1
|
Liu Q, Wu Q, Liu J, Xu T, Liu J, Wu Q, Malakar PK, Zhu Y, Zhao Y, Zhang Z. New Insights into the Mediation of Biofilm Formation by Three Core Extracellular Polysaccharide Biosynthesis Pathways in Pseudomonas aeruginosa. Int J Mol Sci 2025; 26:3780. [PMID: 40332422 PMCID: PMC12027665 DOI: 10.3390/ijms26083780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Pseudomonas aeruginosa biofilms, driven by extracellular polysaccharides (EPSs), exacerbate pathogenicity and drug resistance, posing critical threats to public health. While EPS biosynthesis pathways are central to biofilm formation, their distinct contributions and regulatory dynamics remain incompletely understood. Here, we systematically dissect the roles of three core EPS pathways-Psl, Pel, and alginate-in biofilm architecture and function using multi-omics approaches. Key findings reveal Psl as the dominant regulator of biofilm elasticity and thickness, with its deletion disrupting chemotaxis, quorum sensing, and 3',5'-Cyclic GMP (c-di-GMP)/amino acid metabolism. Pel redundantly enhances biofilm biomass, but elevates flagellar synthesis efficiency when Psl is absent. Alginate exhibited negligible transcriptional or metabolic influence on biofilms. These insights clarify hierarchical EPS contributions and highlight Psl as a priority target for therapeutic strategies to dismantle biofilm-mediated resistance.
Collapse
Affiliation(s)
- Qianhui Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (Q.L.); (Q.W.); (J.L.); (T.X.); (J.L.); (Q.W.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (Q.L.); (Q.W.); (J.L.); (T.X.); (J.L.); (Q.W.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Jiawen Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (Q.L.); (Q.W.); (J.L.); (T.X.); (J.L.); (Q.W.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Tianming Xu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (Q.L.); (Q.W.); (J.L.); (T.X.); (J.L.); (Q.W.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (Q.L.); (Q.W.); (J.L.); (T.X.); (J.L.); (Q.W.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Qin Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (Q.L.); (Q.W.); (J.L.); (T.X.); (J.L.); (Q.W.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Pradeep K. Malakar
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (Q.L.); (Q.W.); (J.L.); (T.X.); (J.L.); (Q.W.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (Q.L.); (Q.W.); (J.L.); (T.X.); (J.L.); (Q.W.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (Q.L.); (Q.W.); (J.L.); (T.X.); (J.L.); (Q.W.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; (Q.L.); (Q.W.); (J.L.); (T.X.); (J.L.); (Q.W.); (P.K.M.); (Y.Z.)
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| |
Collapse
|
2
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Kang D, Xu Q, Kirienko NV. In vitro lung epithelial cell model reveals novel roles for Pseudomonas aeruginosa siderophores. Microbiol Spectr 2024; 12:e0369323. [PMID: 38311809 PMCID: PMC10913452 DOI: 10.1128/spectrum.03693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
The multidrug-resistant pathogen Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model that can be used to characterize the impact and molecular mechanisms of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model to use human bronchial epithelial (16HBE) cells. We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipids or genetic disruption of rhamnolipid biosynthesis abrogated the toxicity of the conditioned medium. Furthermore, we also examine the effects of exposure to purified pyoverdine on 16HBE cells. While pyoverdine accumulated within cells, it was largely sequestered within early endosomes, resulting in minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several pro-inflammatory genes. However, pyoverdine potentiated these iron chelators in activating pro-inflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa is a versatile bacterium that frequently causes lung infections. This pathogen is life-threatening to mechanically-ventilated patients in intensive care units and is a debilitating burden for individuals with cystic fibrosis. However, the role of P. aeruginosa virulence factors and their regulation during infection are not fully understood. Previous murine lung infection studies have demonstrated that the production of siderophores (e.g., pyoverdine and pyochelin) is necessary for full P. aeruginosa virulence. In this report, we provide further mechanistic insight into this phenomenon. We characterize distinct and novel ways these siderophores contribute to virulence using an in vitro human lung epithelial cell culture model.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | |
Collapse
|
4
|
Kang D, Xu Q, Kirienko NV. In vitro Lung Epithelial Cell Model Reveals Novel Roles for Pseudomonas aeruginosa Siderophores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525796. [PMID: 36747656 PMCID: PMC9901015 DOI: 10.1101/2023.01.26.525796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multidrug-resistant Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model to characterize the impact and molecular mechanism of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model for human bronchial epithelial cells (16HBE). We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipid factors or genetic disruption of rhamnolipid biosynthesis was sufficient to abrogate conditioned medium toxicity. Furthermore, we also examine the effects of purified pyoverdine exposure on 16HBE cells. While pyoverdine accumulated within cells, the siderophore was largely sequestered within early endosomes, showing minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several proinflammatory genes. However, pyoverdine potentiated these iron chelators in activating proinflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | |
Collapse
|
5
|
Quinn AM, Bottery MJ, Thompson H, Friman VP. Resistance evolution can disrupt antibiotic exposure protection through competitive exclusion of the protective species. THE ISME JOURNAL 2022; 16:2433-2447. [PMID: 35859161 PMCID: PMC9477885 DOI: 10.1038/s41396-022-01285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022]
Abstract
Antibiotic degrading bacteria can reduce the efficacy of drug treatments by providing antibiotic exposure protection to pathogens. While this has been demonstrated at the ecological timescale, it is unclear how exposure protection might alter and be affected by pathogen antibiotic resistance evolution. Here, we utilised a two-species model cystic fibrosis (CF) community where we evolved the bacterial pathogen Pseudomonas aeruginosa in a range of imipenem concentrations in the absence or presence of Stenotrophomonas maltophilia, which can detoxify the environment by hydrolysing β-lactam antibiotics. We found that P. aeruginosa quickly evolved resistance to imipenem via parallel loss of function mutations in the oprD porin gene. While the level of resistance did not differ between mono- and co-culture treatments, the presence of S. maltophilia increased the rate of imipenem resistance evolution in the four μg/ml imipenem concentration. Unexpectedly, imipenem resistance evolution coincided with the extinction of S. maltophilia due to increased production of pyocyanin, which was cytotoxic to S. maltophilia. Together, our results show that pathogen resistance evolution can disrupt antibiotic exposure protection due to competitive exclusion of the protective species. Such eco-evolutionary feedbacks may help explain changes in the relative abundance of bacterial species within CF communities despite intrinsic resistance to anti-pseudomonal drugs.
Collapse
|
6
|
Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Sugie J, Pogliano J, Palsson BO. Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Res 2022; 50:3658-3672. [PMID: 35357493 PMCID: PMC9023270 DOI: 10.1093/nar/gkac187] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
The transcriptional regulatory network (TRN) of Pseudomonas aeruginosa coordinates cellular processes in response to stimuli. We used 364 transcriptomes (281 publicly available + 83 in-house generated) to reconstruct the TRN of P. aeruginosa using independent component analysis. We identified 104 independently modulated sets of genes (iModulons) among which 81 reflect the effects of known transcriptional regulators. We identified iModulons that (i) play an important role in defining the genomic boundaries of biosynthetic gene clusters (BGCs), (ii) show increased expression of the BGCs and associated secretion systems in nutrient conditions that are important in cystic fibrosis, (iii) show the presence of a novel ribosomally synthesized and post-translationally modified peptide (RiPP) BGC which might have a role in P. aeruginosa virulence, (iv) exhibit interplay of amino acid metabolism regulation and central metabolism across different carbon sources and (v) clustered according to their activity changes to define iron and sulfur stimulons. Finally, we compared the identified iModulons of P. aeruginosa with those previously described in Escherichia coli to observe conserved regulons across two Gram-negative species. This comprehensive TRN framework encompasses the majority of the transcriptional regulatory machinery in P. aeruginosa, and thus should prove foundational for future research into its physiological functions.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
7
|
Căpățînă D, Feier B, Hosu O, Tertiș M, Cristea C. Analytical methods for the characterization and diagnosis of infection with Pseudomonas aeruginosa: A critical review. Anal Chim Acta 2022; 1204:339696. [DOI: 10.1016/j.aca.2022.339696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/05/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022]
|
8
|
Wardell SJT, Gauthier J, Martin LW, Potvin M, Brockway B, Levesque RC, Lamont IL. Genome evolution drives transcriptomic and phenotypic adaptation in Pseudomonas aeruginosa during 20 years of infection. Microb Genom 2021; 7. [PMID: 34826267 PMCID: PMC8743555 DOI: 10.1099/mgen.0.000681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa chronically infects the lungs of patients with cystic fibrosis (CF). During infection the bacteria evolve and adapt to the lung environment. Here we use genomic, transcriptomic and phenotypic approaches to compare multiple isolates of P. aeruginosa collected more than 20 years apart during a chronic infection in a CF patient. Complete genome sequencing of the isolates, using short- and long-read technologies, showed that a genetic bottleneck occurred during infection and was followed by diversification of the bacteria. A 125 kb deletion, an 0.9 Mb inversion and hundreds of smaller mutations occurred during evolution of the bacteria in the lung, with an average rate of 17 mutations per year. Many of the mutated genes are associated with infection or antibiotic resistance. RNA sequencing was used to compare the transcriptomes of an earlier and a later isolate. Substantial reprogramming of the transcriptional network had occurred, affecting multiple genes that contribute to continuing infection. Changes included greatly reduced expression of flagellar machinery and increased expression of genes for nutrient acquisition and biofilm formation, as well as altered expression of a large number of genes of unknown function. Phenotypic studies showed that most later isolates had increased cell adherence and antibiotic resistance, reduced motility, and reduced production of pyoverdine (an iron-scavenging siderophore), consistent with genomic and transcriptomic data. The approach of integrating genomic, transcriptomic and phenotypic analyses reveals, and helps to explain, the plethora of changes that P. aeruginosa undergoes to enable it to adapt to the environment of the CF lung during a chronic infection.
Collapse
Affiliation(s)
| | - Jeff Gauthier
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Marianne Potvin
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Ben Brockway
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Chadha J, Harjai K, Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol 2021; 24:2630-2656. [PMID: 34559444 DOI: 10.1111/1462-2920.15784] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of mortality among immunocompromised patients in clinical setups. The hallmarks of virulence in P. aeruginosa encompass six biologically competent attributes that cumulatively drive disease progression in a multistep manner. These multifaceted hallmarks lay the principal foundation for rationalizing the complexities of pseudomonal infections. They include factors for host colonization and bacterial motility, biofilm formation, production of destructive enzymes, toxic secondary metabolites, iron-chelating siderophores and toxins. This arsenal of virulence hallmarks is fostered and stringently regulated by the bacterial signalling system called quorum sensing (QS). The central regulatory functions of QS in controlling the timely expression of these virulence hallmarks for adaptation and survival drive the disease outcome. This review describes the intricate mechanisms of QS in P. aeruginosa and its role in shaping bacterial responses, boosting bacterial fitness. We summarize the virulence hallmarks of P. aeruginosa, relating them with the QS circuitry in clinical infections. We also examine the role of QS in the development of drug resistance and propose a novel antivirulence therapy to combat P. aeruginosa infections. This can prove to be a next-generation therapy that may eventually become refractory to the use of conventional antimicrobial treatments.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
10
|
Visaggio D, Pirolo M, Frangipani E, Lucidi M, Sorrentino R, Mitidieri E, Ungaro F, Luraghi A, Peri F, Visca P. A Highly Sensitive Luminescent Biosensor for the Microvolumetric Detection of the Pseudomonas aeruginosa Siderophore Pyochelin. ACS Sens 2021; 6:3273-3283. [PMID: 34476940 PMCID: PMC8477383 DOI: 10.1021/acssensors.1c01023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pyochelin (PCH) siderophore produced by the pathogenic bacterium Pseudomonas aeruginosa is an important virulence factor, acting as a growth promoter during infection. While strong evidence exists for PCH production in vivo, PCH quantification in biological samples is problematic due to analytical complexity, requiring extraction from large volumes and time-consuming purification steps. Here, the construction of a bioluminescent whole cell-based biosensor, which allows rapid, sensitive, and single-step PCH quantification in biological samples, is reported. The biosensor was engineered by fusing the promoter of the PCH biosynthetic gene pchE to the luxCDABE operon, and the resulting construct was inserted into the chromosome of the ΔpvdAΔpchDΔfpvA siderophore-null P. aeruginosa mutant. A bioassay was setup in a 96-well microplate format, enabling the contemporary screening of several samples in a few hours. A linear response was observed for up to 40 nM PCH, with a lower detection limit of 1.64 ± 0.26 nM PCH. Different parameters were considered to calibrate the biosensor, and a detailed step-by-step operation protocol, including troubleshooting specific problems that can arise during sample preparation, was established to achieve rapid, sensitive, and specific PCH quantification in both P. aeruginosa culture supernatants and biological samples. The biosensor was implemented as a screening tool to detect PCH-producing P. aeruginosa strains on a solid medium.
Collapse
Affiliation(s)
- Daniela Visaggio
- Department of Science, Roma Tre University, Rome 00146, Italy
- Santa Lucia Fundation IRCCS, Rome 00179, Italy
| | - Mattia Pirolo
- Department of Science, Roma Tre University, Rome 00146, Italy
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029, Italy
| | | | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80138, Italy
| | - Emma Mitidieri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80138, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Andrea Luraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome 00146, Italy
- Santa Lucia Fundation IRCCS, Rome 00179, Italy
| |
Collapse
|
11
|
Tahmasebi H, Dehbashi S, Arabestani MR. Antibiotic resistance alters through iron-regulating Sigma factors during the interaction of Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2021; 11:18509. [PMID: 34531485 PMCID: PMC8445946 DOI: 10.1038/s41598-021-98017-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Iron is a limiting factor in such a condition that usually is sequestered by the host during polymicrobial infections of Pseudomonas aeruginosa and Staphylococcus aureus. This study aimed to investigate the interaction of S. aureus and P. aeruginosa, which alters iron-related sigma factors regulation and antibiotic resistance. The antibiotic resistance of P. aeruginosa and S. aureus was investigated in a L929 cell culture model. The expression level of pvdS, hasI (P. aeruginosa sigma factors), and sigS (S. aureus sigma factor) genes was determined using Quantitative Real-Time PCR. pvdS and hasI were downregulated during co-culture with S. aureus, while the susceptibility to carbapenems increased (p-value < 0.0001). Also, there was a direct significant relationship between resistance to vancomycin with sigS. Regarding the findings of the current study, iron-related sigma factors of P. aeruginosa and S. aureus play a role in induction susceptibility to various antibiotics, including carbapenems and vancomycin.
Collapse
Affiliation(s)
- Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sanaz Dehbashi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Impact of artificial sputum media formulation on Pseudomonas aeruginosa secondary metabolite production. J Bacteriol 2021; 203:e0025021. [PMID: 34398662 PMCID: PMC8508215 DOI: 10.1128/jb.00250-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In vitro culture media are being developed to understand how host site-specific nutrient profiles influence microbial pathogenicity and ecology. To mimic the cystic fibrosis (CF) lung environment, a variety of artificial sputum media (ASM) have been created. However, the composition of these ASM vary in the concentration of key nutrients, including amino acids, lipids, DNA, and mucin. In this work, we used feature-based molecular networking (FBMN) to perform comparative metabolomics of Pseudomonas aeruginosa, the predominant opportunistic pathogen infecting the lungs of people with CF, cultured in nine different ASM. We found that the concentration of aromatic amino acids and iron from mucin added to the media contributes to differences in the production of P. aeruginosa virulence-associated secondary metabolites. IMPORTANCE Different media formulations aiming to replicate in vivo infection environments contain different nutrients, which affects interpretation of experimental results. Inclusion of undefined components, such as commercial porcine gastric mucin (PGM), in an otherwise chemically defined medium can alter the nutrient content of the medium in unexpected ways and influence experimental outcomes.
Collapse
|
13
|
Kang D, Revtovich AV, Deyanov AE, Kirienko NV. Pyoverdine Inhibitors and Gallium Nitrate Synergistically Affect Pseudomonas aeruginosa. mSphere 2021; 6:e0040121. [PMID: 34133200 PMCID: PMC8265654 DOI: 10.1128/msphere.00401-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that frequently causes ventilator-associated pneumonia in intensive care units and chronic lung infections in cystic fibrosis patients. The rising prevalence of drug-resistant bacteria demands the exploration of new therapeutic avenues for treating P. aeruginosa infections. Perhaps the most thoroughly explored alternative is to use novel treatments to target pathogen virulence factors, like biofilm or toxin production. Gallium(III) nitrate is one such agent. It has been recognized for its ability to inhibit pathogen growth and biofilm formation in P. aeruginosa by disrupting bacterial iron homeostasis. However, irreversible sequestration by pyoverdine substantially limits its effectiveness. In this report, we show that disrupting pyoverdine production (genetically or chemically) potentiates the efficacy of gallium nitrate. Interestingly, we report that the pyoverdine inhibitor 5-fluorocytosine primarily functions as an antivirulent, even when it indirectly affects bacterial growth in the presence of gallium, and that low selective pressure for resistance occurs. We also demonstrate that the antibiotic tetracycline inhibits pyoverdine at concentrations below those required to prevent bacterial growth, and this activity allows it to synergize with gallium to inhibit bacterial growth and rescue Caenorhabditis elegans during P. aeruginosa pathogenesis. IMPORTANCE P. aeruginosa is one of the most common causative agents for ventilator-associated pneumonia and nosocomial bacteremia and is a leading cause of death in patients with cystic fibrosis. Pandrug-resistant strains of P. aeruginosa are increasingly identified in clinical samples and show resistance to virtually all major classes of antibiotics, including aminoglycosides, cephalosporins, and carbapenems. Gallium(III) nitrate has received considerable attention as an antipseudomonal agent that inhibits P. aeruginosa growth and biofilm formation by disrupting bacterial iron homeostasis. This report demonstrates that biosynthetic inhibitors of pyoverdine, such as 5-fluorocytosine and tetracycline, synergize with gallium nitrate to inhibit P. aeruginosa growth and biofilm formation, rescuing C. elegans hosts during pathogenesis.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Antimicrobial resistance is a serious medical threat, particularly given the decreasing rate of discovery of new treatments. Although attempts to find new treatments continue, it has become clear that merely discovering new antimicrobials, even if they are new classes, will be insufficient. It is essential that new strategies be aggressively pursued. Toward that end, the search for treatments that can mitigate bacterial virulence and tilt the balance of host-pathogen interactions in favor of the host has become increasingly popular. In this review, we will discuss recent progress in this field, with a special focus on synthetic small molecule antivirulents that have been identified from high-throughput screens and on treatments that are effective against the opportunistic human pathogen Pseudomonas aeruginosa.
Collapse
|
15
|
The Iron-chelator, N,N'-bis (2-hydroxybenzyl) Ethylenediamine-N,N'-Diacetic acid is an Effective Colistin Adjunct against Clinical Strains of Biofilm-Dwelling Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9040144. [PMID: 32230813 PMCID: PMC7235823 DOI: 10.3390/antibiotics9040144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Targeting the iron requirement of Pseudomonas aeruginosa may be an effective adjunctive for conventional antibiotic treatment against biofilm-dwelling P. aeruginosa. We, therefore, assessed the anti-biofilm activity of N,N’-bis (2-hydroxybenzyl) ethylenediamine-N,N’-diacetic acid (HBED), which is a synthetic hexadentate iron chelator. The effect of HBED was studied using short-term (microtitre plate) and longer-term (flow-cell) biofilm models, under aerobic, anaerobic, and microaerobic (flow-cell) conditions and in combination with the polymyxin antibiotic colistimethate sodium (colistin). HBED was assessed against strains of P. aeruginosa from patients with cystic fibrosis and the reference strain PAO1. HBED inhibited growth and biofilm formation of all clinical strains under aerobic and anaerobic conditions, but inhibitory effects against PAO1 were predominantly exerted under anaerobic conditions. PA605, which is a clinical strain with a robust biofilm-forming phenotype, was selected for flow-cell studies. HBED significantly reduced biomass and surface coverage of PA605, and, combined with colistin, HBED significantly enhanced the microcolony killing effects of colistin to result in almost complete removal of the biofilm. HBED combined with colistin is highly effective in vitro against biofilms formed by clinical strains of P. aeruginosa.
Collapse
|
16
|
Kang D, Revtovich AV, Chen Q, Shah KN, Cannon CL, Kirienko NV. Pyoverdine-Dependent Virulence of Pseudomonas aeruginosa Isolates From Cystic Fibrosis Patients. Front Microbiol 2019; 10:2048. [PMID: 31551982 PMCID: PMC6743535 DOI: 10.3389/fmicb.2019.02048] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/20/2019] [Indexed: 01/03/2023] Open
Abstract
The development of therapies that modulate or prevent pathogen virulence may be a key strategy for circumventing antimicrobial resistance. Toward that end, we examined the production of pyoverdine, a key virulence determinant, in ∼70 Pseudomonas aeruginosa isolates from pediatric cystic fibrosis patients. Pyoverdine production was heterogeneous and showed a clear correlation with pathogenicity in Caenorhabditis elegans and an acute murine pneumonia model. Examination showed pyoverdine accumulation in host tissues, including extrapharyngeal tissues of C. elegans and lung tissues of mice, where accumulation correlated with host death. Many of the isolates tested were resistant to multiple antimicrobials, so we assayed the ability of pyoverdine inhibitors to mitigate virulence and rescue pyoverdine-mediated host pathology. Representatives from three different classes of pyoverdine inhibitors (gallium, fluoropyrimidines, and LK11) significantly improved survival. Our findings highlight the utility of targeting virulence factors in general, and pyoverdine in particular, as a promising method to control bacterial pathogenesis as the utility of antimicrobials continues to diminish.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, TX, United States
| | | | - Qingquan Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX, United States
| | - Kush N Shah
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX, United States
| | - Carolyn L Cannon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX, United States
| | | |
Collapse
|
17
|
Sass G, Ansari SR, Dietl AM, Déziel E, Haas H, Stevens DA. Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa. PLoS One 2019; 14:e0216085. [PMID: 31067259 PMCID: PMC6505954 DOI: 10.1371/journal.pone.0216085] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/12/2019] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa and Aspergillus fumigatus are pathogens frequently co-inhabiting immunocompromised patient airways, particularly in people with cystic fibrosis. Both microbes depend on the availability of iron, and compete for iron in their microenvironment. We showed previously that the P. aeruginosa siderophore pyoverdine is the main instrument in battling A. fumigatus biofilms, by iron chelation and denial of iron to the fungus. Here we show that A. fumigatus siderophores defend against anti-fungal P. aeruginosa effects. P. aeruginosa supernatants produced in the presence of wildtype A. fumigatus planktonic supernatants (Afsup) showed less activity against A. fumigatus biofilms than P. aeruginosa supernatants without Afsup, despite higher production of pyoverdine by P. aeruginosa. Supernatants of A. fumigatus cultures lacking the sidA gene (AfΔsidA), unable to produce hydroxamate siderophores, were less capable of protecting A. fumigatus biofilms from P. aeruginosa supernatants and pyoverdine. AfΔsidA biofilm was more sensitive towards inhibitory effects of pyoverdine, the iron chelator deferiprone (DFP), or amphothericin B than wildtype A. fumigatus biofilm. Supplementation of sidA-deficient A. fumigatus biofilm with A. fumigatus siderophores restored resistance to pyoverdine. The A. fumigatus siderophore production inhibitor celastrol sensitized wildtype A. fumigatus biofilms towards the anti-fungal activity of DFP. In conclusion, A. fumigatus hydroxamate siderophores play a pivotal role in A. fumigatus competition for iron against P. aeruginosa.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, California, United States of America
- * E-mail:
| | - Shajia R. Ansari
- California Institute for Medical Research, San Jose, California, United States of America
| | - Anna-Maria Dietl
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - David A. Stevens
- California Institute for Medical Research, San Jose, California, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
18
|
Sass G, Nazik H, Penner J, Shah H, Ansari SR, Clemons KV, Groleau MC, Dietl AM, Visca P, Haas H, Déziel E, Stevens DA. Aspergillus-Pseudomonas interaction, relevant to competition in airways. Med Mycol 2019; 57:S228-S232. [PMID: 30816973 DOI: 10.1093/mmy/myy087] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/06/2018] [Indexed: 12/29/2022] Open
Abstract
In airways of immunocompromised patients and individuals with cystic fibrosis, Pseudomonas aeruginosa and Aspergillus fumigatus are the most common opportunistic bacterial and fungal pathogens. Both pathogens form biofilms and cause acute and chronic illnesses. Previous studies revealed that P. aeruginosa is able to inhibit A. fumigatus biofilms in vitro. While numerous P. aeruginosa molecules have been shown to affect A. fumigatus, there never has been a systematic approach to define the principal causative agent. We studied 24 P. aeruginosa mutants, with deletions in genes important for virulence, iron acquisition, or quorum sensing, for their ability to interfere with A. fumigatus biofilms. Cells, planktonic or biofilm culture filtrates of four P. aeruginosa mutants, pvdD-pchE-, pvdD-, lasR-rhlR-, and lasR-, inhibited A. fumigatus biofilm metabolism or planktonic A. fumigatus growth significantly less than P. aeruginosa wild type. The common defect of these four mutants was a lack in the production of the P. aeruginosa siderophore pyoverdine. Pure pyoverdine affected A. fumigatus biofilm metabolism, and restored inhibition by the above mutants. In lungs from cystic fibrosis patients, pyoverdine production and antifungal activity correlated. The key inhibitory mechanism for pyoverdine was iron-chelation and denial of iron to A. fumigatus. Further experiments revealed a counteracting, self-protective mechanism by A. fumigatus, based on A. fumigatus siderophore production.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, California, USA
| | - Hasan Nazik
- California Institute for Medical Research, San Jose, California, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Microbiology, Istanbul University, Istanbul, Turkey
| | - John Penner
- California Institute for Medical Research, San Jose, California, USA
| | - Hemi Shah
- California Institute for Medical Research, San Jose, California, USA
| | - Shajia R Ansari
- California Institute for Medical Research, San Jose, California, USA
| | - Karl V Clemons
- California Institute for Medical Research, San Jose, California, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | - Anna-Maria Dietl
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Paolo Visca
- Department of Sciences, Roma Tre University, Rome, Italy
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - David A Stevens
- California Institute for Medical Research, San Jose, California, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
19
|
Bianconi I, D'Arcangelo S, Esposito A, Benedet M, Piffer E, Dinnella G, Gualdi P, Schinella M, Baldo E, Donati C, Jousson O. Persistence and Microevolution of Pseudomonas aeruginosa in the Cystic Fibrosis Lung: A Single-Patient Longitudinal Genomic Study. Front Microbiol 2019; 9:3242. [PMID: 30692969 PMCID: PMC6340092 DOI: 10.3389/fmicb.2018.03242] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Background: During its persistence in cystic fibrosis (CF) airways, P. aeruginosa develops a series of phenotypic changes by the accumulation of pathoadaptive mutations. A better understanding of the role of these mutations in the adaptive process, with particular reference to the development of multidrug resistance (MDR), is essential for future development of novel therapeutic approaches, including the identification of new drug targets and the implementation of more efficient antibiotic therapy. Although several whole-genome sequencing studies on P. aeruginosa CF lineages have been published, the evolutionary trajectories in relation to the development of antimicrobial resistance remain mostly unexplored to date. In this study, we monitored the adaptive changes of P. aeruginosa during its microevolution in the CF airways to provide an innovative, genome-wide picture of mutations and persistent phenotypes and to point out potential novel mechanisms allowing survival in CF patients under antibiotic therapy. Results: We obtained whole genome sequences of 40 P. aeruginosa clinical CF strains isolated at Trentino Regional Support CF Centre (Rovereto, Italy) from a single CF patient over an 8-year period (2007-2014). Genotypic analysis of the P. aeruginosa isolates revealed a clonal population dominated by the Sequence Type 390 and three closely related variants, indicating that all members of the population likely belong to the same clonal lineage and evolved from a common ancestor. While the majority of early isolates were susceptible to most antibiotics tested, over time resistant phenotypes increased in the persistent population. Genomic analyses of the population indicated a correlation between the evolution of antibiotic resistance profiles and phylogenetic relationships, and a number of putative pathoadaptive variations were identified. Conclusion: This study provides valuable insights into the within-host adaptation and microevolution of P. aeruginosa in the CF lung and revealed the emergence of an MDR phenotype over time, which could not be comprehensively explained by the variations found in known resistance genes. Further investigations on uncharacterized variations disclosed in this study should help to increase our understanding of the development of MDR phenotype and the poor outcome of antibiotic therapies in many CF patients.
Collapse
Affiliation(s)
- Irene Bianconi
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | | | - Alfonso Esposito
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Mattia Benedet
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Elena Piffer
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Grazia Dinnella
- Trentino Cystic Fibrosis Support Centre, Rovereto Hospital, Rovereto, Italy
| | - Paola Gualdi
- Operative Unit of Clinical Pathology, Rovereto Hospital, Rovereto, Italy
| | - Michele Schinella
- Operative Unit of Clinical Pathology, Rovereto Hospital, Rovereto, Italy
| | - Ermanno Baldo
- Trentino Cystic Fibrosis Support Centre, Rovereto Hospital, Rovereto, Italy
| | - Claudio Donati
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
20
|
Andersen SB, Ghoul M, Marvig RL, Lee ZB, Molin S, Johansen HK, Griffin AS. Privatisation rescues function following loss of cooperation. eLife 2018; 7:e38594. [PMID: 30558711 PMCID: PMC6298776 DOI: 10.7554/elife.38594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
A single cheating mutant can lead to the invasion and eventual eradication of cooperation from a population. Consequently, cheat invasion is often considered equal to extinction in empirical and theoretical studies of cooperator-cheat dynamics. But does cheat invasion necessarily equate extinction in nature? By following the social dynamics of iron metabolism in Pseudomonas aeruginosa during cystic fibrosis lung infection, we observed that individuals evolved to replace cooperation with a 'private' behaviour. Phenotypic assays showed that cooperative iron acquisition frequently was upregulated early in infection, which, however, increased the risk of cheat invasion. With whole-genome sequencing we showed that if, and only if, cooperative iron acquisition is lost from the population, a private system was upregulated. The benefit of upregulation depended on iron availability. These findings highlight the importance of social dynamics of natural populations and emphasizes the potential impact of past social interaction on the evolution of private traits.
Collapse
Affiliation(s)
- Sandra Breum Andersen
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Melanie Ghoul
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
| | | | - Zhuo-Bin Lee
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
| | - Søren Molin
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Helle Krogh Johansen
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | |
Collapse
|
21
|
McRose DL, Seyedsayamdost MR, Morel FMM. Multiple siderophores: bug or feature? J Biol Inorg Chem 2018; 23:983-993. [PMID: 30264174 DOI: 10.1007/s00775-018-1617-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
Abstract
It is common for bacteria to produce chemically diverse sets of small Fe-binding molecules called siderophores. Studies of siderophore bioinorganic chemistry have firmly established the role of these molecules in Fe uptake and provided great insight into Fe complexation. However, we still do not fully understand why microbes make so many siderophores. In many cases, the release of small structural variants or siderophore fragments has been ignored, or considered as an inefficiency of siderophore biosynthesis. Yet, in natural settings, microbes live in complex consortia and it has become increasingly clear that the secondary metabolite repertoires of microbes reflect this dynamic environment. Multiple siderophore production may, therefore, provide a window into microbial life in the wild. This minireview focuses on three biochemical routes by which multiple siderophores can be released by the same organism-multiple biosynthetic gene clusters, fragment release, and precursor-directed biosynthesis-and highlights emergent themes related to each. We also emphasize the plurality of reasons for multiple siderophore production, which include enhanced iron uptake via synergistic siderophore use, microbial warfare and cooperation, and non-classical functions such as the use of siderophores to take up metals other than Fe.
Collapse
Affiliation(s)
- Darcy L McRose
- Department of Geosciences, Princeton University, Princeton, USA.
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, USA.,Department of Molecular Biology, Princeton University, Princeton, USA
| | | |
Collapse
|
22
|
Puga CH, Dahdouh E, SanJose C, Orgaz B. Listeria monocytogenes Colonizes Pseudomonas fluorescens Biofilms and Induces Matrix Over-Production. Front Microbiol 2018; 9:1706. [PMID: 30108564 PMCID: PMC6080071 DOI: 10.3389/fmicb.2018.01706] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/09/2018] [Indexed: 12/26/2022] Open
Abstract
In food facilities, biofilms or their debris might act as helpers for attracting free floating microorganisms. In this sense, Pseudomonas fluorescens, a dense biofilm producer frequently isolated from food contact surfaces, could be a good candidate for sheltering other microorganisms, such as Listeria monocytogenes. The main objective of this work was to evaluate the ability of L. monocytogenes to colonize pre-established Pseudomonas biofilms. For this, the movement throughout mature Pseudomonas biofilms of a green fluorescent protein (GFP) - tagged strain of L. monocytogenes was tracked for 24 h by confocal laser scanning microscopy (CLSM). Moreover, in order to check the effect of the incorporation of Listeria on the overall matrix production, attached populations of both microorganisms and total biomass (cells + matrix) of the resulting biofilms were measured over time. Planktonic cells of L. monocytogenes efficiently migrated to preformed P. fluorescens biofilms. Moreover, they moved preferentially toward the bottom layers of these structures, suggesting some kind of tropism. When preformed P. fluorescens biofilms were conditioning the surfaces, the L. monocytogenes attached population was on average, 1-2 Log higher than when this organism grew on bare coupons. Furthermore, the arrival of L. monocytogenes to the already established P. fluorescens biofilms led to a matrix over-production. Indeed, biomass values [optical density (OD595nm)] of the resulting biofilms were double those of the ordinary L. monocytogenes-P. fluorescens mixed biofilms (1.40 vs. 0.6). The fact that L. monocytogenes cells accumulate in the bottom layers of preformed biofilms provides this microorganism an extra protection toward physical-chemical damages. This might partly explain why this microorganism can persist in food industry environments.
Collapse
Affiliation(s)
- Carmen H. Puga
- Department of Food Science and Technology, Faculty of Veterinary, University Complutense of Madrid, Madrid, Spain
| | - Elias Dahdouh
- Department of Animal Health, Faculty of Veterinary, University Complutense of Madrid, Madrid, Spain
| | - Carmen SanJose
- Department of Food Science and Technology, Faculty of Veterinary, University Complutense of Madrid, Madrid, Spain
| | - Belen Orgaz
- Department of Food Science and Technology, Faculty of Veterinary, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
23
|
Eshelman K, Yao H, Punchi Hewage AND, Deay JJ, Chandler JR, Rivera M. Inhibiting the BfrB:Bfd interaction in Pseudomonas aeruginosa causes irreversible iron accumulation in bacterioferritin and iron deficiency in the bacterial cytosol. Metallomics 2018; 9:646-659. [PMID: 28318006 DOI: 10.1039/c7mt00042a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron is an essential nutrient for bacteria but the reactivity of Fe2+ and the insolubility of Fe3+ present significant challenges to bacterial cells. Iron storage proteins contribute to ameliorating these challenges by oxidizing Fe2+ using O2 and H2O2 as electron acceptors, and by compartmentalizing Fe3+. Two types of iron-storage proteins coexist in bacteria, the ferritins (Ftn) and the heme-containing bacterioferritins (Bfr), but the reasons for their coexistence are largely unknown. P. aeruginosa cells harbor two iron storage proteins (FtnA and BfrB), but nothing is known about their relative contributions to iron homeostasis. Prior studies in vitro have shown that iron mobilization from BfrB requires specific interactions with a ferredoxin (Bfd), but the relevance of the BfrB:Bfd interaction to iron homeostasis in P. aeruginosa is unknown. In this work we explore the repercussions of (i) deleting the bfrB gene, and (ii) perturbing the BfrB:Bfd interaction in P. aeruginosa cells by either deleting the bfd gene or by replacing the wild type bfrB gene with a L68A/E81A double mutant allele in the P. aeruginosa chromosome. The effects of the mutations were evaluated by following the accumulation of iron in BfrB, analyzing levels of free and total intracellular iron, and by characterizing the ensuing iron homeostasis dysregulation phenotypes. The results reveal that P. aeruginosa accumulates iron mainly in BfrB, and that the nutrient does not accumulate in FtnA to detectable levels, even after deletion of the bfrB gene. Perturbing the BfrB:Bfd interaction causes irreversible flow of iron into BfrB, which leads to the accumulation of unusable intracellular iron while severely depleting the levels of free intracellular iron, which drives the cells to an acute iron starvation response despite harboring "normal" levels of total intracellular iron. These results are discussed in the context of a dynamic equilibrium between free cytosolic Fe2+ and Fe3+ compartmentalized in BfrB, which functions as a buffer to oppose rapid changes of free cytosolic iron. Finally, we also show that P. aeruginosa cells utilize iron stored in BfrB for growth in iron-limiting conditions, and that the utilization of BfrB-iron requires a functional BfrB:Bfd interaction.
Collapse
Affiliation(s)
- Kate Eshelman
- Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr, Lawrence, KS 66047, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Wang K, Chen YQ, Salido MM, Kohli GS, Kong JL, Liang HJ, Yao ZT, Xie YT, Wu HY, Cai SQ, Drautz-Moses DI, Darling AE, Schuster SC, Yang L, Ding Y. The rapid in vivo evolution of Pseudomonas aeruginosa in ventilator-associated pneumonia patients leads to attenuated virulence. Open Biol 2018; 7:rsob.170029. [PMID: 28878043 PMCID: PMC5627047 DOI: 10.1098/rsob.170029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/26/2017] [Indexed: 01/15/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes severe airway infections in humans. These infections are usually difficult to treat and associated with high mortality rates. While colonizing the human airways, P. aeruginosa could accumulate genetic mutations that often lead to its better adaptability to the host environment. Understanding these evolutionary traits may provide important clues for the development of effective therapies to treat P. aeruginosa infections. In this study, 25 P. aeruginosa isolates were longitudinally sampled from the airways of four ventilator-associated pneumonia (VAP) patients. Pacbio and Illumina sequencing were used to analyse the in vivo evolutionary trajectories of these isolates. Our analysis showed that positive selection dominantly shaped P. aeruginosa genomes during VAP infections and led to three convergent evolution events, including loss-of-function mutations of lasR and mpl, and a pyoverdine-deficient phenotype. Specifically, lasR encodes one of the major transcriptional regulators in quorum sensing, whereas mpl encodes an enzyme responsible for recycling cell wall peptidoglycan. We also found that P. aeruginosa isolated at late stages of VAP infections produce less elastase and are less virulent in vivo than their earlier isolated counterparts, suggesting the short-term in vivo evolution of P. aeruginosa leads to attenuated virulence.
Collapse
Affiliation(s)
- Ke Wang
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China.,Centre for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Yi-Qiang Chen
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - May M Salido
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Gurjeet S Kohli
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Jin-Liang Kong
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Hong-Jie Liang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Zi-Ting Yao
- Centre for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Yan-Tong Xie
- The First Clinical School of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Shuang-Qi Cai
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Daniela I Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Aaron E Darling
- The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yichen Ding
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore .,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.,Interdisciplinary Graduate School, SCELSE, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
25
|
Butt AT, Thomas MS. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Front Cell Infect Microbiol 2017; 7:460. [PMID: 29164069 PMCID: PMC5681537 DOI: 10.3389/fcimb.2017.00460] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022] Open
Abstract
Burkholderia is a genus within the β-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans.
Collapse
Affiliation(s)
- Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Mark S Thomas
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
26
|
Edgar RJ, Hampton GE, Garcia GPC, Maher MJ, Perugini MA, Ackerley DF, Lamont IL. Integrated activities of two alternative sigma factors coordinate iron acquisition and uptake by Pseudomonas aeruginosa. Mol Microbiol 2017; 106:891-904. [PMID: 28971540 DOI: 10.1111/mmi.13855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 11/28/2022]
Abstract
Alternative sigma (σ) factors govern expression of bacterial genes in response to diverse environmental signals. In Pseudomonas aeruginosa σPvdS directs expression of genes for production of a siderophore, pyoverdine, as well as a toxin and a protease. σFpvI directs expression of a receptor for ferripyoverdine import. Expression of the genes encoding σPvdS and σFpvI is iron-regulated and an antisigma protein, FpvR20 , post-translationally controls the activities of the sigma factors in response to the amount of ferripyoverdine present. Here we show that iron represses synthesis of σPvdS to a far greater extent than σFpvI . In contrast ferripyoverdine exerts similar effects on the activities of both sigma factors. Using a combination of in vivo and in vitro assays we show that σFpvI and σPvdS have comparable affinities for, and are equally inhibited by, FpvR20 . Importantly, in the absence of ferripyoverdine the amount of FpvR20 per cell is lower than the amount of σFpvI and σPvdS , allowing basal expression of target genes that is required to activate the signalling pathway when ferripyoverdine is present. This complex interplay of transcriptional and post-translational regulation enables a co-ordinated response to ferripyoverdine but distinct responses to iron.
Collapse
Affiliation(s)
- Rebecca J Edgar
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | - G Patricia Casas Garcia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
Limoli DH, Whitfield GB, Kitao T, Ivey ML, Davis MR, Grahl N, Hogan DA, Rahme LG, Howell PL, O'Toole GA, Goldberg JB. Pseudomonas aeruginosa Alginate Overproduction Promotes Coexistence with Staphylococcus aureus in a Model of Cystic Fibrosis Respiratory Infection. mBio 2017; 8:e00186-17. [PMID: 28325763 PMCID: PMC5362032 DOI: 10.1128/mbio.00186-17] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/22/2017] [Indexed: 01/30/2023] Open
Abstract
While complex intra- and interspecies microbial community dynamics are apparent during chronic infections and likely alter patient health outcomes, our understanding of these interactions is currently limited. For example, Pseudomonas aeruginosa and Staphylococcus aureus are often found to coinfect the lungs of patients with cystic fibrosis (CF), yet these organisms compete under laboratory conditions. Recent observations that coinfection correlates with decreased health outcomes necessitate we develop a greater understanding of these interbacterial interactions. In this study, we tested the hypothesis that P. aeruginosa and/or S. aureus adopts phenotypes that allow coexistence during infection. We compared competitive interactions of P. aeruginosa and S. aureus isolates from mono- or coinfected CF patients employing in vitro coculture models. P. aeruginosa isolates from monoinfected patients were more competitive toward S. aureus than P. aeruginosa isolates from coinfected patients. We also observed that the least competitive P. aeruginosa isolates possessed a mucoid phenotype. Mucoidy occurs upon constitutive activation of the sigma factor AlgT/U, which regulates synthesis of the polysaccharide alginate and dozens of other secreted factors, including some previously described to kill S. aureus Here, we show that production of alginate in mucoid strains is sufficient to inhibit anti-S. aureus activity independent of activation of the AlgT regulon. Alginate reduces production of siderophores, 2-heptyl-4-hydroxyquinolone-N-oxide (HQNO), and rhamnolipids-each required for efficient killing of S. aureus These studies demonstrate alginate overproduction may be an important factor driving P. aeruginosa coinfection with S. aureusIMPORTANCE Numerous deep-sequencing studies have revealed the microbial communities present during respiratory infections in cystic fibrosis (CF) patients are diverse, complex, and dynamic. We now face the challenge of determining the influence of these community dynamics on patient health outcomes and identifying candidate targets to modulate these interactions. We make progress toward this goal by determining that the polysaccharide alginate produced by mucoid strains of P. aeruginosa is sufficient to inhibit multiple secreted antimicrobial agents produced by this organism. Importantly, these secreted factors are required to outcompete S. aureus, when the microbes are grown in coculture; thus we propose a mechanism whereby mucoid P. aeruginosa can coexist with S. aureus Finally, the approach used here can serve as a platform to investigate the interactions among other CF pathogens.
Collapse
Affiliation(s)
- Dominique H Limoli
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Tomoe Kitao
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - Melissa L Ivey
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael R Davis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Nora Grahl
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Laurence G Rahme
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - P Lynne Howell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - George A O'Toole
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
28
|
Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Sci Rep 2016; 6:39172. [PMID: 27982111 PMCID: PMC5159919 DOI: 10.1038/srep39172] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Determining bacterial gene expression during infection is fundamental to understand pathogenesis. In this study, we used dual RNA-seq to simultaneously measure P. aeruginosa and the murine host’s gene expression and response to respiratory infection. Bacterial genes encoding products involved in metabolism and virulence were differentially expressed during infection and the type III and VI secretion systems were highly expressed in vivo. Strikingly, heme acquisition, ferric-enterobactin transport, and pyoverdine biosynthesis genes were found to be significantly up-regulated during infection. In the mouse, we profiled the acute immune response to P. aeruginosa and identified the pro-inflammatory cytokines involved in acute response to the bacterium in the lung. Additionally, we also identified numerous host iron sequestration systems upregulated during infection. Overall, this work sheds light on how P. aeruginosa triggers a pro-inflammatory response and competes for iron with the host during infection, as iron is one of the central elements for which both pathogen and host fight during acute pneumonia.
Collapse
|
29
|
Use of a Multiplex Transcript Method for Analysis of Pseudomonas aeruginosa Gene Expression Profiles in the Cystic Fibrosis Lung. Infect Immun 2016; 84:2995-3006. [PMID: 27481238 DOI: 10.1128/iai.00437-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/25/2016] [Indexed: 01/20/2023] Open
Abstract
The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections.
Collapse
|
30
|
McCaughey LC, Ritchie ND, Douce GR, Evans TJ, Walker D. Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection. Sci Rep 2016; 6:30201. [PMID: 27444885 PMCID: PMC4957109 DOI: 10.1038/srep30201] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023] Open
Abstract
Protein antibiotics, known as bacteriocins, are widely produced by bacteria for intraspecies competition. The potency and targeted action of bacteriocins suggests that they could be developed into clinically useful antibiotics against highly drug resistant Gram-negative pathogens for which there are few therapeutic options. Here we show that Pseudomonas aeruginosa specific bacteriocins, known as pyocins, show strong efficacy in a murine model of P. aeruginosa lung infection, with the concentration of pyocin S5 required to afford protection from a lethal infection at least 100-fold lower than the most commonly used inhaled antibiotic tobramycin. Additionally, pyocins are stable in the lung, poorly immunogenic at high concentrations and efficacy is maintained in the presence of pyocin specific antibodies after repeated pyocin administration. Bacteriocin encoding genes are frequently found in microbial genomes and could therefore offer a ready supply of highly targeted and potent antibiotics active against problematic Gram-negative pathogens.
Collapse
Affiliation(s)
- Laura C McCaughey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,The ithree institute, University of Technology Sydney, Ultimo, New South Wales, Australia.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Neil D Ritchie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gillian R Douce
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Thomas J Evans
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
31
|
Nguyen AT, Oglesby-Sherrouse AG. Interactions between Pseudomonas aeruginosa and Staphylococcus aureus during co-cultivations and polymicrobial infections. Appl Microbiol Biotechnol 2016; 100:6141-6148. [PMID: 27236810 DOI: 10.1007/s00253-016-7596-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 02/06/2023]
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are versatile bacterial pathogens and common etiological agents in polymicrobial infections. Microbial communities containing both of these pathogens are shaped by interactions ranging from parasitic to mutualistic, with the net impact of these interactions in many cases resulting in enhanced virulence. Polymicrobial communities of these organisms are further defined by multiple aspects of the host environment, with important implications for disease progression and therapeutic outcomes. This mini-review highlights the impact of these interactions on the host and individual pathogens, the molecular mechanisms that underlie these interactions, and host-specific factors that drive interactions between these two important pathogens.
Collapse
Affiliation(s)
- Angela T Nguyen
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, 21201, USA
| | - Amanda G Oglesby-Sherrouse
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, 21201, USA. .,School of Medicine, Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
32
|
Metabolism and Pathogenicity of Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis. Microbiol Spectr 2016; 3. [PMID: 26350318 DOI: 10.1128/microbiolspec.mbp-0003-2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals with the genetic disease cystic fibrosis (CF) accumulate mucus or sputum in their lungs. This sputum is a potent growth substrate for a range of potential pathogens, and the opportunistic bacterium Pseudomonas aeruginosa is generally most difficult of these to eradicate. As a result, P. aeruginosa infections are frequently maintained in the CF lung throughout life, and are the leading cause of death for these individuals. While great effort has been expended to better understand and treat these devastating infections, only recently have researchers begun to rigorously examine the roles played by specific nutrients in CF sputum to cue P. aeruginosa pathogenicity. This chapter summarizes the current state of knowledge regarding how P. aeruginosa metabolism in CF sputum affects initiation and maintenance of these infections. It contains an overview of CF lung disease and the mechanisms of P. aeruginosa pathogenicity. Several model systems used to study these infections are described with emphasis on the challenge of replicating the chronic infections observed in humans with CF. Nutrients present in CF sputum are surveyed, and the impacts of these nutrients on the infection are discussed. The chapter concludes by addressing the future of this line of research including the use of next-generation technologies and the potential for metabolism-based therapeutics.
Collapse
|
33
|
Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. Proc Natl Acad Sci U S A 2016; 113:1642-7. [PMID: 26729873 DOI: 10.1073/pnas.1516979113] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Clinical observations link respiratory virus infection and Pseudomonas aeruginosa colonization in chronic lung disease, including cystic fibrosis (CF) and chronic obstructive pulmonary disease. The development of P. aeruginosa into highly antibiotic-resistant biofilm communities promotes airway colonization and accounts for disease progression in patients. Although clinical studies show a strong correlation between CF patients' acquisition of chronic P. aeruginosa infections and respiratory virus infection, little is known about the mechanism by which chronic P. aeruginosa infections are initiated in the host. Using a coculture model to study the formation of bacterial biofilm formation associated with the airway epithelium, we show that respiratory viral infections and the induction of antiviral interferons promote robust secondary P. aeruginosa biofilm formation. We report that the induction of antiviral IFN signaling in response to respiratory syncytial virus (RSV) infection induces bacterial biofilm formation through a mechanism of dysregulated iron homeostasis of the airway epithelium. Moreover, increased apical release of the host iron-binding protein transferrin during RSV infection promotes P. aeruginosa biofilm development in vitro and in vivo. Thus, nutritional immunity pathways that are disrupted during respiratory viral infection create an environment that favors secondary bacterial infection and may provide previously unidentified targets to combat bacterial biofilm formation.
Collapse
|
34
|
Bianconi I, Jeukens J, Freschi L, Alcalá-Franco B, Facchini M, Boyle B, Molinaro A, Kukavica-Ibrulj I, Tümmler B, Levesque RC, Bragonzi A. Comparative genomics and biological characterization of sequential Pseudomonas aeruginosa isolates from persistent airways infection. BMC Genomics 2015; 16:1105. [PMID: 26714629 PMCID: PMC4696338 DOI: 10.1186/s12864-015-2276-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/06/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa establishes life-long chronic airway infections in cystic fibrosis (CF) patients. As the disease progresses, P. aeruginosa pathoadaptive variants are distinguished from the initially acquired strain. However, the genetic basis and the biology of host-bacteria interactions leading to a persistent lifestyle of P. aeruginosa are not understood. As a model system to study long term and persistent CF infections, the P. aeruginosa RP73, isolated 16.9 years after the onset of airways colonization from a CF patient, was investigated. Comparisons with strains RP1, isolated at the onset of the colonization, and clonal RP45, isolated 7 years before RP73 were carried out to better characterize genomic evolution of P. aeruginosa in the context of CF pathogenicity. RESULTS Virulence assessments in disease animal model, genome sequencing and comparative genomics analysis were performed for clinical RP73, RP45, RP1 and prototype strains. In murine model, RP73 showed lower lethality and a remarkable capability of long-term persistence in chronic airways infection when compared to other strains. Pathological analysis of murine lungs confirmed advanced chronic pulmonary disease, inflammation and mucus secretory cells hyperplasia. Genomic analysis predicted twelve genomic islands in the RP73 genome, some of which distinguished RP73 from other prototype strains and corresponded to regions of genome plasticity. Further, comparative genomic analyses with sequential RP isolates showed signatures of pathoadaptive mutations in virulence factors potentially linked to the development of chronic infections in CF. CONCLUSIONS The genome plasticity of P. aeruginosa particularly in the RP73 strain strongly indicated that these alterations may form the genetic basis defining host-bacteria interactions leading to a persistent lifestyle in human lungs.
Collapse
Affiliation(s)
- Irene Bianconi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Julie Jeukens
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Luca Freschi
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Beatriz Alcalá-Franco
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Marcella Facchini
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Brian Boyle
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | | | - Irena Kukavica-Ibrulj
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | | | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
35
|
Tyrrell J, Callaghan M. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies. MICROBIOLOGY-SGM 2015; 162:191-205. [PMID: 26643057 DOI: 10.1099/mic.0.000220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy.
Collapse
Affiliation(s)
- Jean Tyrrell
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland
| |
Collapse
|
36
|
Varga JJ, Barbier M, Mulet X, Bielecki P, Bartell JA, Owings JP, Martinez-Ramos I, Hittle LE, Davis MR, Damron FH, Liechti GW, Puchałka J, dos Santos VAPM, Ernst RK, Papin JA, Albertí S, Oliver A, Goldberg JB. Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains. BMC Genomics 2015; 16:883. [PMID: 26519161 PMCID: PMC4628258 DOI: 10.1186/s12864-015-2069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/03/2015] [Indexed: 01/24/2023] Open
Abstract
Background Pseudomonas aeruginosa is an environmentally ubiquitous Gram-negative bacterium and important opportunistic human pathogen, causing severe chronic respiratory infections in patients with underlying conditions such as cystic fibrosis (CF) or bronchiectasis. In order to identify mechanisms responsible for adaptation during bronchiectasis infections, a bronchiectasis isolate, PAHM4, was phenotypically and genotypically characterized. Results This strain displays phenotypes that have been associated with chronic respiratory infections in CF including alginate over-production, rough lipopolysaccharide, quorum-sensing deficiency, loss of motility, decreased protease secretion, and hypermutation. Hypermutation is a key adaptation of this bacterium during the course of chronic respiratory infections and analysis indicates that PAHM4 encodes a mutated mutS gene responsible for a ~1,000-fold increase in mutation rate compared to wild-type laboratory strain P. aeruginosa PAO1. Antibiotic resistance profiles and sequence data indicate that this strain acquired numerous mutations associated with increased resistance levels to β-lactams, aminoglycosides, and fluoroquinolones when compared to PAO1. Sequencing of PAHM4 revealed a 6.38 Mbp genome, 5.9 % of which were unrecognized in previously reported P. aeruginosa genome sequences. Transcriptome analysis suggests a general down-regulation of virulence factors, while metabolism of amino acids and lipids is up-regulated when compared to PAO1 and metabolic modeling identified further potential differences between PAO1 and PAHM4. Conclusions This work provides insights into the potential differential adaptation of this bacterium to the lung of patients with bronchiectasis compared to other clinical settings such as cystic fibrosis, findings that should aid the development of disease-appropriate treatment strategies for P. aeruginosa infections. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2069-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John J Varga
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - Xavier Mulet
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain.
| | - Piotr Bielecki
- Synthetic and Systems Biology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,Present address: Immunobiology Department, Yale University, School of Medicine, New Haven, CT, 06511, USA.
| | - Jennifer A Bartell
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Joshua P Owings
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | | | - Lauren E Hittle
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD, USA.
| | - Michael R Davis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - George W Liechti
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - Jacek Puchałka
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain. .,Present address: Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany.
| | - Vitor A P Martins dos Santos
- Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands. .,Present address: Chair of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands. .,Present address: LifeGlimmer GmbH, Berlin, Germany.
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD, USA.
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Sebastian Albertí
- IUNICS, University of the Balearic Islands, Palma, de Mallorca, Spain.
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain.
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
37
|
Tyrrell J, Whelan N, Wright C, Sá-Correia I, McClean S, Thomas M, Callaghan M. Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia. Biometals 2015; 28:367-80. [DOI: 10.1007/s10534-015-9840-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
|
38
|
Balasubramanian D, Kumari H, Mathee K. Pseudomonas aeruginosa AmpR: an acute-chronic switch regulator. Pathog Dis 2015; 73:1-14. [PMID: 25066236 DOI: 10.1111/2049-632x.12208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most intractable human pathogens that pose serious clinical challenge due to extensive prevalence of multidrug-resistant clinical isolates. Armed with abundant virulence and antibiotic resistance mechanisms, it is a major etiologic agent in a number of acute and chronic infections. A complex and intricate network of regulators dictates the expression of pathogenicity factors in P. aeruginosa. Some proteins within the network play key roles and control multiple pathways. This review discusses the role of one such protein, AmpR, which was initially recognized for its role in antibiotic resistance by regulating AmpC β-lactamase. Recent genomic, proteomic and phenotypic analyses demonstrate that AmpR regulates expression of hundreds of genes that are involved in diverse pathways such as β-lactam and non-β-lactam resistance, quorum sensing and associated virulence phenotypes, protein phosphorylation, and physiological processes. Finally, ampR mutations in clinical isolates are reviewed to shed light on important residues required for its function in antibiotic resistance. The prevalence and evolutionary implications of AmpR in pathogenic and nonpathogenic proteobacteria are also discussed. A comprehensive understanding of proteins at nodal positions in the P. aeruginosa regulatory network is crucial in understanding, and ultimately targeting, the pathogenic stratagems of this organism.
Collapse
Affiliation(s)
| | - Hansi Kumari
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Kalai Mathee
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
39
|
Cribbs SK, Park Y, Guidot DM, Martin GS, Brown LA, Lennox J, Jones DP. Metabolomics of bronchoalveolar lavage differentiate healthy HIV-1-infected subjects from controls. AIDS Res Hum Retroviruses 2014; 30:579-85. [PMID: 24417396 DOI: 10.1089/aid.2013.0198] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Despite antiretroviral therapy, pneumonias from pathogens such as pneumococcus continue to cause significant morbidity and mortality in HIV-1-infected individuals. Respiratory infections occur despite high CD4 counts and low viral loads; therefore, better understanding of lung immunity and infection predictors is necessary. We tested whether metabolomics, an integrated biosystems approach to molecular fingerprinting, could differentiate such individual characteristics. Bronchoalveolar lavage fluid (BALf ) was collected from otherwise healthy HIV-1-infected individuals and healthy controls. A liquid chromatography-high-resolution mass spectrometry method was used to detect metabolites in BALf. Statistical and bioinformatic analyses used false discovery rate (FDR) and orthogonally corrected partial least-squares discriminant analysis (OPLS-DA) to identify groupwise discriminatory factors as the top 5% of metabolites contributing to 95% separation of HIV-1 and control. We enrolled 24 subjects with HIV-1 (median CD4=432) and 24 controls. A total of 115 accurate mass m/z features from C18 and AE analysis were significantly different between HIV-1 subjects and controls (FDR=0.05). Hierarchical cluster analysis revealed clusters of metabolites, which discriminated the samples according to HIV-1 status (FDR=0.05). Several of these did not match any metabolites in metabolomics databases; mass-to-charge 325.065 ([M+H](+)) was significantly higher (FDR=0.05) in the BAL of HIV-1-infected subjects and matched pyochelin, a siderophore-produced Pseudomonas aeruginosa. Metabolic profiles in BALf differentiated healthy HIV-1-infected subjects and controls. The lack of association with known human metabolites and inclusion of a match to a bacterial metabolite suggest that the differences could reflect the host's lung microbiome and/or be related to subclinical infection in HIV-1-infected patients.
Collapse
Affiliation(s)
- Sushma K. Cribbs
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia
| | - Youngja Park
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia
- College of Pharmacy, Korea University, Sejong City, Korea
| | - David M. Guidot
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia
| | - Greg S. Martin
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia
| | - Lou Ann Brown
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory University, Atlanta, Georgia
| | - Jeffrey Lennox
- Department of Medicine, Division of Infectious Disease, Emory University, Atlanta, Georgia
| | - Dean P. Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia
| |
Collapse
|
40
|
Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa. Infect Immun 2014; 82:3312-23. [PMID: 24866798 PMCID: PMC4136229 DOI: 10.1128/iai.01554-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Research into chronic infection by bacterial pathogens, such as Pseudomonas aeruginosa, uses various in vitro and live host models. While these have increased our understanding of pathogen growth, virulence, and evolution, each model has certain limitations. In vitro models cannot recapitulate the complex spatial structure of host organs, while experiments on live hosts are limited in terms of sample size and infection duration for ethical reasons; live mammal models also require specialized facilities which are costly to run. To address this, we have developed an ex vivo pig lung (EVPL) model for quantifying Pseudomonas aeruginosa growth, quorum sensing (QS), virulence factor production, and tissue damage in an environment that mimics a chronically infected cystic fibrosis (CF) lung. In a first test of our model, we show that lasR mutants, which do not respond to 3-oxo-C12-homoserine lactone (HSL)-mediated QS, exhibit reduced virulence factor production in EVPL. We also show that lasR mutants grow as well as or better than a corresponding wild-type strain in EVPL. lasR mutants frequently and repeatedly arise during chronic CF lung infection, but the evolutionary forces governing their appearance and spread are not clear. Our data are not consistent with the hypothesis that lasR mutants act as social “cheats” in the lung; rather, our results support the hypothesis that lasR mutants are more adapted to the lung environment. More generally, this model will facilitate improved studies of microbial disease, especially studies of how cells of the same and different species interact in polymicrobial infections in a spatially structured environment.
Collapse
|
41
|
Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio 2014; 5:e00966-14. [PMID: 24803516 PMCID: PMC4010824 DOI: 10.1128/mbio.00966-14] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa airway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist, P. aeruginosa depends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and the Pseudomonas heme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation of P. aeruginosa to the host environment. Here we investigated the within-host evolution of the transmissible P. aeruginosa DK2 lineage. We found positive selection for promoter mutations leading to increased expression of the phu system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrate that increased expression of phuR confers a growth advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additional P. aeruginosa lineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages, phuR promoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment of P. aeruginosa infections in CF patients. Most bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogen Pseudomonas aeruginosa to cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution of P. aeruginosa, and we found evidence that P. aeruginosa during long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections.
Collapse
|
42
|
Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 2014; 196:2265-76. [PMID: 24727222 DOI: 10.1128/jb.01491-14] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) patients suffer from chronic bacterial lung infections, most notably by Pseudomonas aeruginosa, which persists for decades in the lungs and undergoes extensive evolution. P. aeruginosa requires iron for virulence and uses the fluorescent siderophore pyoverdine to scavenge and solubilize ferric iron during acute infections. Pyoverdine mutants accumulate in the lungs of some CF patients, however, suggesting that the heme and ferrous iron acquisition pathways of P. aeruginosa are more important in this environment. Here, we sought to determine how evolution of P. aeruginosa in the CF lung affects iron acquisition and regulatory pathways through the use of longitudinal CF isolates. These analyses demonstrated a significant reduction of siderophore production during the course of CF lung infection in nearly all strains tested. Mass spectrometry analysis of one of these strains showed that the later CF isolate has streamlined the metabolic flux of extracellular heme through the HemO heme oxygenase, resulting in more-efficient heme utilization. Moreover, gene expression analysis shows that iron regulation via the PrrF small RNAs (sRNAs) is enhanced in the later CF isolate. Finally, analysis of P. aeruginosa gene expression in the lungs of various CF patients demonstrates that both PrrF and HemO are consistently expressed in the CF lung environment. Combined, these results suggest that heme is a critical source of iron during prolonged infection of the CF lung and that changes in iron and heme regulatory pathways play a crucial role in adaptation of P. aeruginosa to this ever-changing host environment.
Collapse
|
43
|
Lv H, Hung CS, Henderson JP. Metabolomic analysis of siderophore cheater mutants reveals metabolic costs of expression in uropathogenic Escherichia coli. J Proteome Res 2014; 13:1397-404. [PMID: 24476533 PMCID: PMC3993901 DOI: 10.1021/pr4009749] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Bacterial
siderophores are a group of chemically diverse, virulence-associated
secondary metabolites whose expression exerts metabolic costs. A combined
bacterial genetic and metabolomic approach revealed differential metabolomic
impacts associated with biosynthesis of different siderophore structural
families. Despite myriad genetic differences, the metabolome of a
cheater mutant lacking a single set of siderophore biosynthetic genes
more closely approximate that of a non-pathogenic K12 strain than
its isogenic, uropathogen parent strain. Siderophore types associated
with greater metabolomic perturbations are less common among human
isolates, suggesting that metabolic costs influence success in a human
population. Although different siderophores share a common iron acquisition
function, our analysis shows how a metabolomic approach can distinguish
their relative metabolic impacts in E. coli.
Collapse
Affiliation(s)
- Haitao Lv
- Center for Women's Infectious Diseases Research, Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | | | |
Collapse
|
44
|
Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013; 3:75. [PMID: 24294593 PMCID: PMC3827675 DOI: 10.3389/fcimb.2013.00075] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review.
Collapse
Affiliation(s)
- Pierre Cornelis
- Research Group Microbiology, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrussels, Belgium
- Department Structural Biology, VIB, Vrije Universiteit BrusselBrussels, Belgium
| | - Jozef Dingemans
- Research Group Microbiology, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrussels, Belgium
- Department Structural Biology, VIB, Vrije Universiteit BrusselBrussels, Belgium
| |
Collapse
|
45
|
Balasubramanian D, Kumari H, Jaric M, Fernandez M, Turner KH, Dove SL, Narasimhan G, Lory S, Mathee K. Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response. Nucleic Acids Res 2013; 42:979-98. [PMID: 24157832 PMCID: PMC3902932 DOI: 10.1093/nar/gkt942] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pathogenicity of Pseudomonas aeruginosa, a major cause of many acute and chronic human infections, is determined by tightly regulated expression of multiple virulence factors. Quorum sensing (QS) controls expression of many of these pathogenic determinants. Previous microarray studies have shown that the AmpC β-lactamase regulator AmpR, a member of the LysR family of transcription factors, also controls non-β-lactam resistance and multiple virulence mechanisms. Using RNA-Seq and complementary assays, this study further expands the AmpR regulon to include diverse processes such as oxidative stress, heat shock and iron uptake. Importantly, AmpR affects many of these phenotypes, in part, by regulating expression of non-coding RNAs such as rgP32, asRgsA, asPrrF1 and rgRsmZ. AmpR positively regulates expression of the major QS regulators LasR, RhlR and MvfR, and genes of the Pseudomonas quinolone system. Chromatin immunoprecipitation (ChIP)-Seq and ChIP–quantitative real-time polymerase chain reaction studies show that AmpR binds to the ampC promoter both in the absence and presence of β-lactams. In addition, AmpR directly binds the lasR promoter, encoding the QS master regulator. Comparison of the AmpR-binding sequences from the transcriptome and ChIP-Seq analyses identified an AT-rich consensus-binding motif. This study further attests to the role of AmpR in regulating virulence and physiological processes in P. aeruginosa.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA, Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA, BioRG, School of Computing and Information Science, College of Engineering and Computing, Florida International University, Miami, FL 33199, USA, Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Chronic, biofilm-like infections by the opportunistic pathogen Pseudomonas aeruginosa are a major cause of mortality in cystic fibrosis (CF) patients. While much is known about P. aeruginosa from laboratory studies, far less is understood about what it experiences in vivo. Iron is an important environmental parameter thought to play a central role in the development and maintenance of P. aeruginosa infections, for both anabolic and signaling purposes. Previous studies have focused on ferric iron [Fe(III)] as a target for antimicrobial therapies; however, here we show that ferrous iron [Fe(II)] is abundant in the CF lung (~39 µM on average for severely sick patients) and significantly correlates with disease severity (ρ = −0.56, P = 0.004), whereas ferric iron does not (ρ = −0.28, P = 0.179). Expression of the P. aeruginosa genes bqsRS, whose transcription is upregulated in response to Fe(II), was high in the majority of patients tested, suggesting that increased Fe(II) is bioavailable to the infectious bacterial population. Because limiting Fe(III) acquisition inhibits biofilm formation by P. aeruginosa in various oxic in vitro systems, we also tested whether interfering with Fe(II) acquisition would improve biofilm control under anoxic conditions; concurrent sequestration of both iron oxidation states resulted in a 58% reduction in biofilm accumulation and 28% increase in biofilm dissolution, a significant improvement over Fe(III) chelation treatment alone. This study demonstrates that the chemistry of infected host environments coevolves with the microbial community as infections progress, which should be considered in the design of effective treatment strategies at different stages of disease. Iron is an important environmental parameter that helps pathogens thrive in sites of infection, including those of cystic fibrosis (CF) patients. Ferric iron chelation therapy has been proposed as a novel therapeutic strategy for CF lung infections, yet until now, the iron oxidation state has not been measured in the host. In studying mucus from the infected lungs of multiple CF patients from Europe and the United States, we found that ferric and ferrous iron change in concentration and relative proportion as infections progress; over time, ferrous iron comes to dominate the iron pool. This information is relevant to the design of novel CF therapeutics and, more broadly, to developing accurate models of chronic CF infections.
Collapse
|
47
|
Zhang XX, Rainey PB. Exploring the sociobiology of pyoverdin-producing Pseudomonas. Evolution 2013; 67:3161-74. [PMID: 24152000 DOI: 10.1111/evo.12183] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 05/29/2013] [Indexed: 01/19/2023]
Abstract
The idea that bacteria are social is a popular concept with implications for understanding the ecology and evolution of microbes. The view arises predominately from reasoning regarding extracellular products, which, it has been argued, can be considered "public goods." Among the best studied is pyoverdin-a diffusible iron-chelating agent produced by bacteria of the genus Pseudomonas. Here we report the de novo evolution of pyoverdin nonproducing mutants, genetically characterize these types and then test the appropriateness of the sociobiology framework by performing growth and fitness assays in the same environment in which the nonproducing mutants evolved. Our data draw attention to discordance in the fit between social evolution theory and biological reality. We show that pyoverdin-defective genotypes can gain advantage by avoiding the cost of production under conditions where the molecule is not required; in some environments pyoverdin is personalized. By exploring the fitness consequences of nonproducing types under a range of conditions, we show complex genotype-by-environment interactions with outcomes that range from social to asocial. Together these findings give reason to question the generality of the conclusion that pyoverdin is a social trait.
Collapse
Affiliation(s)
- Xue-Xian Zhang
- Institute of Natural and Mathematical Sciences, Massey University at Albany, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | | |
Collapse
|
48
|
Adaptation-based resistance to siderophore-conjugated antibacterial agents by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57:4197-207. [PMID: 23774440 DOI: 10.1128/aac.00629-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multidrug resistance in Gram-negative bacteria has become so threatening to human health that new antibacterial platforms are desperately needed to combat these deadly infections. The concept of siderophore conjugation, which facilitates compound uptake across the outer membrane by hijacking bacterial iron acquisition systems, has received significant attention in recent years. While standard in vitro MIC and resistance frequency methods demonstrate that these compounds are potent, broad-spectrum antibacterial agents whose activity should not be threatened by unacceptably high spontaneous resistance rates, recapitulation of these results in animal models can prove unreliable, partially because of the differences in iron availability in these different methods. Here, we describe the characterization of MB-1, a novel siderophore-conjugated monobactam that demonstrates excellent in vitro activity against Pseudomonas aeruginosa when tested using standard assay conditions. Unfortunately, the in vitro findings did not correlate with the in vivo results we obtained, as multiple strains were not effectively treated by MB-1 despite having low MICs. To address this, we also describe the development of new in vitro assays that were predictive of efficacy in mouse models, and we provide evidence that competition with native siderophores could contribute to the recalcitrance of some P. aeruginosa isolates in vivo.
Collapse
|
49
|
Reid DW, Latham R, Lamont IL, Camara M, Roddam LF. Molecular analysis of changes in Pseudomonas aeruginosa load during treatment of a pulmonary exacerbation in cystic fibrosis. J Cyst Fibros 2013; 12:688-99. [PMID: 23706827 DOI: 10.1016/j.jcf.2013.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND Intravenous antibiotics for pulmonary exacerbations (PEs) of cystic fibrosis (CF) usually target Pseudomonas aeruginosa. Insights into the CF lung microbiome have questioned this approach. We used RT-qPCR to determine whether intravenous antibiotics reduced P. aeruginosa numbers and whether this correlated with improved lung function. We also investigated antibiotic effects on other common respiratory pathogens in CF. METHODS Sputa were collected from patients when stable and again during a PE. Sputa were expectorated into a RNA preservation buffer for RNA extraction and preparation of cDNA. qPCR was used to enumerate viable P. aeruginosa as well as Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Burkholderia cepacia complex and Aspergillus fumigatus. RESULTS Fifteen CF patients were followed through 21 PEs. A complete set of serial sputum samples was unavailable for two patients (three separate PEs). P. aeruginosa numbers did not increase immediately prior to a PE, but numbers during intravenous antibiotic treatment were reduced ≥4-log in 6/18 and ≥1-log in 4/18 PEs. In 7/18 PEs, P. aeruginosa numbers changed very little with intravenous antibiotics and one patient demonstrated a ≥2-log increase in P. aeruginosa load. H. influenzae and S. pneumoniae were detected in ten and five PEs respectively, but with antibiotic treatment these bacteria rapidly became undetectable in 6/10 and 4/5 PEs, respectively. There was a negative correlation between P. aeruginosa numbers and FEV1 during stable phase (r(s)=0.75, p<0.05), and reductions in P. aeruginosa load with intravenous antibiotic treatment correlated with improved FEV1 (r(s)=0.52, p<0.05). CONCLUSIONS Exacerbations are not due to increased P. aeruginosa numbers in CF adults. However, lung function improvements correlate with reduced P. aeruginosa burden suggesting that current antibiotic treatment strategies remain appropriate in most patients. Improved understanding of PE characterised by unchanged P. aeruginosa numbers and minimal lung function improvement following treatment may allow better targeted therapies.
Collapse
Affiliation(s)
- D W Reid
- Menzies Research Institute Tasmania, Hobart, Tasmania, Australia; Queensland Institute of Medical Research, Brisbane, Queensland, Australia; The Prince Charles Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
50
|
Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun 2013; 81:2697-704. [PMID: 23690396 DOI: 10.1128/iai.00418-13] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa chronically infects the lungs of more than 80% of adult patients with cystic fibrosis (CF) and is a major contributor to the progression of disease pathology. P. aeruginosa requires iron for growth and has multiple iron uptake systems that have been studied in bacteria grown in laboratory culture. The purpose of this research was to determine which of these are active during infection in CF. RNA was extracted from 149 sputum samples obtained from 23 CF patients. Reverse transcription-quantitative real-time PCR (RT-qPCR) was used to measure the expression of P. aeruginosa genes encoding transport systems for the siderophores pyoverdine and pyochelin, for heme, and for ferrous ions. Expression of P. aeruginosa genes could be quantified in 89% of the sputum samples. Expression of genes associated with siderophore-mediated iron uptake was detected in most samples but was at low levels in some samples, indicating that other iron uptake mechanisms are active. Expression of genes encoding heme transport systems was also detected in most samples, indicating that heme uptake occurs during infection in CF. feoB expression was detected in all sputum samples, implying an important role for ferrous ion uptake by P. aeruginosa in CF. Our data show that multiple P. aeruginosa iron uptake mechanisms are active in chronic CF infection and that RT-qPCR of RNA extracted from sputum provides a powerful tool for investigating bacterial physiology during infection in CF.
Collapse
|