress, leading to severe side effects. Cell-targeted ROS enhancement can be achieved either by using conjugates of ROS amplifiers with ligands binding to receptors expressed on neutrophils (e.g., the GPI-anchored myeloid differentiation marker Ly6G or FPR) or by designing reagents activated by neutrophil function [e.g., phagocytic activity or enzymatic activity of neutrophil elastase (NE)]. Since binding of an artificial ligand to a receptor may trigger or inhibit priming of neutrophils the latter approach has a smaller potential for severe side effects and is probably better suitable for therapy. Here, we review current approaches for the use of ROS amplifiers and discuss their applicability for treatment. As an example, we suggest a possible design of neutrophil-specific ROS amplifiers, which are based on NE-activated ABPs.
Collapse
Affiliation(s)
- Viktor Reshetnikov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Maueröder
- Cell Clearance in Health and Disease Lab, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent university, Ghent, Belgium
| | - Christine Czegley
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luis Enrique Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017; 9:E1286. [PMID: 29186856 PMCID: PMC5748737 DOI: 10.3390/nu9121286] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc "importers" (ZIP 1-14), zinc "exporters" (ZnT 1-10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate "zinc waves", and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Zinc Signals and Immunity. Int J Mol Sci 2017; 18:ijms18102222. [PMID: 29064429 PMCID: PMC5666901 DOI: 10.3390/ijms18102222] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.
Collapse
|
9
|
Brown LR, Caulkins RC, Schartel TE, Rosch JW, Honsa ES, Schultz-Cherry S, Meliopoulos VA, Cherry S, Thornton JA. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae. Front Cell Infect Microbiol 2017. [PMID: 28638805 PMCID: PMC5461340 DOI: 10.3389/fcimb.2017.00233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H2O2. Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.
Collapse
Affiliation(s)
- Lindsey R Brown
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| | - Rachel C Caulkins
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| | - Tyler E Schartel
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Erin S Honsa
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| |
Collapse
|
10
|
Grigorova NV. [ALLOCATION OF ZINC, MAGNESIUM AND COPPER IN GRANULOCYTES AND SERUM OF RABBITS WHILE INTRODUCTION OF SUBSTANCES THAT CHANGE THE FUNCTIONAL STATE OF ADRENAL CORTEX AND THE AUTONOMIC NERVOUS SYSTEM]. ACTA ACUST UNITED AC 2015; 61:34-9. [PMID: 26387158 DOI: 10.15407/fz61.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It was investigate the content of zinc, magnesium and copper in granulocytes and blood serum of the rabbits, that were injected with substances, that change the functional state of adrenal cortex, sympathetic-adrenal and parasympathetic nervous systems. It has been found that adrenaline, prednisolone and pilocarpine caused the multidirectional changes of these metals content in cells and in extracellular space. In this significant increase of zinc concentration by 33 - 42%, magnesium--by 33 -50%, and also decrease of copper content by 25-50% was observed in granulocytes of animals after adrenal hormones injections. Under the influence of cholinomimetics content of zinc and magnesium were essential decreased in granulocytes of the rabbits, by 58% and by 33% respectively, and content of copper was risen by 43% (P < 0.001). The opposite pattern was observed in serum. Adrenaline and prednisolone prescription caused a significant decrease of zinc concentration by 20-24%, magnesium--by 22-33%, and increase of copper content by 36-43%. Pilocarpine injection caused a decrease of zinc and magnesium content by 28 and 33% (P < 0.01) respectively, and an increase of copper concentration by 43% (P < 0.001). The obtained results also indicate a synergistic relationship between zinc and magnesium in cells, but antagonistic--these metals with copper.
Collapse
|
11
|
The influence of dietary zinc source and coccidial vaccine exposure on intracellular zinc homeostasis and immune status in broiler chickens. Br J Nutr 2015; 114:202-12. [DOI: 10.1017/s0007114515001592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coccidia are protozoal parasites which compromise mucosal integrity of the intestine, potentiating poultry morbidity. The host's Zn status influences the course of infection. Therefore, two experiments were designed to determine how supplemental Zn regimens impacted jejunal and caecal immune status and Zn transporter expression. Coccivac®-B was administered weekly at ten times the recommended dose as a mild coccidial challenge (10CV). Zn was provided through a basal diet, supplemental zinc sulfate (ZnSO4), or a supplemental 1:1 blend of ZnSO4 and Availa®-Zn (Blend). Mucosal jejunum (Expt 1) and caecal tonsils (Expt 2) were evaluated for intracellular Zn concentrations and phagocytic capacity. Messenger expression of Zn transporters ZnT5, ZnT7, Zip9 and Zip13 were investigated to determine Zn trafficking. With 10CV, phagocytic capacity was decreased in jejunal cells by 2 %. In the caecal tonsils, however, phagocytic capacity increased with challenge, with the magnitude of increase being more pronounced with higher dietary Zn (10CV × Zn interaction; P= 0·04). Intracellular Zn within caecal tonsils was found significantly reduced with 10CV (27 %, P= 0·0001). 10CV also resulted in an overall increase in the ratio of Zip:ZnT transporters. With the exception of Zip13 transporter expression, dietary Zn source had little impact on any of the measured cellular parameters. Thus, intestinal mucosal tissues had reductions in intracellular free Zn during coccidial challenge, which was coupled with an upregulation of measured Zip transporters. This suggests that under coccidial challenge, intestinal cells attempt to compensate for the drop in intracellular Zn.
Collapse
|
12
|
Trevisan R, Flesch S, Mattos JJ, Milani MR, Bainy ACD, Dafre AL. Zinc causes acute impairment of glutathione metabolism followed by coordinated antioxidant defenses amplification in gills of brown mussels Perna perna. Comp Biochem Physiol C Toxicol Pharmacol 2014; 159:22-30. [PMID: 24095941 DOI: 10.1016/j.cbpc.2013.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 01/28/2023]
Abstract
Zinc demonstrates protective and antioxidant properties at physiological levels, although these characteristics are not attributed at moderate or high concentrations. Zinc toxicity has been related to a number of factors, including interference with antioxidant defenses. In particular, the inhibition of glutathione reductase (GR) has been suggested as a possible mechanism for acute zinc toxicity in bivalves. The present work investigates the biochemical effects of a non-lethal zinc concentration on antioxidant-related parameters in gills of brown mussels Perna perna exposed for 21 days to 2.6 μM zinc chloride. After 2 days of exposure, zinc caused impairment of the antioxidant system, decreasing GR activity and glutathione levels. An increase in antioxidant defenses became evident at 7 and 21 days of exposure, as an increase in superoxide dismutase and glutathione peroxidase activity along with restoration of glutathione levels and GR activity. After 7 and 21 days, an increase in cellular peroxides and lipid peroxidation end products were also detected, which are indicative of oxidative damage. Changes in GR activity contrasts with protein immunoblotting data, suggesting that zinc produces a long lasting inhibition of GR. Contrary to the general trend in antioxidants, levels of peroxiredoxin 6 decreased after 21 days of exposure. The data presented here support the hypothesis that zinc can impair thiol homeostasis, causes an increase in lipid peroxidation and inhibits GR, imposing a pro-oxidant status, which seems to trigger homeostatic mechanisms leading to a subsequent increase on antioxidant-related defenses.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Biological Sciences Centre, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Ribeiro D, Freitas M, Tomé SM, Silva AMS, Porto G, Fernandes E. Modulation of human neutrophils' oxidative burst by flavonoids. Eur J Med Chem 2013; 67:280-92. [PMID: 23871908 DOI: 10.1016/j.ejmech.2013.06.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/02/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
Inflammation is a normal response towards tissue injury, but may become deleterious to the organism if uncontrolled. The overproduction of reactive species during the inflammatory process may cause or magnify the damage at inflammatory sites. Flavonoids have been suggested as therapeutic agents to avoid such damage, as these compounds exhibit anti-inflammatory activity, through the modulation of oxidative stress and signalling pathways. Both effects may attenuate neutrophils' activities at inflammatory sites. In this study, we investigated the structure/activity relationship of a series of flavonoids on the oxidative burst of human neutrophils in vitro, as a measure of its anti-inflammatory potential. Neutrophils were stimulated with phorbol-12-myristate-13-acetate, and fluorescence and chemiluminescence techniques were used to evaluate the generation of reactive oxygen species. All the tested flavonoids revealed the ability to modulate the neutrophil's oxidative burst. From the obtained results, the pivotal role of the catechol group in the B-ring was evidenced as well as the minor importance of the hydroxylations in the A-ring, which did not appear to be determinant for the activity, although clearly influencing the lipophilicity of the tested flavonoids. It is also clarified the importance of the methylation in the OH group at the B-ring catechol moiety. In conclusion, the obtained results uncover new possible strategies for the resolution of inflammatory processes, using flavonoids to modulate neutrophil's oxidative burst.
Collapse
Affiliation(s)
- Daniela Ribeiro
- REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
14
|
Gáspár S. Detection of Superoxide and Hydrogen Peroxide from Living Cells Using Electrochemical Sensors. ACTA ACUST UNITED AC 2011. [DOI: 10.1021/bk-2011-1083.ch010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Szilveszter Gáspár
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
15
|
Ponte F, Carvalho F, Porto B. Protective effect of acetyl-l-carnitine and α-lipoic acid against the acute toxicity of diepoxybutane to human lymphocytes. Toxicology 2011; 289:52-58. [PMID: 21807063 DOI: 10.1016/j.tox.2011.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 12/21/2022]
Abstract
The biotransformation and oxidative stress may contribute to 1,2:3,4-diepoxybutane (DEB)-induced toxicity to human lymphocytes of Fanconi Anemia (FA) patients. Thus, the identification of putative inhibitors of bioactivation, as well as the determination of the protective role of oxidant defenses, on DEB-induced toxicity, can help to understand what is failing in FA cells. In the present work we studied the contribution of several biochemical pathways for DEB-induced acute toxicity in human lymphocyte suspensions, by using inhibitors of epoxide hydrolases, inhibitors of protective enzymes as glutathione S-transferase and catalase, the depletion of glutathione (GSH), and the inhibition of protein synthesis; and a variety of putative protective compounds, including antioxidants, and mitochondrial protective agents. The present study reports two novel findings: (i) it was clearly evidenced, for the first time, that the acute exposure of freshly isolated human lymphocytes to DEB results in severe GSH depletion and loss of ATP, followed by cell death; (ii) acetyl-l-carnitine elicits a significant protective effect on DEB induced toxicity, which was potentiated by α-lipoic acid. Collectively, these findings contribute to increase our knowledge of DEB-induce toxicity and will be very useful when applied in studies with lymphocytes from FA patients, in order to find out a protective agent against spontaneous and DEB-induced chromosome instability.
Collapse
Affiliation(s)
- Filipa Ponte
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Anibal Cunha, 164, 4099-030 Porto, Portugal.
| | | | | |
Collapse
|
16
|
Freitas M, Fernandes E. Zinc, cadmium and nickel increase the activation of NF-κB and the release of cytokines from THP-1 monocytic cells. Metallomics 2011; 3:1238-43. [PMID: 21842098 DOI: 10.1039/c1mt00050k] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sustained activation of the transcription factor nuclear factor κB (NF-κB) by metal-activated signalling pathways can lead to chronic inflammatory processes and related diseases, including carcinogenesis. The aim of the present work was to clarify the effect of zinc, nickel and cadmium on NF-κB activation in the THP-1 human monocytic leukemia cell line. The production of the NF-κB downstream pro-inflammatory mediators tumor necrosis factor (TNF)-α and interleukin (IL)-1β, IL-6 and IL-8 was also evaluated due to their important roles in the pathogenesis of chronic inflammatory and autoimmune diseases and, ultimately, in the development of cancer. The results obtained demonstrated that zinc, nickel and cadmium significantly activate NF-κB, and the release of the chemokine IL-8. Cadmium also induced the release of TNF-α and IL-6 in THP-1 monocytic cells, which may indicate some potential to induce deleterious effects through this pathway.
Collapse
Affiliation(s)
- Marisa Freitas
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal.
| | | |
Collapse
|
17
|
Hong JH, Lee S, Jung HS, Lee KB, Kim JS. Antihypertensive Effects of 5-(4-Nitrobenzenediazo)-8-benzenesulfonamidoquinaldine in Spontaneously Hypertensive Rats. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.11.3391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Freitas M, Gomes A, Porto G, Fernandes E. Nickel induces oxidative burst, NF-κB activation and interleukin-8 production in human neutrophils. J Biol Inorg Chem 2010; 15:1275-83. [DOI: 10.1007/s00775-010-0685-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 06/28/2010] [Indexed: 11/29/2022]
|