1
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
2
|
Zhong QZ, Richardson JJ, Tian Y, Tian H, Cui J, Mann S, Caruso F. Modular Metal-Quinone Networks with Tunable Architecture and Functionality. Angew Chem Int Ed Engl 2023; 62:e202218021. [PMID: 36732289 DOI: 10.1002/anie.202218021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Nanostructured materials with tunable structures and functionality are of interest in diverse areas. Herein, metal ions are coordinated with quinones through metal-acetylacetone coordination bonds to generate a class of structurally tunable, universally adhesive, hydrophilic, and pH-degradable materials. A library of metal-quinone networks (MQNs) is produced from five model quinone ligands paired with nine metal ions, leading to the assembly of particles, tubes, capsules, and films. Importantly, MQNs show bidirectional pH-responsive disassembly in acidic and alkaline solutions, where the quinone ligands mediate the disassembly kinetics, enabling temporal and spatial control over the release of multiple components using multilayered MQNs. Leveraging this tunable release and the inherent medicinal properties of quinones, MQN prodrugs with a high drug loading (>89 wt %) are engineered using doxorubicin for anti-cancer therapy and shikonin for the inhibition of the main protease in the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Qi-Zhi Zhong
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Haijiang Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
3
|
Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H. Probing the interaction of new and biologically active Pd(II) complex with DNA/BSA via joint experimental and computational studies along with thermodynamic, NLO, FMO and NBO analysis. Biometals 2022; 35:245-266. [PMID: 35039973 DOI: 10.1007/s10534-022-00362-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
Abstract
Treatment with transition metal complexes is an efficient method to fight with cancer. Therefore, a new transition metal complex formulated as [Pd(1, 3-pn)(acac)]Cl (pn and acac stand for propylendiamine and acetylacetonate, respectively) was synthesized and analyzed using 1H NMR, Fourier transform infrared, electronic absorption spectroscopy techniques as well as elemental analysis and conductivity measurement. The geometry optimization, frontier molecular orbital (FMO) analysis, molecular electrostatic potential (MEP), natural bond orbital (NBO) analysis and nonlinear optical (NLO) property were accomplished by density functional theory (DFT) at B3LYP level with 6-311G(d,p)/aug-cc-pVTZ-PP basis set. Preliminary determination of antitumor activity and lipophilicity of this metal complex was performed experimentally and the promising results were obtained. This encouraged us to study the interaction and binding mode/modes of this complex with DNA as the primary receptor for the chemotropic drugs and BSA as the transporter protein in the circulatory system. For this reason, the binding of newly made complex was assessed in-vitro under physiological state using experimental and in-silico molecular modeling studies. So, the CT-DNA binding study of this complex was explored using spectrofluorometric as well as spectrophotometric techniques, viscosity and gel electrophoresis experiments. Furthermore, fluorescence, UV-Vis, F[Formula: see text]rster resonance energy transfer and circular dichroism studies were carried out for BSA binding. The experimental and computational interaction studies showed that [Pd(1, 3-pn)(acac)]Cl complex binds to the minor groove of CT-DNA and interacts with BSA by van der Waals forces and hydrogen bond.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
4
|
Syntheses, structures, DNA-binding, cytotoxicity and apoptosis of manganese(II) and ferrous(II) complexes containing 4-sulfobenzoate anion with N,N-heterocyclic amines. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Zhuang Y, Ren L, Zhang S, Wei X, Yang K, Dai K. Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus. Acta Biomater 2021; 119:472-484. [PMID: 33091623 DOI: 10.1016/j.actbio.2020.10.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023]
Abstract
Implant-associated infection (IAI) induced by methicillin-resistant Staphylococcus aureus (MRSA) is a devastating complication in the orthopedic clinic. Traditional implant materials, such as Ti6Al4V, are vulnerable to microbial infection. In this study, we fabricated a copper (Cu)-containing titanium alloy (Ti6Al4V-Cu) for the prevention and treatment of MRSA-induced IAI. The material characteristics, antibacterial activity, and biocompatibility of Ti6Al4V-Cu were systematically investigated and compared with those of Ti6Al4V. Ti6Al4V-Cu provided stable and continuous Cu2+ release, at a rate of 0.106 mg/cm2/d. Its antibacterial performance against MRSA in vitro was confirmed by plate counting analysis, crystal violet staining, and scanning electron microscopic observations. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that Ti6Al4V-Cu suppressed biofilm formation, virulence, and antibiotic-resistance of MRSA. The in vivo anti-MRSA effect was investigated in a rat IAI model. Implants were contaminated with MRSA solution, implanted into the femur, and left for 6 weeks. Severe IAI developed in the Ti6Al4V group, with increased radiological score (9.6 ± 1.3) and high histological score (10.1 ± 1.9). However, no sign of infection was found in the Ti6Al4V-Cu group, as indicated by decreased radiological score (1.3 ± 0.4) and low histological score (2.3 ± 0.5). In addition, Ti6Al4V-Cu had favorable biocompatibility both in vitro and in vivo. In summary, Ti6Al4V-Cu is a promising implant material to protect against MRSA-induced IAI.
Collapse
|
6
|
Alghamdi N, Balaraman L, Emhoff KA, Salem AMH, Wei R, Zhou A, Boyd WC. Cobalt(II) Diphenylazodioxide Complexes Induce Apoptosis in SK-HEP-1 Cells. ACS OMEGA 2019; 4:14503-14510. [PMID: 31528804 PMCID: PMC6740190 DOI: 10.1021/acsomega.9b01684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The cobalt(II) complex salts [Co(bpy)(az)2](PF6)2 and [Co(az)4](PF6), each bearing the unusual cis-N,N'-diphenylazodioxide ligand, were both screened as possible anticancer agents against SK-HEP-1 liver cancer cells. Both compounds were found to induce substantial apoptosis as an increasing function of concentration and time. Measurement of apoptosis-related proteins indicated that both the extrinsic and intrinsic pathways of apoptosis were activated. The apoptotic activity induced by these salts is not displayed either by simple cobalt(II) salts or complexes or by the free nitrosobenzene ligand. Additionally, these compounds did not induce apoptosis, as assessed by poly(adenosine diphosphate-ribose) polymerase cleavage, in several other cell lines.
Collapse
Affiliation(s)
- Norah
J. Alghamdi
- Department
of Chemistry and Center for Gene Regulation in Health and Disease
(GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44114, United States
| | - Lakshmi Balaraman
- Department
of Chemistry and Center for Gene Regulation in Health and Disease
(GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44114, United States
| | - Kylin A. Emhoff
- Department
of Chemistry and Center for Gene Regulation in Health and Disease
(GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44114, United States
| | - Ahmed M. H. Salem
- Department
of Chemistry and Center for Gene Regulation in Health and Disease
(GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44114, United States
| | - Ruhan Wei
- Department
of Chemistry and Center for Gene Regulation in Health and Disease
(GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44114, United States
| | - Aimin Zhou
- Department
of Chemistry and Center for Gene Regulation in Health and Disease
(GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44114, United States
| | - W. Christopher Boyd
- Department
of Chemistry and Center for Gene Regulation in Health and Disease
(GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44114, United States
| |
Collapse
|
7
|
Zhuang Y, Zhang S, Yang K, Ren L, Dai K. Antibacterial activity of copper‐bearing 316L stainless steel for the prevention of implant‐related infection. J Biomed Mater Res B Appl Biomater 2019; 108:484-495. [DOI: 10.1002/jbm.b.34405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/22/2019] [Accepted: 04/22/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Yifu Zhuang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011 People's Republic of China
| | - Shuyuan Zhang
- Institute of Metal Research, Chinese Academy of Sciences Shenyang 10000 People's Republic of China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences Shenyang 10000 People's Republic of China
| | - Ling Ren
- Institute of Metal Research, Chinese Academy of Sciences Shenyang 10000 People's Republic of China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011 People's Republic of China
| |
Collapse
|
8
|
Yu H, Zhong QZ, Liu TG, Qiu WZ, Wu BH, Xu ZK, Wan LS. Surface Deposition of Juglone/Fe III on Microporous Membranes for Oil/Water Separation and Dye Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3643-3650. [PMID: 30773014 DOI: 10.1021/acs.langmuir.8b03914] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deposition of dopamine and tannic acid has received great attention in the fields of surface and interface science and technology. The deposition behaviors of various metal-phenolic systems have been investigated, and it is generally accepted that at least one catechol group is essential to the formation of the coatings. Herein, we report a novel and effective surface-coating system based on the coordination complexes of FeIII ions with a natural product juglone that contains only one phenolic hydroxyl. We investigated the deposition behaviors of this novel system on various substrates. Microporous polypropylene membrane modified with juglone/FeIII coatings is superhydrophilic and underwater superoleophobic, showing high separation efficiency and good reusability for various oil/water emulsions. In addition, the modified membrane can adsorb anionic dyes and selectively remove them from dye mixtures with high efficiency. We further demonstrated that the coating is a result of the synergetic effect of juglone/FeIII coordination and FeIII hydrolysis. This work not only provides new insights into surface deposition systems but also expands the polyphenol family for surface coatings of multifunctional materials.
Collapse
Affiliation(s)
- Hui Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qi-Zhi Zhong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Tian-Geng Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Wen-Ze Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
9
|
Abyar F, Tabrizi L. Experimental and theoretical investigations of novel oxidovanadium(IV) juglone complex: DNA/HSA interaction and cytotoxic activity. J Biomol Struct Dyn 2019; 38:474-487. [PMID: 30831056 DOI: 10.1080/07391102.2019.1580221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new oxidovanadium(IV) complex VO(L)(Jug) (HL = 5-methoxy-1,3-bis (1-methyl-1H-benzo[d]imidazol-2-yl)benzene, Jug = juglone) was synthesized and characterized. Interactions of the V(IV) complex with calf thymus DNA (CT DNA) and human serum albumin were studied using different techniques such as UV-vis and fluorescence emission spectroscopy. The experimental results were confirmed by the molecular docking study. The oxidovanadium(IV) complex can efficiently cleave pUC19 DNA in the presence of Hydrogen peroxide. Also, the in vitro cytotoxicity properties of the oxidovanadium(IV) complex was evaluated against MCF-7, HPG-2 and HT-29 cancer cell lines and HEK293 non-malignant fibroblasts were evaluated and compared with free ligands, VOSO4 and cisplatin as reference drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Abyar
- Department of Chemical Engineering, Faculty of Engineering, Ardakan University, Ardakan, Iran
| | - Leila Tabrizi
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
10
|
Zhu M, Jia Z, Qu Y, Qi Z, Zhao H, Wang N, Xing J, Liu J, Gao E. Four Ni(II), Co(III), Cd(II) complexes based on 5-(pyrazol-1-yl)nicotinic acid: synthesis, X-ray single crystal structure, in vitro cytotoxicity, apoptosis and molecular docking studies. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1564911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Zhili Jia
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Yun Qu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenzhen Qi
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Hongwei Zhao
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Ning Wang
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Jialing Xing
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Jiaxing Liu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Enjun Gao
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| |
Collapse
|
11
|
Multispectroscopic DNA-Binding studies and antimicrobial evaluation of new mixed-ligand Silver(I) complex and nanocomplex: A comparative study. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Heras BL, Amesty Á, Estévez-Braun A, Hortelano S. Metal Complexes of Natural Product Like-compounds with Antitumor Activity. Anticancer Agents Med Chem 2018; 19:48-65. [PMID: 29692264 DOI: 10.2174/1871520618666180420165821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 01/17/2023]
Abstract
Cancer continues to be one of the major causes of death worldwide. Despite many advances in the understanding of this complex disease, new approaches are needed to improve the efficacy of current therapeutic treatments against aggressive tumors. Natural products are one of the most consistently successful sources of drug leads. In recent decades, research activity into the clinical potential of this class of compounds in cancer has increased. Furthermore, a highly promising field is the use of metals and their complexes in the design and development of metal-based drugs for the treatment of cancer. Metal complexes offer unique opportunities due to their ability to alter pharmacology, improving the efficacy and/or reducing the negative side effects of drug molecules. In addition, transition metals as copper, iron, and manganese, among others, can interact with active sites of enzymes, playing important roles in multiple biological processes. Thus, these complexes not only possess higher activities but also reach their targets more efficiently. This review article highlights recent advances on the emerging and expanding field of metal-based drugs. The emphasis is on new therapeutic strategies consisting of metal complexes with natural product like-compounds as a starting point for the rational design of new antitumor agents.
Collapse
Affiliation(s)
- Beatriz L Heras
- Departamento de Farmacologia. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ángel Amesty
- Departamento de Quimica Organica, Instituto Universitario de Bio-Organica Antonio Gonzalez, Universidad de La Laguna. Avda. Astrofisico Fco. Sanchez 2. 38206. La Laguna, Tenerife, Spain
| | - Ana Estévez-Braun
- Departamento de Quimica Organica, Instituto Universitario de Bio-Organica Antonio Gonzalez, Universidad de La Laguna. Avda. Astrofisico Fco. Sanchez 2. 38206. La Laguna, Tenerife, Spain
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacologicas. Area de Genetica Humana. Instituto de Investigacion de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Vančo J, Trávníček Z, Hošek J, Suchý P. In vitro and in vivo anti-inflammatory active copper(II)-lawsone complexes. PLoS One 2017; 12:e0181822. [PMID: 28742852 PMCID: PMC5526570 DOI: 10.1371/journal.pone.0181822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
We report in vitro and in vivo anti-inflammatory activities of a series of copper(II)-lawsone complexes of the general composition [Cu(Law)2(LN)x(H2O)(2-x)]·yH2O; where HLaw = 2-hydroxy-1,4-naphthoquinone, x = 1 when LN = pyridine (1) and 2-aminopyridine (3) and x = 2 when LN = imidazole (2), 3-aminopyridine (4), 4-aminopyridine (5), 3-hydroxypyridine (6), and 3,5-dimethylpyrazole (7). The compounds were thoroughly characterized by physical techniques, including single crystal X-ray analysis of complex 2. Some of the complexes showed the ability to suppress significantly the activation of nuclear factor κB (NF-κB) both by lipopolysaccharide (LPS) and TNF-alpha (complexes 3–7 at 100 nM level) in the similar manner as the reference drug prednisone (at 1 μM level). On the other hand, all the complexes 1–7 decreased significantly the levels of the secreted TNF-alpha after the LPS activation of THP-1 cells, thus showing the anti-inflammatory potential via both NF-κB moderation and by other mechanisms, such as influence on TNF-alpha transcription and/or translation and/or secretion. In addition, a strong intracellular pro-oxidative effect of all the complexes has been found at 100 nM dose in vitro. The ability to suppress the inflammatory response, caused by the subcutaneous application of λ-carrageenan, has been determined by in vivo testing in hind-paw edema model on rats. The most active complexes 1–3 (applied in a dose corresponding to 40 μmol Cu/kg), diminished the formation of edema simalarly as the reference drug indomethacine (applied in 10 mg/kg dose). The overall effect of the complexes, dominantly 1–3, shows similarity to anti-inflammatory drug benoxaprofen, known to induce intracellular pro-oxidative effects.
Collapse
Affiliation(s)
- Ján Vančo
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, Olomouc, Czech Republic
- * E-mail:
| | - Jan Hošek
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, Olomouc, Czech Republic
| | - Pavel Suchý
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, Brno, Czech Republic
| |
Collapse
|
14
|
Synthesis, X-ray crystal structure, DNA/BSA binding, DNA cleavage and cytotoxicity studies of phenanthroline based copper(II)/zinc(II) complexes. Biometals 2017; 30:575-587. [DOI: 10.1007/s10534-017-0028-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/09/2017] [Indexed: 12/22/2022]
|
15
|
Tabrizi L, Chiniforoshan H. New cyclometalated Ir(iii) complexes with NCN pincer and meso-phenylcyanamide BODIPY ligands as efficient photodynamic therapy agents. RSC Adv 2017. [DOI: 10.1039/c7ra05579j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new class of cyclometalated iridium(iii) with NCN pincer andmeso-phenylcyanamide BODIPY ligands has been synthesized and studied for photodynamic therapy.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland, Galway
- Galway
- Ireland
- Department of Chemistry
| | | |
Collapse
|
16
|
Tabrizi L. The discovery of half-sandwich iridium complexes containing lidocaine and (pyren-1-yl)ethynyl derivatives of phenylcyanamide ligands for photodynamic therapy. Dalton Trans 2017; 46:7242-7252. [DOI: 10.1039/c7dt01091e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The new design of two cyclopentadienyl iridium(iii) complexes with (pyren-1-yl)ethynyl derivatives of phenylcyanamide and lidocaine ligands, have been studied for photodynamic therapy.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
- Department of Chemistry
| |
Collapse
|
17
|
Gilberg E, Jasial S, Stumpfe D, Dimova D, Bajorath J. Highly Promiscuous Small Molecules from Biological Screening Assays Include Many Pan-Assay Interference Compounds but Also Candidates for Polypharmacology. J Med Chem 2016; 59:10285-10290. [PMID: 27809519 DOI: 10.1021/acs.jmedchem.6b01314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In PubChem screening assays, 466 highly promiscuous compounds were identified that were examined for known pan-assay interference compounds (PAINS) and aggregators using publicly available filters. These filters detected 210 PAINS and 67 aggregators. Compounds passing the filters included additional PAINS that were not detected, mostly due to tautomerism, and a variety of other potentially reactive compounds currently not encoded as PAINS. For a subset of compounds passing the filters, there was no evidence of potential artifacts. These compounds are considered candidates for further exploring multitarget activities and the molecular basis of polypharmacology.
Collapse
Affiliation(s)
- Erik Gilberg
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität , Dahlmannstrasse 2, D-53113 Bonn, Germany
| | - Swarit Jasial
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität , Dahlmannstrasse 2, D-53113 Bonn, Germany
| | - Dagmar Stumpfe
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität , Dahlmannstrasse 2, D-53113 Bonn, Germany
| | - Dilyana Dimova
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität , Dahlmannstrasse 2, D-53113 Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität , Dahlmannstrasse 2, D-53113 Bonn, Germany
| |
Collapse
|