1
|
Crowder CM, Forman SA. Systematized Serendipity: Fishing Expeditions for Anesthetic Drugs and Targets. Anesthesiology 2024; 141:997-1006. [PMID: 39240535 PMCID: PMC11461116 DOI: 10.1097/aln.0000000000005153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Most of science involves making observations, forming hypotheses, and testing those hypotheses, to form valid conclusions. However, a distinct, longstanding, and very productive scientific approach does not follow this paradigm; rather, it begins with a screen through a random collection of drugs or genetic variations for a particular effect or phenotype. Subsequently, the identity of the drug or gene is determined, and only then are hypotheses formed and the more standard scientific method employed. This alternative approach is called forward screening and includes methods such as genetic mutant screens, small molecule screens, metabolomics, proteomics, and transcriptomics. This review explains the rational for forward screening approaches and uses examples of screens for mutants with altered anesthetic sensitivities and for novel anesthetics to illustrate the methods and impact of the approach. Forward screening approaches are becoming even more powerful with advances in bioinformatics aided by artificial intelligence.
Collapse
Affiliation(s)
- C. Michael Crowder
- Department of Anesthesiology and Pain Medicine, Department of Genome Sciences, Mitochondrial and Metabolism Center, University of Washington, Seattle, WA 98109
| | - Stuart A. Forman
- Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts and Harvard Medical School, Boston Massachusetts
| |
Collapse
|
2
|
Zhang J, Benko Z, Zhang C, Zhao RY. Advanced Protocol for Molecular Characterization of Viral Genome in Fission Yeast ( Schizosaccharomyces pombe). Pathogens 2024; 13:566. [PMID: 39057793 PMCID: PMC11279667 DOI: 10.3390/pathogens13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Fission yeast, a single-cell eukaryotic organism, shares many fundamental cellular processes with higher eukaryotes, including gene transcription and regulation, cell cycle regulation, vesicular transport and membrane trafficking, and cell death resulting from the cellular stress response. As a result, fission yeast has proven to be a versatile model organism for studying human physiology and diseases such as cell cycle dysregulation and cancer, as well as autophagy and neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases. Given that viruses are obligate intracellular parasites that rely on host cellular machinery to replicate and produce, fission yeast could serve as a surrogate to identify viral proteins that affect host cellular processes. This approach could facilitate the study of virus-host interactions and help identify potential viral targets for antiviral therapy. Using fission yeast for functional characterization of viral genomes offers several advantages, including a well-characterized and haploid genome, robustness, cost-effectiveness, ease of maintenance, and rapid doubling time. Therefore, fission yeast emerges as a valuable surrogate system for rapid and comprehensive functional characterization of viral proteins, aiding in the identification of therapeutic antiviral targets or viral proteins that impact highly conserved host cellular functions with significant virologic implications. Importantly, this approach has a proven track record of success in studying various human and plant viruses. In this protocol, we present a streamlined and scalable molecular cloning strategy tailored for genome-wide and comprehensive functional characterization of viral proteins in fission yeast.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Zsigmond Benko
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Chenyu Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Richard Y. Zhao
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Department of Microbiology-Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Global Health, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Caron-Godon CA, Collington E, Wolf JL, Coletta G, Glerum DM. More than Just Bread and Wine: Using Yeast to Understand Inherited Cytochrome Oxidase Deficiencies in Humans. Int J Mol Sci 2024; 25:3814. [PMID: 38612624 PMCID: PMC11011759 DOI: 10.3390/ijms25073814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited defects in cytochrome c oxidase (COX) are associated with a substantial subset of diseases adversely affecting the structure and function of the mitochondrial respiratory chain. This multi-subunit enzyme consists of 14 subunits and numerous cofactors, and it requires the function of some 30 proteins to assemble. COX assembly was first shown to be the primary defect in the majority of COX deficiencies 36 years ago. Over the last three decades, most COX assembly genes have been identified in the yeast Saccharomyces cerevisiae, and studies in yeast have proven instrumental in testing the impact of mutations identified in patients with a specific COX deficiency. The advent of accessible genome-wide sequencing capabilities has led to more patient mutations being identified, with the subsequent identification of several new COX assembly factors. However, the lack of genotype-phenotype correlations and the large number of genes involved in generating a functional COX mean that functional studies must be undertaken to assign a genetic variant as being causal. In this review, we provide a brief overview of the use of yeast as a model system and briefly compare the COX assembly process in yeast and humans. We focus primarily on the studies in yeast that have allowed us to both identify new COX assembly factors and to demonstrate the pathogenicity of a subset of the mutations that have been identified in patients with inherited defects in COX. We conclude with an overview of the areas in which studies in yeast are likely to continue to contribute to progress in understanding disease arising from inherited COX deficiencies.
Collapse
Affiliation(s)
- Chenelle A. Caron-Godon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Emma Collington
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Jessica L. Wolf
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Genna Coletta
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - D. Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
4
|
Zhang X, Fawwal DV, Spangle JM, Corbett AH, Jones CY. Exploring the Molecular Underpinnings of Cancer-Causing Oncohistone Mutants Using Yeast as a Model. J Fungi (Basel) 2023; 9:1187. [PMID: 38132788 PMCID: PMC10744705 DOI: 10.3390/jof9121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Understanding the molecular basis of cancer initiation and progression is critical in developing effective treatment strategies. Recently, mutations in genes encoding histone proteins that drive oncogenesis have been identified, converting these essential proteins into "oncohistones". Understanding how oncohistone mutants, which are commonly single missense mutations, subvert the normal function of histones to drive oncogenesis requires defining the functional consequences of such changes. Histones genes are present in multiple copies in the human genome with 15 genes encoding histone H3 isoforms, the histone for which the majority of oncohistone variants have been analyzed thus far. With so many wildtype histone proteins being expressed simultaneously within the oncohistone, it can be difficult to decipher the precise mechanistic consequences of the mutant protein. In contrast to humans, budding and fission yeast contain only two or three histone H3 genes, respectively. Furthermore, yeast histones share ~90% sequence identity with human H3 protein. Its genetic simplicity and evolutionary conservation make yeast an excellent model for characterizing oncohistones. The power of genetic approaches can also be exploited in yeast models to define cellular signaling pathways that could serve as actionable therapeutic targets. In this review, we focus on the value of yeast models to serve as a discovery tool that can provide mechanistic insights and inform subsequent translational studies in humans.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
| | - Dorelle V. Fawwal
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Jennifer M. Spangle
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Anita H. Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Celina Y. Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Lamas-Maceiras M, Vizoso-Vázquez Á, Barreiro-Alonso A, Cámara-Quílez M, Cerdán ME. Thanksgiving to Yeast, the HMGB Proteins History from Yeast to Cancer. Microorganisms 2023; 11:microorganisms11040993. [PMID: 37110415 PMCID: PMC10142021 DOI: 10.3390/microorganisms11040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Yeasts have been a part of human life since ancient times in the fermentation of many natural products used for food. In addition, in the 20th century, they became powerful tools to elucidate the functions of eukaryotic cells as soon as the techniques of molecular biology developed. Our molecular understandings of metabolism, cellular transport, DNA repair, gene expression and regulation, and the cell division cycle have all been obtained through biochemistry and genetic analysis using different yeasts. In this review, we summarize the role that yeasts have had in biological discoveries, the use of yeasts as biological tools, as well as past and on-going research projects on HMGB proteins along the way from yeast to cancer.
Collapse
Affiliation(s)
- Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Cámara-Quílez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Esperanza Cerdán
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
6
|
Nikolić L, Ferracin C, Legname G. Recent advances in cellular models for discovering prion disease therapeutics. Expert Opin Drug Discov 2022; 17:985-996. [PMID: 35983689 DOI: 10.1080/17460441.2022.2113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Prion diseases are a group of rare and lethal rapidly progressive neurodegenerative diseases arising due to conversion of the physiological cellular prion protein into its pathological counterparts, denoted as "prions". These agents are resistant to inactivation by standard decontamination procedures and can be transmitted between individuals, consequently driving the irreversible brain damage typical of the diseases. AREAS COVERED Since its infancy, prion research has mainly depended on animal models for untangling the pathogenesis of the disease as well as for the drug development studies. With the advent of prion-infected cell lines, relevant animal models have been complemented by a variety of cell-based models presenting a much faster, ethically acceptable alternative. EXPERT OPINION To date, there are still either no effective prophylactic regimens or therapies for human prion diseases. Therefore, there is an urgent need for more relevant cellular models that best approximate in vivo models. Each cellular model presented and discussed in detail in this review has its own benefits and limitations. Once embarking in a drug screening campaign for the identification of molecules that could interfere with prion conversion and replication, one should carefully consider the ideal cellular model.
Collapse
Affiliation(s)
- Lea Nikolić
- PhD Student in Functional and Structural Genomics, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy,
| | - Chiara Ferracin
- PhD Student in Functional and Structural Genomics, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- D.Phil., Full Professor of Biochemistry, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
7
|
Kachroo AH, Vandeloo M, Greco BM, Abdullah M. Humanized yeast to model human biology, disease and evolution. Dis Model Mech 2022; 15:275614. [PMID: 35661208 PMCID: PMC9194483 DOI: 10.1242/dmm.049309] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
For decades, budding yeast, a single-cellular eukaryote, has provided remarkable insights into human biology. Yeast and humans share several thousand genes despite morphological and cellular differences and over a billion years of separate evolution. These genes encode critical cellular processes, the failure of which in humans results in disease. Although recent developments in genome engineering of mammalian cells permit genetic assays in human cell lines, there is still a need to develop biological reagents to study human disease variants in a high-throughput manner. Many protein-coding human genes can successfully substitute for their yeast equivalents and sustain yeast growth, thus opening up doors for developing direct assays of human gene function in a tractable system referred to as 'humanized yeast'. Humanized yeast permits the discovery of new human biology by measuring human protein activity in a simplified organismal context. This Review summarizes recent developments showing how humanized yeast can directly assay human gene function and explore variant effects at scale. Thus, by extending the 'awesome power of yeast genetics' to study human biology, humanizing yeast reinforces the high relevance of evolutionarily distant model organisms to explore human gene evolution, function and disease.
Collapse
|
8
|
Ngo V, Brickenden A, Liu H, Yeung C, Choy WY, Duennwald ML. A novel yeast model detects Nrf2 and Keap1 interactions with Hsp90. Dis Model Mech 2022; 15:274138. [PMID: 35088844 PMCID: PMC9016900 DOI: 10.1242/dmm.049258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Nrf2 is the master transcriptional regulator of cellular responses against oxidative stress. It is chiefly regulated by Keap1, a substrate adaptor protein that mediates Nrf2 degradation. Nrf2 activity is also influenced by many other protein interactions that provide Keap1-independent regulation. To study Nrf2 regulation, we established and characterized yeast models expressing human Nrf2 (also known as NFE2L2), Keap1 and other proteins that interact with and regulate Nrf2. Yeast models have been well established as powerful tools to study protein function and genetic and physical protein-protein interactions. In this work, we recapitulate previously described Nrf2 interactions in yeast and discover that Nrf2 interacts with the molecular chaperone Hsp90. Our work establishes yeast as a useful tool to study Nrf2 interactions and provides new insight into the crosstalk between the antioxidant response and the heat shock response. Summary: We studied the interactions of human Nrf2 in a novel budding yeast model. We recapitulate previously described Nrf2 interactions and discover that Nrf2 interacts with Hsp90, establishing yeast as a useful tool to study Nrf2 interactions.
Collapse
Affiliation(s)
- Vy Ngo
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Anne Brickenden
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Hansen Liu
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Cynthia Yeung
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
Du Z, Valtierra S, Cardona LR, Dunne SF, Luan CH, Li L. Identifying Anti-prion Chemical Compounds Using a Newly Established Yeast High-Throughput Screening System. Cell Chem Biol 2019; 26:1664-1680.e4. [PMID: 31668517 DOI: 10.1016/j.chembiol.2019.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/31/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
Prion-like protein aggregation underlies the pathology of a group of fatal neurodegenerative diseases in humans, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and transmissible spongiform encephalopathy. At present, few high-throughput screening (HTS) systems are available for anti-prion small-molecule identification. Here we describe an innovative phenotypic HTS system in yeast that allows for efficient identification of chemical compounds that eliminate the yeast prion [SWI+]. We show that some identified anti-[SWI+] compounds can destabilize other non-[SWI+] prions, and their antagonizing effects can be prion- and/or variant specific. Intriguingly, among the identified hits are several previously identified anti-PrPSc compounds and a couple of US Food and Drug Administration-approved drugs for AD treatment, validating the efficacy of this HTS system. Moreover, a few hits can reduce proteotoxicity induced by expression of several pathogenic mammalian proteins. Thus, we have established a useful HTS system for identifying compounds that can potentially antagonize prionization and human proteinopathies.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Stephanie Valtierra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Luzivette Robles Cardona
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sara Fernandez Dunne
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Chicago, IL 60628, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Chicago, IL 60628, USA
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Koch B, Traven A. Mdivi-1 and mitochondrial fission: recent insights from fungal pathogens. Curr Genet 2019; 65:837-845. [PMID: 30783741 PMCID: PMC6620241 DOI: 10.1007/s00294-019-00942-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial fission shows potential as a therapeutic target in non-infectious human diseases. The compound mdivi-1 was identified as a mitochondrial fission inhibitor that acts against the evolutionarily conserved mitochondrial fission GTPase Dnm1/Drp1, and shows promising data in pre-clinical models of human pathologies. Two recent studies, however, found no evidence that mdivi-1 acts as a mitochondrial fission inhibitor and proposed other mechanisms. In mammalian cells, Bordt et al. showed that mdivi-1 inhibits complex I in mitochondria (Dev Cell 40:583, 2017). In a second study, we have recently demonstrated that mdivi-1 does not trigger a mitochondrial morphology change in the human yeast pathogen Candida albicans, but impacts on endogenous nitric oxide (NO) levels and inhibits the key virulence property of hyphal formation (Koch et al., Cell Rep 25:2244, 2018). Here we discuss recent insights into mdivi-1’s action in pathogenic fungi and the potential and challenges for repurposing it as an anti-infective. We also outline recent findings on the roles of mitochondrial fission in human and plant fungal pathogens, with the goal of starting the conversation on whether the research field of fungal pathogenesis can benefit from efforts in other disease areas aimed at developing therapeutic inhibitors of mitochondrial division.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.,Protein, Science and Engineering, Callaghan Innovation, Christchurch, 8140, New Zealand
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
11
|
Biernacka A, Zhu Y, Skrzypczak M, Forey R, Pardo B, Grzelak M, Nde J, Mitra A, Kudlicki A, Crosetto N, Pasero P, Rowicka M, Ginalski K. i-BLESS is an ultra-sensitive method for detection of DNA double-strand breaks. Commun Biol 2018; 1:181. [PMID: 30393778 PMCID: PMC6208412 DOI: 10.1038/s42003-018-0165-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 09/11/2018] [Indexed: 01/05/2023] Open
Abstract
Maintenance of genome stability is a key issue for cell fate that could be compromised by chromosome deletions and translocations caused by DNA double-strand breaks (DSBs). Thus development of precise and sensitive tools for DSBs labeling is of great importance for understanding mechanisms of DSB formation, their sensing and repair. Until now there has been no high resolution and specific DSB detection technique that would be applicable to any cells regardless of their size. Here, we present i-BLESS, a universal method for direct genome-wide DNA double-strand break labeling in cells immobilized in agarose beads. i-BLESS has three key advantages: it is the only unbiased method applicable to yeast, achieves a sensitivity of one break at a given position in 100,000 cells, and eliminates background noise while still allowing for fixation of samples. The method allows detection of ultra-rare breaks such as those forming spontaneously at G-quadruplexes. Anna Biernacka, Yingjie Zhu et al. present i-BLESS, a universal method for detecting genome-wide DNA double strand breaks, optimized here for yeast. By immobilizing cells on agarose beads, the authors are able to achieve efficient diffusion of reagents and labeling of double strand breaks, including ultra-rare breaks such as those at G-quadruplexes.
Collapse
Affiliation(s)
- Anna Biernacka
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089, Warsaw, Poland
| | - Yingjie Zhu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089, Warsaw, Poland
| | - Romain Forey
- Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France
| | - Benjamin Pardo
- Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France
| | - Marta Grzelak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089, Warsaw, Poland
| | - Jules Nde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Abhishek Mitra
- Institute for Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Andrzej Kudlicki
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.,Institute for Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.,Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Nicola Crosetto
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-17165, Sweden
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.,Institute for Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.,Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089, Warsaw, Poland.
| |
Collapse
|
12
|
Stieglitz JT, Kehoe HP, Lei M, Van Deventer JA. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast. ACS Synth Biol 2018; 7:2256-2269. [PMID: 30139255 PMCID: PMC6214617 DOI: 10.1021/acssynbio.8b00260] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engineering protein translation machinery to incorporate noncanonical amino acids (ncAAs) into proteins has advanced applications ranging from proteomics to single-molecule studies. As applications of ncAAs emerge, efficient ncAA incorporation is crucial to exploiting unique chemistries. We have established a quantitative reporter platform to evaluate ncAA incorporation in response to the TAG (amber) codon in yeast. This yeast display-based reporter utilizes an antibody fragment containing an amber codon at which a ncAA is incorporated when the appropriate orthogonal translation system (OTS) is present. Epitope tags at both termini allow for flow cytometry-based end point readouts of OTS efficiency and fidelity. Using this reporter, we evaluated several factors that influence amber suppression, including the amber codon position and different aminoacyl-tRNA synthetase/tRNA (aaRS/tRNA) pairs. Interestingly, previously described aaRSs that evolved from different parent enzymes to incorporate O-methyl-l-tyrosine exhibit vastly different behavior. Escherichia coli leucyl-tRNA synthetase variants demonstrated efficient incorporation of a range of ncAAs, and we discovered unreported activities of several variants. Compared to a plate reader-based reporter, our assay yields more precise bulk-level measurements while also supporting single-cell readouts compatible with cell sorting. This platform is expected to allow quantitative elucidation of principles dictating efficient stop codon suppression and evolution of next-generation stop codon suppression systems to further enhance genetic code manipulation in eukaryotes. These efforts will improve our understanding of how the genetic code can be further evolved while expanding the range of chemical diversity available in proteins for applications ranging from fundamental epigenetics studies to engineering new classes of therapeutics.
Collapse
Affiliation(s)
- Jessica T. Stieglitz
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Haixing P. Kehoe
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Ming Lei
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
13
|
Castro C, Flores DL, Cervantes-Vásquez D, Vargas-Viveros E, Gutiérrez-López E, Muñoz-Muñoz F. An agent-based model of the fission yeast cell cycle. Curr Genet 2018; 65:193-200. [PMID: 29916047 DOI: 10.1007/s00294-018-0859-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Carlos Castro
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, 22860, Ensenada, BC, Mexico
| | - Dora-Luz Flores
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, 22860, Ensenada, BC, Mexico.
| | - David Cervantes-Vásquez
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, 22860, Ensenada, BC, Mexico
| | - Eunice Vargas-Viveros
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, 22860, Ensenada, BC, Mexico
| | - Everardo Gutiérrez-López
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, 22860, Ensenada, BC, Mexico
| | - Franklin Muñoz-Muñoz
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, 22860, Ensenada, BC, Mexico
| |
Collapse
|
14
|
Abstract
Fission yeast is a single-cell eukaryote that has been used extensively as a model organism to study cell biology and virology of higher eukaryotes including plants and humans. In particular, it is a very well-tested model to study evolutionary highly conserved cellular activities such as cell proliferation, cell cycle regulation, and cell death. Some of the advantages of using fission yeast as a surrogate system: easy to carry out functional and genome-wide analysis of small viral genome, easy to maintain in the laboratory with a relatively short doubling time. It is genetically amendable and can be used to test the effect of gain-of-function or loss-of-function of a gene product. Here, we describe a streamlined and large-scale molecular cloning strategy for genome-wide characterization of small viruses in fission yeast.
Collapse
Affiliation(s)
- Ge Li
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard Y Zhao
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Mahmoud S, Planes MD, Cabedo M, Trujillo C, Rienzo A, Caballero-Molada M, Sharma SC, Montesinos C, Mulet JM, Serrano R. TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis. FEBS Lett 2017; 591:1993-2002. [PMID: 28486745 DOI: 10.1002/1873-3468.12673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022]
Abstract
We have identified in yeast a connection between two master regulators of cell growth: a biochemical connection involving the TORC1 protein kinase (which activates protein synthesis, nutrient uptake, and anabolism) and a biophysical connection involving the plasma membrane proton-pumping H+ -ATPase Pma1 (which drives nutrient and K+ uptake and regulates pH homeostasis). Raising the temperature to nonpermissive values in a TOR thermosensitive mutant decreases Pma1 activity. Rapamycin, a TORC1 inhibitor, inhibits Pma1 dependent on its receptor Fpr1 and on the protein phosphatase Sit4, a TORC1 effector. Mutation of either Sit4 or Tco89, a nonessential subunit of TORC1, decreases proton efflux, K+ uptake, intracellular pH, cell growth, and tolerance to weak organic acids. Tco89 does not affect Pma1 activity but activates K+ transport.
Collapse
Affiliation(s)
- Shima Mahmoud
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - María Dolores Planes
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Marc Cabedo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Cristina Trujillo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Alessandro Rienzo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Marcos Caballero-Molada
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Sukesh C Sharma
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Consuelo Montesinos
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain
| |
Collapse
|
16
|
Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast. Proc Natl Acad Sci U S A 2017; 114:E376-E385. [PMID: 28049830 DOI: 10.1073/pnas.1619735114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Zika virus (ZIKV) causes microcephaly and the Guillain-Barré syndrome. Little is known about how ZIKV causes these conditions or which ZIKV viral protein(s) is responsible for the associated ZIKV-induced cytopathic effects, including cell hypertrophy, growth restriction, cell-cycle dysregulation, and cell death. We used fission yeast for the rapid, global functional analysis of the ZIKV genome. All 14 proteins or small peptides were produced under an inducible promoter, and we measured the intracellular localization and the specific effects on ZIKV-associated cytopathic activities of each protein. The subcellular localization of each ZIKV protein was in overall agreement with its predicted protein structure. Five structural and two nonstructural ZIKV proteins showed various levels of cytopathic effects. The expression of these ZIKV proteins restricted cell proliferation, induced hypertrophy, or triggered cellular oxidative stress leading to cell death. The expression of premembrane protein (prM) resulted in cell-cycle G1 accumulation, whereas membrane-anchored capsid (anaC), membrane protein (M), envelope protein (E), and nonstructural protein 4A (NS4A) caused cell-cycle G2/M accumulation. A mechanistic study revealed that NS4A-induced cellular hypertrophy and growth restriction were mediated specifically through the target of rapamycin (TOR) cellular stress pathway involving Tor1 and type 2A phosphatase activator Tip41. These findings should provide a reference for future research on the prevention and treatment of ZIKV diseases.
Collapse
|
17
|
Lis P, Jurkiewicz P, Cal-Bąkowska M, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S. Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate. Oncotarget 2016; 7:10153-73. [PMID: 26862728 PMCID: PMC4891110 DOI: 10.18632/oncotarget.7174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/23/2016] [Indexed: 01/19/2023] Open
Abstract
In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of yeast cells to 3-BP, possibly due to the non-functional system of mitophagy of damaged mitochondria through the Ras-cAMP-PKA pathway. Single deletions of genes encoding glycolytic enzymes, the TCA cycle enzymes and mitochondrial carriers result in multiple effects after 3-BP treatment. However, it can be concluded that activity of the pentose phosphate pathway is necessary to prevent the toxicity of 3-BP, probably due to the fact that large amounts of NADPH are produced by this pathway, ensuring the reducing force needed for glutathione reduction, crucial to cope with the oxidative stress. Moreover, single deletions of genes encoding the TCA cycle enzymes and mitochondrial carriers generally cause sensitivity to 3-BP, while totally inactive mitochondrial respiration in the rho0 mutant resulted in increased resistance to 3-BP.
Collapse
Affiliation(s)
- Paweł Lis
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Paweł Jurkiewicz
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Magdalena Cal-Bąkowska
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Young H Ko
- KoDiscovery LLC, UM BioPark, Innovation Center, Baltimore, MD, USA
| | - Peter L Pedersen
- Departments of Biological Chemistry and Oncology, Sydney Kimmel Comprehensive Cancer Center and Center for Obesity Research and Metabolism, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andre Goffeau
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université Catholique de Louvain-la-Neuve, Louvain-la-Neuve, Belgium
| | - Stanisław Ułaszewski
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
18
|
Sarto-Jackson I, Tomaska L. How to bake a brain: yeast as a model neuron. Curr Genet 2016; 62:347-70. [PMID: 26782173 DOI: 10.1007/s00294-015-0554-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
More than 30 years ago Dan Koshland published an inspirational essay presenting the bacterium as a model neuron (Koshland, Trends Neurosci 6:133-137, 1983). In the article he argued that there are several similarities between neurons and bacterial cells in "how signals are processed within a cell or how this processing machinery can be modified to produce plasticity". He then explored the bacterial chemosensory system to emphasize its attributes that are analogous to information processing in neurons. In this review, we wish to expand Koshland's original idea by adding the yeast cell to the list of useful models of a neuron. The fact that yeasts and neurons are specialized versions of the eukaryotic cell sharing all principal components sets the stage for a grand evolutionary tinkering where these components are employed in qualitatively different tasks, but following analogous molecular logic. By way of example, we argue that evolutionarily conserved key components involved in polarization processes (from budding or mating in Saccharomyces cervisiae to neurite outgrowth or spinogenesis in neurons) are shared between yeast and neurons. This orthologous conservation of modules makes S. cervisiae an excellent model organism to investigate neurobiological questions. We substantiate this claim by providing examples of yeast models used for studying neurological diseases.
Collapse
Affiliation(s)
- Isabella Sarto-Jackson
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, 3400, Klosterneuburg, Austria.
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B-1, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
| |
Collapse
|
19
|
La Ferla M, Mercatanti A, Rocchi G, Lodovichi S, Cervelli T, Pignata L, Caligo MA, Galli A. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization. Mutat Res 2015; 774:14-24. [PMID: 25779917 DOI: 10.1016/j.mrfmmm.2015.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/03/2015] [Accepted: 02/26/2015] [Indexed: 01/31/2023]
Abstract
The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus.
Collapse
Affiliation(s)
- Marco La Ferla
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Alberto Mercatanti
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Giulia Rocchi
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Samuele Lodovichi
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Luca Pignata
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Maria Adelaide Caligo
- Section of Genetic Oncology, University Hospital and University of Pisa, via Roma 57, 56125 Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy.
| |
Collapse
|
20
|
A Single-Cell Study of a Highly Effective Hog1 Inhibitor for in Situ Yeast Cell Manipulation. MICROMACHINES 2014. [DOI: 10.3390/mi5010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Wongkittichote P, Tungpradabkul S, Wattanasirichaigoon D, Jensen LT. Prediction of the functional effect of novel SLC25A13 variants using a S. cerevisiae model of AGC2 deficiency. J Inherit Metab Dis 2013; 36:821-30. [PMID: 23053473 DOI: 10.1007/s10545-012-9543-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/05/2012] [Accepted: 09/12/2012] [Indexed: 01/31/2023]
Abstract
AGC2, a member of the mitochondrial carrier protein family, is as an aspartate-glutamate carrier and is important for urea synthesis and the maintenance of the malate-aspartate shuttle. Mutations in SLC25A13, the gene encoding AGC2, result in two age dependent disorders: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and type II citrullinemia (CTLN2). The clinical features of CTLN2 are very similar to those of other urea cycle disorders making a clear diagnosis difficult. Analysis of the SLC25A13 gene sequence can provide a definitive diagnosis, however the predictive value of DNA sequencing requires that the disease association of variants be characterized. We utilized the yeast Saccharomyces cerevisiae lacking AGC1 as a model system to study the effect on the function of AGC2 variants and confirmed that this system is capable of distinguishing between AGC2 variants with normal (p.Pro632Leu) or impaired function (p.Gly437Glu, p.Gly531Asp, p.Thr546Met, p.Leu598Arg and p.Glu601Lys). Three novel AGC2 genetic variants, p.Met1? (c.2T>C), p.Pro502Leu (c.1505C>T), and p.Arg605Gln (c.1814G>A) were investigated and our analysis revealed that p.Pro502Leu and p.Arg605Gln substitutions in the AGC2 protein were without effect and these variants were fully functional. The p.Met1? mutant is capable of expressing a truncated p.Met1_Phe34del AGC2 variant, however this protein is not functional due to disruptions in a calcium binding EF hand as well as incorrect intracellular localization. Our study demonstrates that the characterization of AGC2 expressed in yeast cells is a powerful technique to investigate AGC2 variants, and this analysis should aid in establishing the disease association of novel variants.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
22
|
Thiol redox sensitivity of two key enzymes of heme biosynthesis and pentose phosphate pathways: uroporphyrinogen decarboxylase and transketolase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:932472. [PMID: 23970950 PMCID: PMC3730168 DOI: 10.1155/2013/932472] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/10/2013] [Accepted: 06/19/2013] [Indexed: 12/22/2022]
Abstract
Uroporphyrinogen decarboxylase (Hem12p) and transketolase (Tkl1p) are key mediators of two critical processes within the cell, heme biosynthesis, and the nonoxidative part of the pentose phosphate pathway (PPP). The redox properties of both Hem12p and Tkl1p from Saccharomyces cerevisiae were investigated using proteomic techniques (SRM and label-free quantification) and biochemical assays in cell extracts and in vitro with recombinant proteins. The in vivo analysis revealed an increase in oxidized Cys-peptides in the absence of Grx2p, and also after treatment with H2O2 in the case of Tkl1p, without corresponding changes in total protein, demonstrating a true redox response. Out of three detectable Cys residues in Hem12p, only the conserved residue Cys52 could be modified by glutathione and efficiently deglutathionylated by Grx2p, suggesting a possible redox control mechanism for heme biosynthesis. On the other hand, Tkl1p activity was sensitive to thiol redox modification and although Cys622 could be glutathionylated to a limited extent, it was not a natural substrate of Grx2p. The human orthologues of both enzymes have been involved in certain cancers and possess Cys residues equivalent to those identified as redox sensitive in yeast. The possible implication for redox regulation in the context of tumour progression is put forward.
Collapse
|
23
|
Tosato V, Grüning NM, Breitenbach M, Arnak R, Ralser M, Bruschi CV. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells. Front Oncol 2013; 2:212. [PMID: 23346549 PMCID: PMC3548335 DOI: 10.3389/fonc.2012.00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 12/20/2012] [Indexed: 11/13/2022] Open
Abstract
Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants ("translocants"), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.
Collapse
Affiliation(s)
- Valentina Tosato
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Yeast “N”-hybrid systems for protein–protein and drug–protein interaction discovery. Methods 2012; 57:423-9. [DOI: 10.1016/j.ymeth.2012.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/01/2012] [Accepted: 06/08/2012] [Indexed: 01/05/2023] Open
|
25
|
Abstract
The regulation of Ace2 and morphogenesis (RAM) network is a protein kinase signaling pathway conserved among eukaryotes from yeasts to humans. Among fungi, the RAM network has been most extensively studied in the model yeast Saccharomyces cerevisiae and has been shown to regulate a range of cellular processes, including daughter cell-specific gene expression, cell cycle regulation, cell separation, mating, polarized growth, maintenance of cell wall integrity, and stress signaling. Increasing numbers of recent studies on the role of the RAM network in pathogenic fungal species have revealed that this network also plays an important role in the biology and pathogenesis of these organisms. In addition to providing a brief overview of the RAM network in S. cerevisiae, we summarize recent developments in the understanding of RAM network function in the human fungal pathogens Candida albicans, Candida glabrata, Cryptococcus neoformans, Aspergillus fumigatus, and Pneumocystis spp.
Collapse
|
26
|
Soh KC, Miskovic L, Hatzimanikatis V. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res 2011; 12:129-43. [DOI: 10.1111/j.1567-1364.2011.00771.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 01/05/2023] Open
Affiliation(s)
- Keng Cher Soh
- Laboratory of Computational Systems Biotechnology; Ecole Polytechnique Fédérale de Lausanne; Lausanne; Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biotechnology; Ecole Polytechnique Fédérale de Lausanne; Lausanne; Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology; Ecole Polytechnique Fédérale de Lausanne; Lausanne; Switzerland
| |
Collapse
|
27
|
Abstract
In this chapter, we present an up-to-date view of the optimal characteristics of the yeast Saccharomyces cerevisiae as a model eukaryote for systems biology studies, with main molecular mechanisms, biological networks, and sub-cellular organization essentially conserved in all eukaryotes, derived from a complex common ancestor. The existence of advanced tools for molecular studies together with high-throughput experimental and computational methods, most of them being implemented and validated in yeast, with new ones being developed, is opening the way to the characterization of the core modular architecture and complex networks essential to all eukaryotes. Selected examples of the latest discoveries in eukaryote complexity and systems biology studies using yeast as a reference model and their applications in biotechnology and medicine are presented.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB21GA, UK.
| | | |
Collapse
|
28
|
Zhang N, Bilsland E. Contributions of Saccharomyces cerevisiae to understanding mammalian gene function and therapy. Methods Mol Biol 2011; 759:501-523. [PMID: 21863505 DOI: 10.1007/978-1-61779-173-4_28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Due to its genetic tractability and ease of manipulation, the yeast Saccharomyces cerevisiae has been extensively used as a model organism to understand how eukaryotic cells grow, divide, and respond to environmental changes. In this chapter, we reasoned that functional annotation of novel genes revealed by sequencing should adopt an integrative approach including both bioinformatics and experimental analysis to reveal functional conservation and divergence of complexes and pathways. The techniques and resources generated for systems biology studies in yeast have found a wide range of applications. Here we focused on using these technologies in revealing functions of genes from mammals, in identifying targets of novel and known drugs and in screening drugs targeting specific proteins and/or protein-protein interactions.
Collapse
Affiliation(s)
- Nianshu Zhang
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
29
|
Cavalieri D. Evolution of transcriptional regulatory networks in yeast populations. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:324-335. [PMID: 20836032 DOI: 10.1002/wsbm.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Saccharomyces cerevisiae is the most thoroughly studied eukaryote at the cellular, molecular, and genetic level. Recent boost in whole-genome sequencing, array-based allelic variation mapping, and genome-wide transcriptional profiling have unprecedentedly advanced knowledge on cell biology and evolution of this organism. It is now possible to investigate how evolution shapes the functional architecture of yeast genomes and how this architecture relates to the evolution of the regulatory networks controlling the expression of genes that make up an organism. A survey of the information on genetic and whole-genome expression variations in yeast populations shows that a significant score of gene expression variation is dependent on genotype-by-environment interaction. In some cases, large trans effects are the result of mutations in the promoters of key master regulator genes. Yet trans-variation in environmental sensor proteins appears to explain the majority of the expression patterns differentiating strains in natural populations. The challenge is now to use this information to model how individual genetic polymorphisms interact in a condition-dependent fashion to produce phenotypic change. In this study, we show how fruitful application of systems biology to the progress of science and medicine requires the use of evolution as a lens to reconstruct the hierarchical structure of regulation of biological systems. The lessons learned in yeast can be of paramount importance in advancing the application of genomics and systems biology to emerging fields including personalized medicine.
Collapse
Affiliation(s)
- Duccio Cavalieri
- Department of Pharmacology, University of Florence, Florence, Italy
| |
Collapse
|
30
|
Yasokawa D, Iwahashi H. Toxicogenomics using yeast DNA microarrays. J Biosci Bioeng 2010; 110:511-22. [PMID: 20624688 DOI: 10.1016/j.jbiosc.2010.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 02/03/2023]
Abstract
Development of genomics and bioinformatics enable us to analyze the global gene expression profiles of cells by DNA microarray. Changes in gene expression patterns indicate changes in its physiological conditions. Following the exposure of an organism or cell to toxic chemicals or other environmental stresses, the global genetic responses can be expeditiously and easily analyzed. Baker's yeast, Saccharomyces cerevisiae, is one of the most studied and useful model eukaryotes. The biggest advantage of yeast genomics is the available functional information for each gene and a considerable number of data are accumulating in the field of toxicity assessment using yeast DNA microarray. In this review, we discuss the toxicogenomics of metal ions, alcohols and aldehydes, and other chemicals.
Collapse
Affiliation(s)
- Daisuke Yasokawa
- Hokkaido Food Processing Research Center, Department of Food Development, 589-4 Bunkyodai Midorimachi, Ebetsu, Hokkaido 0690836, Japan.
| | | |
Collapse
|
31
|
Hess DC, Myers CL, Huttenhower C, Hibbs MA, Hayes AP, Paw J, Clore JJ, Mendoza RM, Luis BS, Nislow C, Giaever G, Costanzo M, Troyanskaya OG, Caudy AA. Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis. PLoS Genet 2009; 5:e1000407. [PMID: 19300474 PMCID: PMC2648979 DOI: 10.1371/journal.pgen.1000407] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 02/05/2009] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are central to many cellular processes including respiration, ion homeostasis, and apoptosis. Using computational predictions combined with traditional quantitative experiments, we have identified 100 proteins whose deficiency alters mitochondrial biogenesis and inheritance in Saccharomyces cerevisiae. In addition, we used computational predictions to perform targeted double-mutant analysis detecting another nine genes with synthetic defects in mitochondrial biogenesis. This represents an increase of about 25% over previously known participants. Nearly half of these newly characterized proteins are conserved in mammals, including several orthologs known to be involved in human disease. Mutations in many of these genes demonstrate statistically significant mitochondrial transmission phenotypes more subtle than could be detected by traditional genetic screens or high-throughput techniques, and 47 have not been previously localized to mitochondria. We further characterized a subset of these genes using growth profiling and dual immunofluorescence, which identified genes specifically required for aerobic respiration and an uncharacterized cytoplasmic protein required for normal mitochondrial motility. Our results demonstrate that by leveraging computational analysis to direct quantitative experimental assays, we have characterized mutants with subtle mitochondrial defects whose phenotypes were undetected by high-throughput methods. Mitochondria are the proverbial powerhouses of the cell, running the fundamental biochemical processes that produce energy from nutrients using oxygen. These processes are conserved in all eukaryotes, from humans to model organisms such as baker's yeast. In humans, mitochondrial dysfunction plays a role in a variety of diseases, including diabetes, neuromuscular disorders, and aging. In order to better understand fundamental mitochondrial biology, we studied genes involved in mitochondrial biogenesis in the yeast S. cerevisiae, discovering over 100 proteins with novel roles in this process. These experiments assigned function to 5% of the genes whose function was not known. In order to achieve this rapid rate of discovery, we developed a system incorporating highly quantitative experimental assays and an integrated, iterative process of computational protein function prediction. Beginning from relatively little prior knowledge, we found that computational predictions achieved about 60% accuracy and rapidly guided our laboratory work towards hundreds of promising candidate genes. Thus, in addition to providing a more thorough understanding of mitochondrial biology, this study establishes a framework for successfully integrating computation and experimentation to drive biological discovery. A companion manuscript, published in PLoS Computational Biology (doi:10.1371/journal.pcbi.1000322), discusses observations and conclusions important for the computational community.
Collapse
Affiliation(s)
- David C. Hess
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Chad L. Myers
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Curtis Huttenhower
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Matthew A. Hibbs
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Alicia P. Hayes
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Jadine Paw
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - John J. Clore
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Rosa M. Mendoza
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Bryan San Luis
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Corey Nislow
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Guri Giaever
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (OGT); (AAC)
| | - Amy A. Caudy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (OGT); (AAC)
| |
Collapse
|
32
|
Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol 2008; 26:584-90. [DOI: 10.1016/j.tibtech.2008.07.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 11/23/2022]
|
33
|
Miller-Fleming L, Giorgini F, Outeiro TF. Yeast as a model for studying human neurodegenerative disorders. Biotechnol J 2008; 3:325-38. [PMID: 18228539 DOI: 10.1002/biot.200700217] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein misfolding and aggregation are central events in many disorders including several neurodegenerative diseases. This suggests that alterations in normal protein homeostasis may contribute to pathogenesis, but the exact molecular mechanisms involved are still poorly understood. The budding yeast Saccharomyces cerevisiae is one of the model systems of choice for studies in molecular medicine. Modeling human neurodegenerative diseases in this simple organism has already shown the incredible power of yeast to unravel the complex mechanisms and pathways underlying these pathologies. Indeed, this work has led to the identification of several potential therapeutic targets and drugs for many diseases, including the neurodegenerative diseases. Several features associated with these diseases, such as formation of protein aggregates, cellular toxicity mediated by misfolded proteins, oxidative stress and hallmarks of apoptosis have been faithfully recapitulated in yeast, enabling researchers to take advantage of this powerful model to rapidly perform genetic and compound screens with the aim of identifying novel candidate therapeutic targets and drugs. Here we review the work undertaken to model human brain disorders in yeast, and how these models provide insight into novel therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Leonor Miller-Fleming
- Instituto de Medicina Molecular, Cellular and Molecular Neuroscience Unit, Instituto de Fisiologia, Facultade [corrected] de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
34
|
Almeida B, Silva A, Mesquita A, Sampaio-Marques B, Rodrigues F, Ludovico P. Drug-induced apoptosis in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1436-48. [PMID: 18252203 DOI: 10.1016/j.bbamcr.2008.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/21/2007] [Accepted: 01/07/2008] [Indexed: 01/04/2023]
Abstract
In order to alter the impact of diseases on human society, drug development has been one of the most invested research fields. Nowadays, cancer and infectious diseases are leading targets for the design of effective drugs, in which the primary mechanism of action relies on the modulation of programmed cell death (PCD). Due to the high degree of conservation of basic cellular processes between yeast and higher eukaryotes, and to the existence of an ancestral PCD machinery in yeast, yeasts are an attractive tool for the study of affected pathways that give insights into the mode of action of both antitumour and antifungal drugs. Therefore, we covered some of the leading reports on drug-induced apoptosis in yeast, revealing that in common with mammalian cells, antitumour drugs induce apoptosis through reactive oxygen species (ROS) generation and altered mitochondrial functions. The evidence presented suggests that yeasts may be a powerful model for the screening/development of PCD-directed drugs, overcoming the problem of cellular specificity in the design of antitumour drugs, but also enabling the design of efficient antifungal drugs, targeted to fungal-specific apoptotic regulators that do not have major consequences for human cells.
Collapse
Affiliation(s)
- B Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
35
|
Toussaint M, Conconi A. High-throughput and sensitive assay to measure yeast cell growth: a bench protocol for testing genotoxic agents. Nat Protoc 2006; 1:1922-8. [PMID: 17487177 DOI: 10.1038/nprot.2006.304] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intracellular metabolites and environmental agents continuously challenge the structural integrity of DNA. In the yeast Saccharomyces cerevisiae, the complete collection of open reading frame deletion mutants, in combination with powerful screening methods, allows for the comprehensive analyses of cellular responses to insult. We have developed a protocol to determine the sensitivity of growing yeast to DNA-damaging agents that is based on automatic measurements of the optical density of very small (100 microl) liquid cultures. This simple method is highly sensitive, provides quantifiable data and offers high-throughput screening capability. Starting with the treatment of cells with different doses of damaging agents, pre-prepared growing media containing 96-well plates are inoculated and cell population is automatically monitored every 10 min for 48 hours. With the aid of a multi-channel pipette, the sensitivity of a number of yeast strains to several concentrations of drug can be tested in triplicate in less then 4 hours.
Collapse
Affiliation(s)
- Martin Toussaint
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Poste 7446, Université de Sherbrooke, 3001 12th Ave. Nord, Sherbrooke, QC J1H 5N4, Canada
| | | |
Collapse
|
36
|
Sturgeon CM, Kemmer D, Anderson HJ, Roberge M. Yeast as a tool to uncover the cellular targets of drugs. Biotechnol J 2006; 1:289-98. [PMID: 16897709 DOI: 10.1002/biot.200500039] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Knowledge of the spectrum of cellular proteins targeted by experimental therapeutic agents would greatly facilitate drug development. However, identifying the targets of drugs is a daunting challenge. The yeast Saccharomyces cerevisiae is a valuable model organism for human diseases and pathways because it is genetically tractable and shares many functional homolog with humans. In yeast, it is possible to increase or decrease the expression level of essentially every gene and measure changes in drug sensitivity to uncover potential targets. It is also possible to infer mechanism of action from comparing the changes in mRNA expression elicited by drug treatment with those induced by gene deletions or by other drugs. Proteins that bind drugs directly can be identified using yeast protein chips. This review of the use of yeast for discovering targets of drugs discusses the advantages and drawbacks of each approach and how combining methods may reveal targets more efficiently.
Collapse
Affiliation(s)
- Christopher M Sturgeon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
37
|
Suter B, Auerbach D, Stagljar I. Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques 2006; 40:625-44. [PMID: 16708762 DOI: 10.2144/000112151] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Yeast-based functional genomics and proteomics technologies developed over the past decade have contributed greatly to our understanding of bacterial, yeast, fly, worm, and human gene functions. In this review, we highlight some of these yeast-based functional genomic and proteomic technologies that are advancing the utility of yeast as a model organism in molecular biology and speculate on their future uses. Such technologies include use of the yeast deletion strain collection, large-scale determination of protein localization in vivo, synthetic genetic array analysis, variations of the yeast two-hybrid system, protein microarrays, and tandem affinity purification (TAP)-tagging approaches. The integration of these advances with established technologies is invaluable in the drive toward a comprehensive understanding of protein structure and function in the cellular milieu.
Collapse
|
38
|
Moriya H, Shimizu-Yoshida Y, Kitano H. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet 2006; 2:e111. [PMID: 16839182 PMCID: PMC1500812 DOI: 10.1371/journal.pgen.0020111] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 06/05/2006] [Indexed: 12/31/2022] Open
Abstract
Intracellular biochemical parameters, such as the expression level of gene products, are considered to be optimized so that a biological system, including the parameters, works effectively. Those parameters should have some permissible range so that the systems have robustness against perturbations, such as noise in gene expression. However, little is known about the permissible range in real cells because there has been no experimental technique to test it. In this study, we developed a genetic screening method, named “genetic tug-of-war” (gTOW) that evaluates upper limit copy numbers of genes in a model eukaryote Saccharomyces cerevisiae, and we applied it for 30 cell-cycle related genes (CDC genes). The experiment provided unique quantitative data that could be used to argue the system-level properties of the cell cycle such as robustness and fragility. The data were used to evaluate the current computational model, and refinements to the model were suggested. Robustness is a property of a system that attempts to maintain its functions against internal and external perturbations. It is one of the fundamental and ubiquitously observed system-level properties of biological systems. Understanding the cellular robustness is important, not only to gain insights in biology, but also to identify potential therapeutic targets. Robustness is estimated by measuring how much parameters can be perturbed without disrupting essential functions; comprehensive, as well as quantitative perturbations of intracellular parameters, such as gene expression, are essential for solid robustness analysis. However, the lack of experimental methodology for the comprehensive quantification and defined perturbation of parameters has prevented experimental analyses of cellular robustness. The authors developed a novel genetic screening method named “genetic tug-of-war” (gTOW) that allows systematic measurement of upper limit gene copy number. gTOW applied for the robustness analysis of cell division cycle system in the model eukaryote, Saccharomyces cerevisiae, and revealed the point of fragility in the system. The gTOW method is particularly suitable for systems biology research and demonstrates the value of comprehensive and quantitative perturbation experiment to uncover system-level properties of the cellular system.
Collapse
Affiliation(s)
- Hisao Moriya
- ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Shibuya-ku, Tokyo, Japan.
| | | | | |
Collapse
|