1
|
Rosa L, Cutone A, Ianiro G, Valenti P, Paesano R. Lactoferrin in the treatment of interstitial cystitis: a retrospective pilot study. Biochem Cell Biol 2024; 102:506-514. [PMID: 39088844 DOI: 10.1139/bcb-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024] Open
Abstract
Interstitial cystitis (IC), defined as a painful bladder syndrome (PBS), is a chronic condition that manifests itself as a suprapubic pain associated with an enhancing of frequency/urgency of urination, and for which there is no cure. Here, we present a retrospective pilot study on women affected from IC/PBS and treated with bovine lactoferrin (bLf). A total of 31 women, affected (20) or unaffected (11) from hereditary thrombophilia (HT), presented the median of 6 episodes of IC/PBS during the 6 months before the study. Treatment consisted of 17 weeks of orally administered Valpalf® capsules, containing bLf plus sodium bicarbonate and citrate. Out of 31 patients, only 3 women had one episode of IC/PBS during the follow-up period, while no episode was observed in 28 women. In the HT group, a significant decrease in both serum IL-6 and D-dimers was found after Valpalf® treatment. Moreover, in Valpalf®-treated women, cystoscopy revealed a global improvement in the appearance of the bladder, especially in term of inflammation/irritation and presence of Hunner ulcers. Even if our results must be corroborated by randomized double-blinded controlled trials on a larger number of patients, our observations indicate that bLf treatment is efficient in relieving IC/PBS symptoms, without side effects.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
2
|
Gori A, Brindisi G, Daglia M, del Giudice MM, Dinardo G, Di Minno A, Drago L, Indolfi C, Naso M, Trincianti C, Tondina E, Brunese FP, Ullah H, Varricchio A, Ciprandi G, Zicari AM. Exploring the Role of Lactoferrin in Managing Allergic Airway Diseases among Children: Unrevealing a Potential Breakthrough. Nutrients 2024; 16:1906. [PMID: 38931261 PMCID: PMC11206375 DOI: 10.3390/nu16121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of allergic diseases has dramatically increased among children in recent decades. These conditions significantly impact the quality of life of allergic children and their families. Lactoferrin, a multifunctional glycoprotein found in various biological fluids, is emerging as a promising immunomodulatory agent that can potentially alleviate allergic diseases in children. Lactoferrin's multifaceted properties make it a compelling candidate for managing these conditions. Firstly, lactoferrin exhibits potent anti-inflammatory and antioxidant activities, which can mitigate the chronic inflammation characteristic of allergic diseases. Secondly, its iron-binding capabilities may help regulate the iron balance in allergic children, potentially influencing the severity of their symptoms. Lactoferrin also demonstrates antimicrobial properties, making it beneficial in preventing secondary infections often associated with respiratory allergies. Furthermore, its ability to modulate the immune response and regulate inflammatory pathways suggests its potential as an immune-balancing agent. This review of the current literature emphasises the need for further research to elucidate the precise roles of lactoferrin in allergic diseases. Harnessing the immunomodulatory potential of lactoferrin could provide a novel add-on approach to managing allergic diseases in children, offering hope for improved outcomes and an enhanced quality of life for paediatric patients and their families. As lactoferrin continues to capture the attention of researchers, its properties and diverse applications make it an intriguing subject of study with a rich history and a promising future.
Collapse
Affiliation(s)
- Alessandra Gori
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Giulia Brindisi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Michele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology & Microbiome, Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy;
- UOC Laboratory of Clinical Medicine, MultiLab Department, IRCCS Multimedica, 20138 Milan, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Matteo Naso
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Chiara Trincianti
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Enrico Tondina
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
| | - Attilio Varricchio
- Department of Otolaryngology, University of Molise, 86100 Campobasso, Italy;
| | - Giorgio Ciprandi
- Allergy Clinic, Casa di Cura Villa Montallegro, 16145 Genoa, Italy;
| | - Anna Maria Zicari
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| |
Collapse
|
3
|
Ianiro G, Niro A, Rosa L, Valenti P, Musci G, Cutone A. To Boost or to Reset: The Role of Lactoferrin in Energy Metabolism. Int J Mol Sci 2023; 24:15925. [PMID: 37958908 PMCID: PMC10650157 DOI: 10.3390/ijms242115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Many pathological conditions, including obesity, diabetes, hypertension, heart disease, and cancer, are associated with abnormal metabolic states. The progressive loss of metabolic control is commonly characterized by insulin resistance, atherogenic dyslipidemia, inflammation, central obesity, and hypertension, a cluster of metabolic dysregulations usually referred to as the "metabolic syndrome". Recently, nutraceuticals have gained attention for the generalized perception that natural substances may be synonymous with health and balance, thus becoming favorable candidates for the adjuvant treatment of metabolic dysregulations. Among nutraceutical proteins, lactoferrin (Lf), an iron-binding glycoprotein of the innate immune system, has been widely recognized for its multifaceted activities and high tolerance. As this review shows, Lf can exert a dual role in human metabolism, either boosting or resetting it under physiological and pathological conditions, respectively. Lf consumption is safe and is associated with several benefits for human health, including the promotion of oral and gastrointestinal homeostasis, control of glucose and lipid metabolism, reduction of systemic inflammation, and regulation of iron absorption and balance. Overall, Lf can be recommended as a promising natural, completely non-toxic adjuvant for application as a long-term prophylaxis in the therapy for metabolic disorders, such as insulin resistance/type II diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antonella Niro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| |
Collapse
|
4
|
Ianiro G, Rosa L, Bonaccorsi di Patti MC, Valenti P, Musci G, Cutone A. Lactoferrin: from the structure to the functional orchestration of iron homeostasis. Biometals 2023; 36:391-416. [PMID: 36214975 DOI: 10.1007/s10534-022-00453-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/25/2022] [Indexed: 11/02/2022]
Abstract
Iron is by far the most widespread and essential transition metal, possessing crucial biological functions for living systems. Despite chemical advantages, iron biology has forced organisms to face with some issues: ferric iron insolubility and ferrous-driven formation of toxic radicals. For these reasons, acquisition and transport of iron constitutes a formidable challenge for cells and organisms, which need to maintain adequate iron concentrations within a narrow range, allowing biological processes without triggering toxic effects. Higher organisms have evolved extracellular carrier proteins to acquire, transport and manage iron. In recent years, a renewed interest in iron biology has highlighted the role of iron-proteins dysregulation in the onset and/or exacerbation of different pathological conditions. However, to date, no resolutive therapy for iron disorders has been found. In this review, we outline the efficacy of Lactoferrin, a member of the transferrin family mainly secreted by exocrine glands and neutrophils, as a new emerging orchestrator of iron metabolism and homeostasis, able to counteract iron disorders associated to different pathologies, including iron deficiency and anemia of inflammation in blood, Parkinson and Alzheimer diseases in the brain and cystic fibrosis in the lung.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy.
| |
Collapse
|
5
|
Regueiro U, López-López M, Varela-Fernández R, Otero-Espinar FJ, Lema I. Biomedical Applications of Lactoferrin on the Ocular Surface. Pharmaceutics 2023; 15:pharmaceutics15030865. [PMID: 36986726 PMCID: PMC10052036 DOI: 10.3390/pharmaceutics15030865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Lactoferrin (LF) is a first-line defense protein with a pleiotropic functional pattern that includes anti-inflammatory, immunomodulatory, antiviral, antibacterial, and antitumoral properties. Remarkably, this iron-binding glycoprotein promotes iron retention, restricting free radical production and avoiding oxidative damage and inflammation. On the ocular surface, LF is released from corneal epithelial cells and lacrimal glands, representing a significant percentage of the total tear fluid proteins. Due to its multifunctionality, the availability of LF may be limited in several ocular disorders. Consequently, to reinforce the action of this highly beneficial glycoprotein on the ocular surface, LF has been proposed for the treatment of different conditions such as dry eye, keratoconus, conjunctivitis, and viral or bacterial ocular infections, among others. In this review, we outline the structure and the biological functions of LF, its relevant role at the ocular surface, its implication in LF-related ocular surface disorders, and its potential for biomedical applications.
Collapse
Affiliation(s)
- Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Rubén Varela-Fernández
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, 15706 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| |
Collapse
|
6
|
Hu P, Zong Q, Zhao Y, Gu H, Liu Y, Gu F, Liu HY, Ahmed AA, Bao W, Cai D. Lactoferrin Attenuates Intestinal Barrier Dysfunction and Inflammation by Modulating the MAPK Pathway and Gut Microbes in Mice. J Nutr 2022; 152:2451-2460. [PMID: 36774111 DOI: 10.1093/jn/nxac200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/16/2022] [Accepted: 08/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a major mycotoxin present in staple foods (particularly in cereal products) that induces intestinal inflammation and disrupts intestinal integrity. Lactoferrin (LF) is a multifunctional protein that contributes to maintaining intestinal homeostasis and improving host health. However, the protective effects of LF on DON-induced intestinal dysfunction remain unclear. OBJECTIVES This study aimed to investigate the effects of LF on DON-induced intestinal dysfunction in mice, and its underlying protective mechanism. METHODS Male BALB/c mice (5 wk old) with similar body weights were divided into 4 groups (n = 6/group) and treated as follows for 5 wk: Veh [peroral vehicle daily, commercial (C) diet]; LF (peroral 10 mg LF/d, C diet); DON (Veh, C diet containing 12 mg DON/kg); and LF + DON (peroral 10 mg LF/d, DON diet). Intestinal morphology, tight junction proteins, cytokines, and microbial community were determined. Data were analyzed by 2-factor ANOVA or Kruskal-Wallis test. RESULTS The DON group exhibited lower final body weight (-12%), jejunal villus height (VH; -41%), and jejunal occludin expression (-36%), and higher plasma IL-1β concentration (+85%) and jejunal Il1b mRNA expression (+98%) compared with the Veh group (P < 0.05). In contrast, final body weight (+19%), jejunal VH (+49%), jejunal occludin (+53%), and intelectin 1 protein expression (+159%) were greater in LF + DON compared with DON (P < 0.05). Additionally, jejunal Il1b mRNA expression (-31%) and phosphorylation of p38 and extracellular signal regulated kinase 1/2 (-40% and - 38%) were lower in LF + DON compared with DON (P < 0.05). Furthermore, the relative abundance of Clostridium XIVa (+181%) and colonic butyrate concentration (+53%) were greater in LF + DON compared with DON (P < 0.05). CONCLUSIONS Our study highlights a promising antimycotoxin approach using LF to alleviate DON-induced intestinal dysfunction by modulating the mitogen-activated protein kinase pathway and gut microbial community in mice.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Qiufang Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Yahui Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - YaYa Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Abdelkareem A Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Ebele, Gaborone, Botswana; Biomedical Research Institute, Darfur University College, Nyala, Sudan
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
7
|
ITLN1 inhibits tumor neovascularization and myeloid derived suppressor cells accumulation in colorectal carcinoma. Oncogene 2021; 40:5925-5937. [PMID: 34363021 DOI: 10.1038/s41388-021-01965-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Low levels of ITLN1 have been correlated with obesity-related colorectal carcinogenesis, however, the specific functions and underlying mechanisms remain unclear. Thus, we sought to explore the inhibitory role of ITLN1 in the tumor-permissive microenvironment that exists during the first occurrence and subsequent development of colorectal carcinoma (CRC). Results indicated that ITLN1 was frequently lost in CRC tissues and ITLN1 to be an independent prognostic predictor of CRC. Orthotopic and subcutaneous tumor xenograft approaches were then used to further confirm the protective role of ITLN1 during tumor progression. Increased ITLN1 expression in CRC cells significantly inhibited local pre-existing vessels sprouting, EPC recruitment and the infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) into tumor tissues without affecting the behavior of CRC cells in vitro. Comparatively, ITLN1-derived MDSCs had a lower suppressive effect on T cell proliferation, NOS2 expression, and ROS production. In addition, ITLN1 overexpression markedly suppressed bone marrow (BM)-derived hematopoietic progenitor cells (HPC) differentiation into MDSCs as well as NOS2 activity on MDSCs. Using H-2b+YFP + chimerism through bone marrow transplantation, increased ITLN1 in HCT116 significantly reduced the BM-derived EPCs and MDSCs in vivo mobilization. Mechanistically, results indicated ITLN1 inhibited tumor-derived IL-17D and CXCL2 (MIP2) through the KEAP1/Nrf2/ROS/IL-17D and p65 NF-ĸB/CXCL2 signaling cascades dependent on PI3K/AKT/GSK3ß. This effect was reversed by the PI3K selective inhibitor LY294002. Collectively, ITLN1 synergistically suppressed IL-17D and CXCL2-mediated tumor vascularization, bone marrow derived EPC recruitment, as well as MDSCs generation and trafficking. Thus, ITLN1 potentially serves as a critical prognostic and therapeutic target for CRC.
Collapse
|
8
|
Lactoferrin as a regenerative agent: The old-new panacea? Pharmacol Res 2021; 167:105564. [PMID: 33744427 DOI: 10.1016/j.phrs.2021.105564] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023]
Abstract
Lactoferrin (Lf) possesses various biological properties and therapeutic potentials being a perspective anti-inflammatory, antibacterial, antiviral, antioxidant, antitumor, and immunomodulatory agent. A significant body of literature has also demonstrated that Lf modulates regenerative processes in different anatomical structures, such as bone, cartilage, skin, mucosa, cornea, tendon, vasculature, and adipose tissue. Hence, this review collected and analyzed the data on the regenerative effects of Lf, as well as paid specific attention to their molecular basis. Furthermore, tissue and condition-specific activities of different Lf types as well as problems of their delivery to the targeted organs were discussed. The authors strongly hope that this review will stimulate researchers to focus on the highlighted topics thus accelerating the progress of Lf's wider clinical application.
Collapse
|
9
|
Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr 2021; 62:6016-6033. [PMID: 33685299 DOI: 10.1080/10408398.2021.1895063] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (LF), a glycoprotein found in mucosal secretions, is characterized by a wide range of functions, including immunomodulatory and anti-inflammatory activities. Moreover, several investigations confirmed that LF displays high effectiveness against multiple bacteria and viruses and may be regarded as a potential inhibitor of enveloped viruses, such as presently prevailing SARS-CoV-2. In our review, we discuss available studies about LF functions and bioavailability of different LF forms in in vitro and in vivo models. Moreover, we characterize the potential benefits and side effects of LF use; we also briefly summarize the latest clinical trials examining LF application. Finally, we point potential role of LF in inflammatory bowel disease and indicate its use as a marker for disease severity.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Jaśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
11
|
Mancinelli R, Cutone A, Rosa L, Lepanto MS, Onori P, Pannarale L, Franchitto A, Gaudio E, Valenti P. Different iron-handling in inflamed small and large cholangiocytes and in small and large-duct type intrahepatic cholangiocarcinoma. Eur J Histochem 2020; 64. [PMID: 33131269 PMCID: PMC7586138 DOI: 10.4081/ejh.2020.3156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) represents the second most common primary hepatic malignancy and originates from the neoplastic transformation of the biliary cells. The intrahepatic subtype includes two morpho-molecular forms: large-duct type intrahepatic CCA (iCCA) and small-duct type iCCA. Iron is fundamental for the cellular processes, contributing in tumor development and progression. The aim of this study was to evaluate iron uptake, storage, and efflux proteins in both lipopolysaccharide-inflamed small and large cholangiocytes as well as in different iCCA subtypes. Our results show that, despite an increase in interleukin-6 production by both small and large cholangiocytes, ferroportin (Fpn) was decreased only in small cholangiocytes, whereas transferrin receptor-1 (TfR1) and ferritin (Ftn) did not show any change. Differently from in vitro models, Fpn expression was increased in malignant cholangiocytes of small-duct type iCCA in comparison to large-duct type iCCA and peritumoral tissues. TfR1, Ftn and hepcidin were enhanced, even if at different extent, in both malignant cholangiocytes in comparison to the surrounding samples. Lactoferrin was higher in large-duct type iCCA in respect to small-duct type iCCA and peritumoral tissues. These findings show a different iron handling by inflamed small and large cholangiocytes, and small and large-duct type iCCA. The difference in iron homeostasis by the iCCA subtypes may have implications for the tumor management.
Collapse
Affiliation(s)
- Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome.
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche (IS).
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome.
| | | | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome; Eleonora Lorillard Spencer Cenci Foundation, Rome.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome.
| |
Collapse
|
12
|
Urman JM, Herranz JM, Uriarte I, Rullán M, Oyón D, González B, Fernandez-Urién I, Carrascosa J, Bolado F, Zabalza L, Arechederra M, Alvarez-Sola G, Colyn L, Latasa MU, Puchades-Carrasco L, Pineda-Lucena A, Iraburu MJ, Iruarrizaga-Lejarreta M, Alonso C, Sangro B, Purroy A, Gil I, Carmona L, Cubero FJ, Martínez-Chantar ML, Banales JM, Romero MR, Macias RI, Monte MJ, Marín JJG, Vila JJ, Corrales FJ, Berasain C, Fernández-Barrena MG, Avila MA. Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach. Cancers (Basel) 2020; 12:1644. [PMID: 32575903 PMCID: PMC7352944 DOI: 10.3390/cancers12061644] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (1H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.
Collapse
Affiliation(s)
- Jesús M. Urman
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - José M. Herranz
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Iker Uriarte
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - María Rullán
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Daniel Oyón
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Belén González
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Ignacio Fernandez-Urién
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Juan Carrascosa
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Federico Bolado
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Lucía Zabalza
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - María Arechederra
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Gloria Alvarez-Sola
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Leticia Colyn
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - María U. Latasa
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Antonio Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - María J. Iraburu
- Department of Biochemistry and Genetics, School of Sciences; University of Navarra, 31008 Pamplona, Spain;
| | | | - Cristina Alonso
- OWL Metabolomics, Bizkaia Technology Park, 48160 Derio, Spain; (M.I.-L.); (C.A.)
| | - Bruno Sangro
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Hepatology Unit, Department of Internal Medicine, University of Navarra Clinic, 31008 Pamplona, Spain
| | - Ana Purroy
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Navarrabiomed Biobank Unit, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Isabel Gil
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Navarrabiomed Biobank Unit, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Lorena Carmona
- Proteomics Unit, Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Francisco Javier Cubero
- Department of Immunology, Ophtalmology & Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (Imas12), 28040 Madrid, Spain;
| | - María L. Martínez-Chantar
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Jesús M. Banales
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, 20014 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marta R. Romero
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Rocio I.R. Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Maria J. Monte
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jose J. G. Marín
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Juan J. Vila
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Fernando J. Corrales
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Proteomics Unit, Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Carmen Berasain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Maite G. Fernández-Barrena
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Matías A. Avila
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| |
Collapse
|
13
|
Viral Hepatitis and Iron Dysregulation: Molecular Pathways and the Role of Lactoferrin. Molecules 2020; 25:molecules25081997. [PMID: 32344579 PMCID: PMC7221917 DOI: 10.3390/molecules25081997] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
The liver is a frontline immune site specifically designed to check and detect potential pathogens from the bloodstream to maintain a general state of immune hyporesponsiveness. One of the main functions of the liver is the regulation of iron homeostasis. The liver detects changes in systemic iron requirements and can regulate its concentration. Pathological states lead to the dysregulation of iron homeostasis which, in turn, can promote infectious and inflammatory processes. In this context, hepatic viruses deviate hepatocytes' iron metabolism in order to better replicate. Indeed, some viruses are able to alter the expression of iron-related proteins or exploit host receptors to enter inside host cells. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein belonging to the innate immunity, is endowed with potent antiviral activity, mainly related to its ability to block viral entry into host cells by interacting with viral and/or cell surface receptors. Moreover, Lf can act as an iron scavenger by both direct iron-chelation or the modulation of the main iron-related proteins. In this review, the complex interplay between viral hepatitis, iron homeostasis, and inflammation as well as the role of Lf are outlined.
Collapse
|
14
|
Di Sotto A, Di Giacomo S, Rubini E, Macone A, Gulli M, Mammola CL, Eufemi M, Mancinelli R, Mazzanti G. Modulation of STAT3 Signaling, Cell Redox Defenses and Cell Cycle Checkpoints by β-Caryophyllene in Cholangiocarcinoma Cells: Possible Mechanisms Accounting for Doxorubicin Chemosensitization and Chemoprevention. Cells 2020; 9:E858. [PMID: 32252311 PMCID: PMC7226839 DOI: 10.3390/cells9040858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive group of biliary tract cancers, characterized by late diagnosis, low effective chemotherapies, multidrug resistance, and poor outcomes. In the attempt to identify new therapeutic strategies for CCA, we studied the antiproliferative activity of a combination between doxorubicin and the natural sesquiterpene β-caryophyllene in cholangiocarcinoma Mz-ChA-1 cells and nonmalignant H69 cholangiocytes, under both long-term and metronomic schedules. The modulation of STAT3 signaling, oxidative stress, DNA damage response, cell cycle progression and apoptosis was investigated as possible mechanisms of action. β-caryophyllene was able to synergize the cytotoxicity of low dose doxorubicin in Mz-ChA-1 cells, while producing cytoprotective effects in H69 cholangiocytes, mainly after a long-term exposure of 24 h. The mechanistic analysis highlighted that the sesquiterpene induced a cell cycle arrest in G2/M phase along with the doxorubicin-induced accumulation in S phase, reduced the γH2AX and GSH levels without affecting GSSG. ROS amount was partly lowered by the combination in Mz-ChA-1 cells, while increased in H69 cells. A lowered expression of doxorubicin-induced STAT3 activation was found in the presence of β-caryophyllene in both cancer and normal cholangiocytes. These networking effects resulted in an increased apoptosis rate in Mz-ChA-1 cells, despite a lowering in H69 cholangiocytes. This evidence highlighted a possible role of STAT3 as a final effector of a complex network regulated by β-caryophyllene, which leads to an enhanced doxorubicin-sensitivity of cholangiocarcinoma cells and a lowered chemotherapy toxicity in nonmalignant cholangiocytes, thus strengthening the interest for this natural sesquiterpene as a dual-acting chemosensitizing and chemopreventive agent.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| | - Elisabetta Rubini
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Alberto Macone
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Marco Gulli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.L.M.); (R.M.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.L.M.); (R.M.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| |
Collapse
|
15
|
Cutone A, Rosa L, Ianiro G, Lepanto MS, Bonaccorsi di Patti MC, Valenti P, Musci G. Lactoferrin's Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020; 10:456. [PMID: 32183434 PMCID: PMC7175311 DOI: 10.3390/biom10030456] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in cancer therapy, current treatments, including radiotherapy, chemotherapy, and immunotherapy, although beneficial, present attendant side effects and long-term sequelae, usually more or less affecting quality of life of the patients. Indeed, except for most of the immunotherapeutic agents, the complete lack of selectivity between normal and cancer cells for radio- and chemotherapy can make them potential antagonists of the host anti-cancer self-defense over time. Recently, the use of nutraceuticals as natural compounds corroborating anti-cancer standard therapy is emerging as a promising tool for their relative abundance, bioavailability, safety, low-cost effectiveness, and immuno-compatibility with the host. In this review, we outlined the anti-cancer properties of Lactoferrin (Lf), an iron-binding glycoprotein of the innate immune defense. Lf shows high bioavailability after oral administration, high selectivity toward cancer cells, and a wide range of molecular targets controlling tumor proliferation, survival, migration, invasion, and metastasization. Of note, Lf is able to promote or inhibit cell proliferation and migration depending on whether it acts upon normal or cancerous cells, respectively. Importantly, Lf administration is highly tolerated and does not present significant adverse effects. Moreover, Lf can prevent development or inhibit cancer growth by boosting adaptive immune response. Finally, Lf was recently found to be an ideal carrier for chemotherapeutics, even for the treatment of brain tumors due to its ability to cross the blood-brain barrier, thus globally appearing as a promising tool for cancer prevention and treatment, especially in combination therapies.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| |
Collapse
|
16
|
Hepatocyte Injury and Hepatic Stem Cell Niche in the Progression of Non-Alcoholic Steatohepatitis. Cells 2020; 9:cells9030590. [PMID: 32131439 PMCID: PMC7140508 DOI: 10.3390/cells9030590] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by lipid accumulation in hepatocytes in the absence of excessive alcohol consumption. The global prevalence of NAFLD is constantly increasing. NAFLD is a disease spectrum comprising distinct stages with different prognoses. Non-alcoholic steatohepatitis (NASH) is a progressive condition, characterized by liver inflammation and hepatocyte ballooning, with or without fibrosis. The natural history of NAFLD is negatively influenced by NASH onset and by the progression towards advanced fibrosis. Pathogenetic mechanisms and cellular interactions leading to NASH and fibrosis involve hepatocytes, liver macrophages, myofibroblast cell subpopulations, and the resident progenitor cell niche. These cells are implied in the regenerative trajectories following liver injury, and impairment or perturbation of these mechanisms could lead to NASH and fibrosis. Recent evidence underlines the contribution of extra-hepatic organs/tissues (e.g., gut, adipose tissue) in influencing NASH development by interacting with hepatic cells through various molecular pathways. The present review aims to summarize the role of hepatic parenchymal and non-parenchymal cells, their mutual influence, and the possible interactions with extra-hepatic tissues and organs in the pathogenesis of NAFLD.
Collapse
|
17
|
Rauber C, Awad M, Koschny R, Sauer P, Mehrabi A, Gath P, Weiss KH, Gotthardt DN, Rupp C. Biliary calprotectin, lactoferrin and dimeric pyruvate kinase after liver transplantation are associated with biliary damage and graft survival in a case-control study. Clin Res Hepatol Gastroenterol 2020; 44:38-48. [PMID: 31201006 DOI: 10.1016/j.clinre.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND After liver transplantation (LT), biliary complications are associated with reduced graft survival. We tested inflammation markers for their association with biliary damage and graft loss in bile. MATERIAL AND METHODS The study design was a retrospective case-control study. Calprotectin, lactoferrin and pyruvate kinase were measured in endoscopically retrieved bile with ELISA. RESULTS Calprotectin and lactoferrin were significantly higher in bile of ischemic-type biliary lesions and donor duct non-anastomotic strictures than in control, bile leakage, Cytomegalovirus infection, anastomotic stricture or acute cellular rejection patients (p<0.001) independent of serum liver values at endoscopy. Calprotectin (p=0.02) was independently associated with retransplantation free survival in multivariate analysis, as was γGT (p=0.03) but not ERC radiographic classification of the bile duct or cold ischemia time. CONCLUSION Calprotectin and lactoferrin are bile markers for biliary damage and are associated with re-transplantation free survival. They can differentiate progressive biliary damage from non-biliary liver value alterations after LT.
Collapse
Affiliation(s)
- Conrad Rauber
- Department of Gastroenterology, University Hospital Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; Université Paris-Sud, Université Paris-Saclay, 91400 Paris, France; Gustave Roussy Cancer Campus (GRCC), 94800 Villejuif, France.
| | - Miriam Awad
- Department of Gastroenterology, University Hospital Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ronald Koschny
- Department of Gastroenterology, University Hospital Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Sauer
- Department of Gastroenterology, University Hospital Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Philip Gath
- Department of Gastroenterology and Hepatology, Hospital Ludwigshafen, 67063 Ludwigshafen, Germany
| | - Karl-Heinz Weiss
- Department of Gastroenterology, University Hospital Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Daniel Nils Gotthardt
- Department of Gastroenterology, University Hospital Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christian Rupp
- Department of Gastroenterology, University Hospital Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Di Sotto A, Irannejad H, Eufemi M, Mancinelli R, Abete L, Mammola CL, Altieri F, Mazzanti G, Di Giacomo S. Potentiation of Low-Dose Doxorubicin Cytotoxicity by Affecting P-Glycoprotein through Caryophyllane Sesquiterpenes in HepG2 Cells: an in Vitro and in Silico Study. Int J Mol Sci 2020; 21:E633. [PMID: 31963614 PMCID: PMC7014471 DOI: 10.3390/ijms21020633] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Doxorubicin represents a valuable choice for different cancers, although the severe side effects occurring at the high effective dose limits its clinical use. In the present study, potential strategies to potentiate low-dose doxorubicin efficacy, including a metronomic schedule, characterized by a short and repeated exposure to the anticancer drug, and the combination with the natural chemosensitizing sesquiterpenes β-caryophyllene and β-caryophyllene oxide, were assessed in human hepatoma HepG2 cells. The involvement of P-glycoprotein (P-gp) in the HepG2-chemosensitization to doxorubicin was evaluated. Also, the direct interaction of caryophyllene sesquiterpenes with P-gp was characterized by molecular docking and dynamic simulation studies. A metronomic schedule allowed us to enhance the low-dose doxorubicin cytotoxicity and the combination with caryophyllane sesquiterpenes further potentiated this effect. Also, an increased intracellular accumulation of doxorubicin and rhodamine 123 induced by caryophyllane sesquiterpenes was found, thus suggesting their interference with P-gp function. A lowered expression of P-gp induced by the combinations, with respect to doxorubicin alone, was observed too. Docking studies found that the binding site of caryophyllane sesquiterpene was next to the ATP binding domain of P-gp and that β-caryophyllene possessed the stronger binding affinity and higher inhibition potential calculated by MM-PBSA. Present findings strengthen our hypothesis about the potential chemosensitizing power of caryophyllane sesquiterpenes and suggest that combining a chemosensitizer and a metronomic schedule can represent a suitable strategy to overcome drawbacks of doxorubicin chemotherapy while exploiting its powerful activity.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Computer Simulation
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Humans
- In Vitro Techniques
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Polycyclic Sesquiterpenes/chemistry
- Sesquiterpenes/chemistry
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (L.A.); (G.M.); (S.D.G.)
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 48175-866 Sari, Iran;
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Lorena Abete
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (L.A.); (G.M.); (S.D.G.)
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Fabio Altieri
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (L.A.); (G.M.); (S.D.G.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (L.A.); (G.M.); (S.D.G.)
| |
Collapse
|
19
|
Cutone A, Colella B, Pagliaro A, Rosa L, Lepanto MS, Bonaccorsi di Patti MC, Valenti P, Di Bartolomeo S, Musci G. Native and iron-saturated bovine lactoferrin differently hinder migration in a model of human glioblastoma by reverting epithelial-to-mesenchymal transition-like process and inhibiting interleukin-6/STAT3 axis. Cell Signal 2019; 65:109461. [PMID: 31678680 DOI: 10.1016/j.cellsig.2019.109461] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
Glioblastoma, the most lethal form of brain cancer, is characterized by fast growth, migration and invasion of the surrounding parenchyma, with epithelial-to-mesenchymal transition (EMT)-like process being mostly responsible for tumour spreading and dissemination. A number of actors, including cadherins, vimentin, transcriptional factors such as SNAIL, play critical roles in the EMT process. The interleukin (IL)-6/STAT3 axis has been related to enhanced glioblastoma's migration and invasion abilities as well. Here, we present data on the differential effects of native and iron-saturated bovine lactoferrin (bLf), an iron-chelating glycoprotein of the innate immune response, in inhibiting migration in a human glioblastoma cell line. Through a wound healing assay, we found that bLf was able to partially or completely hinder cell migration, depending on its iron saturation rate. At a molecular level, bLf down-regulated both SNAIL and vimentin expression, while inducing a notable increase in cadherins' levels and inhibiting IL-6/STAT3 axis. Again, these effects positively correlated to bLf iron-saturation state, with the Holo-form resulting more efficient than the native one. Overall, our data suggest that bLf could represent a novel and efficient adjuvant treatment for glioblastoma's standard therapeutic approaches.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Barbara Colella
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Andrea Pagliaro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
| |
Collapse
|
20
|
|
21
|
Lepanto MS, Rosa L, Paesano R, Valenti P, Cutone A. Lactoferrin in Aseptic and Septic Inflammation. Molecules 2019; 24:molecules24071323. [PMID: 30987256 PMCID: PMC6480387 DOI: 10.3390/molecules24071323] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Lactoferrin (Lf), a cationic glycoprotein able to chelate two ferric irons per molecule, is synthesized by exocrine glands and neutrophils. Since the first anti-microbial function attributed to Lf, several activities have been discovered, including the relevant anti-inflammatory one, especially associated to the down-regulation of pro-inflammatory cytokines, as IL-6. As high levels of IL-6 are involved in iron homeostasis disorders, Lf is emerging as a potent regulator of iron and inflammatory homeostasis. Here, the role of Lf against aseptic and septic inflammation has been reviewed. In particular, in the context of aseptic inflammation, as anemia of inflammation, preterm delivery, Alzheimer’s disease and type 2 diabetes, Lf administration reduces local and/or systemic inflammation. Moreover, Lf oral administration, by decreasing serum IL-6, reverts iron homeostasis disorders. Regarding septic inflammation occurring in Chlamydia trachomatis infection, cystic fibrosis and inflammatory bowel disease, Lf, besides the anti-inflammatory activity, exerts a significant activity against bacterial adhesion, invasion and colonization. Lastly, a critical analysis of literature in vitro data reporting contradictory results on the Lf role in inflammatory processes, ranging from pro- to anti-inflammatory activity, highlighted that they depend on cell models, cell metabolic status, stimulatory or infecting agents as well as on Lf iron saturation degree, integrity and purity.
Collapse
Affiliation(s)
- Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
| |
Collapse
|