1
|
Multiscale Modeling of the Cellular Uptake of C6 Peptide-siRNA Complexes. Comput Biol Chem 2022; 98:107679. [DOI: 10.1016/j.compbiolchem.2022.107679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/03/2022] [Accepted: 04/03/2022] [Indexed: 11/18/2022]
|
2
|
Rak M, Ochałek A, Gawarecka K, Masnyk M, Chmielewski M, Chojnacki T, Swiezewska E, Madeja Z. Boost of serum resistance and storage stability in cationic polyprenyl-based lipofection by helper lipids compositions. Eur J Pharm Biopharm 2020; 155:199-209. [PMID: 32750413 DOI: 10.1016/j.ejpb.2020.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/14/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Lipofection is a widely used molecular biology technique and one of the most promising non-viral gene therapy strategies. However, one of the main drawbacks of using cationic lipids-based lipoplexes in DNA/RNA delivery is serum-associated inhibition of transfection. We have addressed this issue using PTAI (trimethylpolyprenylammonium iodides)-based lipofection model. To overcome serum-sensitivity we used 100 different formulations based on different PTAI, various helper lipids compositions, lipoplex surface modifications with polyethylene glycol (PEG), and precondensation of DNA with poly-L-lysine (PLL). Multicomponent helper lipids compositions boosted serum resistance and largely improved long-term storage of PTAI-based reagents. This was observed, in particular, for PTAI with longer isoprenoid chains. Additionally, our PTAI-based carriers were efficient for DNA and RNA delivery and safe for human red blood cells (RBC). Moreover, a broad array of the modifications used resulted in an important observation - a diverse susceptibility of various cell types to different compositions was noted. Overall, our results show that helper lipids composition mediates efficient serum-resistant DNA/RNA lipofection. Additionally, multicomponent PTAI-based reagents are promising gene delivery carriers both, at the cellular and organismal level.
Collapse
Affiliation(s)
- Monika Rak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Anna Ochałek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Gawarecka
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Marek Masnyk
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marek Chmielewski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tadeusz Chojnacki
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
3
|
Self-Amplifying Replicon RNA Delivery to Dendritic Cells by Cationic Lipids. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:118-134. [PMID: 30195751 PMCID: PMC6023837 DOI: 10.1016/j.omtn.2018.04.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/29/2018] [Accepted: 04/29/2018] [Indexed: 01/09/2023]
Abstract
Advances in RNA technology during the past two decades have led to the construction of replication-competent RNA, termed replicons, RepRNA, or self-amplifying mRNA, with high potential for vaccine applications. Cytosolic delivery is essential for their translation and self-replication, without infectious progeny generation, providing high levels of antigen expression for inducing humoral and cellular immunity. Synthetic nanoparticle-based delivery vehicles can both protect the RNA molecules and facilitate targeting of dendritic cells—critical for immune defense development. Several cationic lipids were assessed, with RepRNA generated from classical swine fever virus encoding nucleoprotein genes of influenza A virus. The non-cytopathogenic nature of the RNA allowed targeting to dendritic cells without destroying the cells—important for prolonged antigen production and presentation. Certain lipids were more effective at delivery and at promoting translation of RepRNA than others. Selection of particular lipids provided delivery to dendritic cells that resulted in translation, demonstrating that delivery efficiency could not guarantee translation. The observed translation in vitro was reproduced in vivo by inducing immune responses against the encoded influenza virus antigens. Cationic lipid-mediated delivery shows potential for promoting RepRNA vaccine delivery to dendritic cells, particularly when combined with additional delivery elements.
Collapse
|
4
|
Rak M, Ochałek A, Bielecka E, Latasiewicz J, Gawarecka K, Sroka J, Czyż J, Piwowarczyk K, Masnyk M, Chmielewski M, Chojnacki T, Swiezewska E, Madeja Z. Efficient and non-toxic gene delivery by anionic lipoplexes based on polyprenyl ammonium salts and their effects on cell physiology. J Gene Med 2017; 18:331-342. [PMID: 27706881 DOI: 10.1002/jgm.2930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/30/2016] [Accepted: 10/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One of the major challenges limiting the development of gene therapy is an absence of efficient and safe gene carriers. Among the nonviral gene delivery methods, lipofection is considered as one of the most promising. In the present study, a set of cationic polyprenyl derivatives [trimethylpolyprenylammonium iodides (PTAI)] with different lengths of polyprenyl chains (from 7, 8 and 11 to 15 isoprene units) was suggested as a component of efficient DNA vehicles. METHODS Optimization studies were conducted for PTAI in combination with co-lipid dioleoylphosphatidylethanolamine on DU145 human prostate cancer cells using: size and zeta potential measurements, confocal microscopy, the fluorescein diacetate/ethidium bromide test, cell counting, time-lapse monitoring of cell movement, gap junctional intercellular coupling analysis, antimicrobial activity assay and a red blood cell hemolysis test. RESULTS The results obtained show that the lipofecting activity of PTAI allows effective transfection of plasmid DNA complexed in negatively-charged lipoplexes of 200-500 nm size into cells without significant side effects on cell physiology (viability, proliferation, morphology, migration and gap junctional intercellular coupling). Moreover, PTAI-based vehicles exhibit a potent bactericidal activity against Staphylococcus aureus and Escherichia coli. The developed anionic lipoplexes are safe towards human red blood cell membranes, which are not disrupted in their presence. CONCLUSIONS The developed carriers constitute a group of promising lipofecting agents of a new type that can be utilized as effective lipofecting agents in vitro and they are also an encouraging basis for in vivo applications.
Collapse
Affiliation(s)
- Monika Rak
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| | - Anna Ochałek
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| | - Ewa Bielecka
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Poland
| | - Joanna Latasiewicz
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biophysics, Poland
| | | | - Jolanta Sroka
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| | - Jarosław Czyż
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| | - Katarzyna Piwowarczyk
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| | - Marek Masnyk
- Institute of Organic Chemistry PAS, Warsaw, Poland
| | | | | | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Zbigniew Madeja
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Poland
| |
Collapse
|
5
|
Design, synthesis and transfection efficiency of a novel redox-sensitive polycationic amphiphile. Bioorg Med Chem Lett 2016; 26:5911-5915. [PMID: 27836397 DOI: 10.1016/j.bmcl.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022]
Abstract
A novel redox-sensitive polycationic amphiphile (2S3) with disulphide linkers for nucleic acid delivery was developed. Cationic liposomes formed by 2S3 and the helper lipid DOPE demonstrated effective DNA delivery into HEK293 cells with a maximal transfection activity that is superior than both nonredox-sensitive cationic liposomes and Lipofectamine® 2000 at an N/P ratio of 6/1. Redox-sensitivity was tested by experiments with extracellular glutathione which shown the ability of disulphide linker degradation. Our results suggest that polycationic amphiphile 2S3 is a promising candidate for nucleic acid delivery.
Collapse
|
6
|
Solovyeva VV, Kiyasov AP, Rizvanov AA. Genetically Engineered Dental Stem Cells for Regenerative Medicine. DENTAL STEM CELLS 2016. [DOI: 10.1007/978-3-319-28947-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Martin TM, Plautz SA, Pannier AK. Temporal endogenous gene expression profiles in response to lipid-mediated transfection. J Gene Med 2015; 17:14-32. [PMID: 25663588 DOI: 10.1002/jgm.2821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Design of efficient nonviral gene delivery systems is limited as a result of the rudimentary understanding of the specific molecules and processes that facilitate DNA transfer. METHODS Lipoplexes formed with Lipofectamine 2000 (LF2000) and plasmid-encoding green fluorescent protein (GFP) were delivered to the HEK 293T cell line. After treating cells with lipoplexes, HG-U133 Affymetrix microarrays were used to identify endogenous genes differentially expressed between treated and untreated cells (2 h exposure) or between flow-separated transfected cells (GFP+) and treated, untransfected cells (GFP-) at 8, 16 and 24 h after lipoplex treatment. Cell priming studies were conducted using pharmacologic agents to alter endogenous levels of the identified differentially expressed genes to determine effect on transfection levels. RESULTS Relative to untreated cells 2 h after lipoplex treatment, only downregulated genes were identified ≥ 30-fold: ALMS1, ITGB1, FCGR3A, DOCK10 and ZDDHC13. Subsequently, relative to GFP- cells, the GFP+ cell population showed at least a five-fold upregulation of RAP1A and PACSIN3 (8 h) or HSPA6 and RAP1A (16 and 24 h). Pharmacologic studies altering endogenous levels for ALMS1, FCGR3A, and DOCK10 (involved in filopodia protrusions), ITGB1 (integrin signaling), ZDDHC13 (membrane trafficking) and PACSIN3 (proteolytic shedding of membrane receptors) were able to increase or decrease transgene production. CONCLUSIONS RAP1A, PACSIN3 and HSPA6 may help lipoplex-treated cells overcome a transcriptional shutdown due to treatment with lipoplexes and provide new targets for investigating molecular mechanisms of transfection or for enhancing transfection through cell priming or engineering of the nonviral gene delivery system.
Collapse
Affiliation(s)
- Timothy M Martin
- Department of Pharmaceutical Sciences, Durham Research Center II, University of Nebraska-Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
8
|
Martin TM, Plautz SA, Pannier AK. Temporal endogenous gene expression profiles in response to polymer-mediated transfection and profile comparison to lipid-mediated transfection. J Gene Med 2015; 17:33-53. [PMID: 25663627 DOI: 10.1002/jgm.2822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Design of efficient nonviral gene delivery systems is limited by the rudimentary understanding of specific molecules that facilitate transfection. METHODS Polyplexes using 25-kDa polyethylenimine (PEI) and plasmid-encoding green fluorescent protein (GFP) were delivered to HEK 293T cells. After treating cells with polyplexes, microarrays were used to identify endogenous genes differentially expressed between treated and untreated cells (2 h of exposure) or between flow-separated transfected cells (GFP+) and treated, untransfected cells (GFP-) at 8, 16 and 24 h after lipoplex treatment. Cell priming studies were conducted using pharmacologic agents to alter endogenous levels of the identified differentially expressed genes to determine effect on transfection levels. Differentially expressed genes in polyplex-mediated transfection were compared with those differentially expressed in lipoplex transfection to identify DNA carrier-dependent molecular factors. RESULTS Differentially expressed genes were RGS1, ARHGAP24, PDZD2, SNX24, GSN and IGF2BP1 after 2 h; RAP1A and ACTA1 after 8 h; RAP1A, WDR78 and ACTA1 after 16 h; and RAP1A, SCG5, ATF3, IREB2 and ACTA1 after 24 h. Pharmacologic studies altering endogenous levels for ARHGAP24, GSN, IGF2BP1, PDZD2 and RGS1 were able to increase or decrease transgene production. Comparing differentially expressed genes for polyplexes and lipoplexes, no common genes were identified at the 2-h time point, whereas, after the 8-h time point, RAP1A, ATF3 and HSPA6 were similarly expressed. SCG5 and PGAP1 were only upregulated in polyplex-transfected cells. CONCLUSIONS The identified genes and pharmacologic agents provide targets for improving transfection systems, although polyplex or lipoplex dependencies must be considered.
Collapse
Affiliation(s)
- Timothy M Martin
- Department of Pharmaceutical Sciences, Durham Research Center II, University of Nebraska-Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
9
|
Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry. J Control Release 2015; 206:67-74. [DOI: 10.1016/j.jconrel.2015.03.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 11/20/2022]
|
10
|
Martin TM, Wysocki BJ, Wysocki TA, Pannier AK. Identifying Intracellular pDNA Losses From a Model of Nonviral Gene Delivery. IEEE Trans Nanobioscience 2015; 14:455-464. [PMID: 25622323 DOI: 10.1109/tnb.2015.2392777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nonviral gene delivery systems are a type of nanocommunication system that transmit plasmid packets (i.e., pDNA packets) that are programmed at the nanoscale to biological systems at the microscopic cellular level. This engineered nanocommunication system suffers large pDNA losses during transmission of the genetically encoded information, preventing its use in biotechnological and medical applications. The pDNA losses largely remain uncharacterized, and the ramifications of reducing pDNA loss from newly designed gene delivery systems remain difficult to predict. Here, the pDNA losses during primary and secondary transmission chains were identified utilizing a MATLAB model employing queuing theory simulating delivery of pEGFPLuc transgene to HeLa cells carried by Lipofectamine 2000 nonviral DNA carrier. Minimizing pDNA loss during endosomal escape of the primary transmission process results in increased number of pDNA in the nucleus with increased transfection, but with increased probability of cell death. The number of pDNA copies in the nucleus and the amount of time the pDNAs are in the nucleus directly correlates to improved transfection efficiency. During secondary transmission, pDNAs are degraded during distribution to daughter cells. Reducing pDNA losses improves transfection, but a balance in quantity of nuclear pDNA, mitosis, and toxicity must be considered in order to achieve therapeutically relevant transfection levels.
Collapse
|
11
|
Ran R, Liu Y, Gao H, Kuang Q, Zhang Q, Tang J, Huang K, Chen X, Zhang Z, He Q. Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for anti P-glycoprotein siRNA: A potential candidate for overcoming multi-drug resistance. Int J Pharm 2014; 477:590-600. [DOI: 10.1016/j.ijpharm.2014.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/05/2014] [Accepted: 11/05/2014] [Indexed: 12/17/2022]
|
12
|
Peschko K, Schade A, Vollrath SBL, Schwarz U, Luy B, Muhle-Goll C, Weis P, Bräse S. Dendrimer-Type Peptoid-Decorated Hexaphenylxylenes and Tetraphenylmethanes: Synthesis and Structure in Solution and in the Gas Phase. Chemistry 2014; 20:16273-8. [DOI: 10.1002/chem.201404024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 01/03/2023]
|
13
|
Jafari M, Xu W, Pan R, Sweeting CM, Karunaratne DN, Chen P. Serum stability and physicochemical characterization of a novel amphipathic peptide C6M1 for siRNA delivery. PLoS One 2014; 9:e97797. [PMID: 24831131 PMCID: PMC4022676 DOI: 10.1371/journal.pone.0097797] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 04/24/2014] [Indexed: 12/26/2022] Open
Abstract
The efficient delivery of nucleic acids as therapeutic agents is a major challenge in gene therapy. Peptides have recently emerged as a novel carrier for delivery of drugs and genes. C6M1 is a designed amphipathic peptide with the ability to form stable complexes with short interfering RNA (siRNA). The peptide showed a combination of random coil and helical structure in water but mainly adopted a helical conformation in the presence of anions or siRNA. Revealed by dynamic light scattering (DLS) and microscopy techniques, the interaction of C6M1 and siRNA in water and HEPES led to complexes of ∼70 and ∼155 nm in size, respectively, but showed aggregates as large as ∼500 nm in PBS. The time-dependent aggregation of the complex in PBS was studied by DLS and fluorescence spectroscopy. At molar ratio of 15∶1, C6M1 was able to completely encapsulate siRNA; however, higher molar ratios were required to obtain stable complexes. Naked siRNA was completely degraded in 4 h in the solution of 50% serum; however C6M1 protected siRNA against serum RNase over the period of 24 h. Western blotting experiment showed ∼72% decrease in GAPDH protein level of the cells treated with C6M1-siRNA complexes while no significant knockdown was observed for the cells treated with naked siRNA.
Collapse
Affiliation(s)
- Mousa Jafari
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Wen Xu
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ran Pan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Chad M Sweeting
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Desiree Nedra Karunaratne
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada; Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
14
|
|
15
|
Sarker SR, Aoshima Y, Hokama R, Inoue T, Sou K, Takeoka S. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity. Int J Nanomedicine 2013; 8:1361-75. [PMID: 23630419 PMCID: PMC3626367 DOI: 10.2147/ijn.s38903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt) in the arginine head group. Methods Cationic lipids were hydrated in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt) that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p) DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the highest transfection efficiency in PC-12 cells. However, arginine-based cationic liposomes with TFA salt showed the highest transfection efficiency in HeLa cells, regardless of the presence of serum, with very low associated cytotoxicity. Conclusion The gene delivery efficiency of amino acid-based cationic assemblies is influenced by the amino acids (ie, arginine or lysine) present as the hydrophilic head group and their associated counterions.
Collapse
Affiliation(s)
- Satya Ranjan Sarker
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Jafari M, Xu W, Naahidi S, Chen B, Chen P. A new amphipathic, amino-acid-pairing (AAP) peptide as siRNA delivery carrier: physicochemical characterization and in vitro uptake. J Phys Chem B 2012; 116:13183-91. [PMID: 23077976 DOI: 10.1021/jp3072553] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA interference has emerged as a powerful tool in biological and pharmaceutical research; however, the enzymatic degradation and polyanionic nature of short interfering RNAs (siRNAs) lead to their poor cellular uptake and eventual biological effects. Among nonviral delivery systems, cell-penetrating peptides have been recently employed to improve the siRNA delivery efficiency. Here we introduce an 18-mer amphipathic, amino-acid-pairing peptide, C6, as an siRNA delivery carrier. Peptide C6 adopted a helical structure upon coassembling with siRNA. The C6-siRNA coassembly showed a size distribution between 50 and 250 nm, confirmed by dynamic light scattering and atomic force microscopy. The C6-siRNA interaction enthalpy and stoichiometry were 8.8 kJ·mol(-1) and 6.5, respectively, obtained by isothermal titration calorimetry. A minimum C6/siRNA molar ratio of 10:1 was required to form stable coassemblies/complexes, indicated by agarose gel shift assay and fluorescence spectroscopy. Peptide C6 showed lower toxicity and higher efficiency in cellular uptake of siRNA compared with Lipofectamine 2000. Fluorescence microscopy images also confirmed the localization of C6-siRNA complexes in the cytoplasm using Cy3-labeled siRNAs. These results indicate high capabilities of C6 in forming safe and stable complexes with siRNA and enhancing its cellular uptake.
Collapse
Affiliation(s)
- Mousa Jafari
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | | | | | | |
Collapse
|
17
|
Resonance Raman Spectral Imaging of Intracellular Uptake of β-Carotene Loaded Poly(D,L-lactide-co-glycolide) Nanoparticles. Chemphyschem 2012; 14:155-61. [DOI: 10.1002/cphc.201200577] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/12/2012] [Indexed: 12/17/2022]
|
18
|
Govindarajan S, Sivakumar J, Garimidi P, Rangaraj N, Kumar JM, Rao NM, Gopal V. Targeting human epidermal growth factor receptor 2 by a cell-penetrating peptide–affibody bioconjugate. Biomaterials 2012; 33:2570-82. [DOI: 10.1016/j.biomaterials.2011.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/02/2011] [Indexed: 11/24/2022]
|
19
|
Sarker SR, Arai S, Murate M, Takahashi H, Takata M, Kobayashi T, Takeoka S. Evaluation of the influence of ionization states and spacers in the thermotropic phase behaviour of amino acid-based cationic lipids and the transfection efficiency of their assemblies. Int J Pharm 2012; 422:364-73. [DOI: 10.1016/j.ijpharm.2011.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/04/2011] [Accepted: 10/23/2011] [Indexed: 12/28/2022]
|
20
|
Kizjakina K, Bryson JM, Grandinetti G, Reineke TM. Cationic glycopolymers for the delivery of pDNA to human dermal fibroblasts and rat mesenchymal stem cells. Biomaterials 2011; 33:1851-62. [PMID: 22138032 DOI: 10.1016/j.biomaterials.2011.10.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/12/2011] [Indexed: 12/17/2022]
Abstract
Progenitor and pluripotent cell types offer promise as regenerative therapies but transfecting these sensitive cells has proven difficult. Herein, a series of linear trehalose-oligoethyleneamine "click" copolymers were synthesized and examined for their ability to deliver plasmid DNA (pDNA) to two progenitor cell types, human dermal fibroblasts (HDFn) and rat mesenchymal stem cells (RMSC). Seven polymer vehicle analogs were synthesized in which three parameters were systematically varied: the number of secondary amines (4-6) within the polymer repeat unit (Tr4(33), Tr5(30), and Tr6(32)), the end group functionalities [PEG (Tr4(128)PEG-a, Tr4(118)PEG-b), triphenyl (Tr4(107)-c), or azido (Tr4(99)-d)], and the molecular weight (degree of polymerization of about 30 or about 100) and the biological efficacy of these vehicles was compared to three controls: Lipofectamine 2000, JetPEI, and Glycofect. The trehalose polymers were all able to bind and compact pDNA polyplexes, and promote pDNA uptake and gene expression [luciferase and enhanced green fluorescent protein (EGFP)] with these primary cell types and the results varied significantly depending on the polymer structure. Interestingly, in both cell types, Tr4(33) and Tr5(30) yielded the highest luciferase gene expression. However, when comparing the number of cells transfected with a reporter plasmid encoding enhanced green fluorescent protein, Tr4(33) and Tr4(107)-c yielded the highest number of HDFn cells positive for EGFP. Interestingly, with RMSCs, all of the higher molecular weight analogs (Tr4(128)PEG-a, Tr4(118)PEG-b, Tr4(107)-c, Tr4(99)-d) yielded high percentages of cells positive for EGFP (30-40%).
Collapse
Affiliation(s)
- Karina Kizjakina
- Department of Chemistry and Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
21
|
Yan J, Korolev N, Eom KD, Tam JP, Nordenskiöld L. Biophysical Properties and Supramolecular Structure of Self-Assembled Liposome/ε-Peptide/DNA Nanoparticles: Correlation with Gene Delivery. Biomacromolecules 2011; 13:124-31. [DOI: 10.1021/bm201359r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiang Yan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore,
637551
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore,
637551
| | - Khee Dong Eom
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore,
637551
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore,
637551
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore,
637551
| |
Collapse
|
22
|
Fluorescence methods for lipoplex characterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2694-705. [DOI: 10.1016/j.bbamem.2011.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/29/2011] [Accepted: 07/15/2011] [Indexed: 11/24/2022]
|
23
|
Delyagina E, Li W, Ma N, Steinhoff G. Magnetic targeting strategies in gene delivery. Nanomedicine (Lond) 2011; 6:1593-604. [DOI: 10.2217/nnm.11.143] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene delivery is a process of the insertion of transgenes into cells with the purpose to obtain the expression of encoded protein. The therapeutic application of this process is termed gene therapy, which is becoming a promising instrument to treat genetic and acquired diseases. Although numerous methods of gene transfer have already been developed, including biological, physical and chemical approaches, the optimal strategy has to be discovered. Importantly, it should be effective, selective and safe to be translated to the clinic. Magnetic targeting has been demonstrated as an effective strategy to decrease side effects of gene transfer, while increasing the selectivity and efficiency of the applied vector. This article will focus on the latest progress in the development of different magnetic vectors, based on both viral and nonviral gene delivery agents. It will also include a description of magnetic targeting applications in stem cells and in vivo, which has gained interest in recent years due to the rapid development of technology.
Collapse
Affiliation(s)
- Evgenya Delyagina
- Reference & Translation Center for Cardiac Stem Cell Therapy, Department of Cardiac Surgery, University of Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Wenzhong Li
- Reference & Translation Center for Cardiac Stem Cell Therapy, Department of Cardiac Surgery, University of Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Nan Ma
- Reference & Translation Center for Cardiac Stem Cell Therapy, Department of Cardiac Surgery, University of Rostock, Schillingallee 35, 18057 Rostock, Germany
| | | |
Collapse
|
24
|
Gopal V, Xavier J, Kamal MZ, Govindarajan S, Takafuji M, Soga S, Ueno T, Ihara H, Rao NM. Synthesis and transfection efficiency of cationic oligopeptide lipids: role of linker. Bioconjug Chem 2011; 22:2244-54. [PMID: 21985175 DOI: 10.1021/bc2002874] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the design of new cationic lipids for gene transfection, the chemistry of linkers is widely investigated from the viewpoint of biodegradation and less from their contribution to the biophysical properties. We synthesized two dodecyl lipids with glutamide as the backbone and two lysines to provide the cationic headgroup. Lipid 1 differs from Lipid 2 by the presence of an amide linkage instead of an ester linkage that characterizes Lipid 2. The transfection efficiency of lipoplexes with cholesterol as colipid was found to be very high with Lipid 1 on Chinese Hamster Ovary (CHO) and HepG2 cell lines, whereas Lipid 2 has shown partial transfection efficiency on HepG2 cells. Lipid 1 was found to be stable in the presence of serum when tested in HepG2 and CHO cells albeit with lower activity. Fluorescence-based dye-binding and agarose gel-based assays indicated that Lipid 1 binds to DNA more efficiently than Lipid 2 at charge ratios of >1:1. The uptake of oligonucleotides with Lipid 1 was higher than Lipid 2 as revealed by confocal microscopy. Transmission electron microscopy (TEM) images reveal distinct formation of liposomes and lipoplexes with Lipid 1 but fragmented and unordered structures with Lipid 2. Fusion of Lipids 1 and 2 with anionic vesicles, with composition similar to plasma membrane, suggests that fusion of Lipid 2 was very rapid and unlike a fusion event, whereas the fusion kinetics of Lipid 1 vesicles was more defined. Differential scanning calorimetry (DSC) revealed a high T(m) for Lipid 1 (65.4 °C) while Lipid 2 had a T(m) of 23.5 °C. Surface area-pressure isotherms of Lipid 1 was less compressible compared to Lipid 2. However, microviscosity measured using 1,6-diphenyl-1,3,5-hexatriene (DPH) revealed identical values for vesicles made with either of the lipids. The presence of amide linker apparently resulted in stable vesicle formation, higher melting temperature, and low compressibility, while retaining the membrane fluid properties suggesting that the intermolecular hydrogen bonds of Lipid 1 yielded stable lipoplexes of high transfection efficiency.
Collapse
Affiliation(s)
- Vijaya Gopal
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, India
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cardoso AM, Faneca H, Almeida JA, Pais AA, Marques EF, de Lima MCP, Jurado AS. Gemini surfactant dimethylene-1,2-bis(tetradecyldimethylammonium bromide)-based gene vectors: A biophysical approach to transfection efficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:341-51. [DOI: 10.1016/j.bbamem.2010.09.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/23/2010] [Accepted: 09/28/2010] [Indexed: 12/22/2022]
|
26
|
Cationic lipid/DNA complex-adjuvanted influenza A virus vaccination induces robust cross-protective immunity. J Virol 2010; 84:12691-702. [PMID: 20943978 DOI: 10.1128/jvi.00769-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Influenza A virus is a negative-strand segmented RNA virus in which antigenically distinct viral subtypes are defined by the hemagglutinin (HA) and neuraminidase (NA) major viral surface proteins. An ideal inactivated vaccine for influenza A virus would induce not only highly robust strain-specific humoral and T-cell immune responses but also cross-protective immunity in which an immune response to antigens from a particular viral subtype (e.g., H3N2) would protect against other viral subtypes (e.g., H1N1). Cross-protective immunity would help limit outbreaks from newly emerging antigenically novel strains. Here, we show in mice that the addition of cationic lipid/noncoding DNA complexes (CLDC) as adjuvant to whole inactivated influenza A virus vaccine induces significantly more robust adaptive immune responses both in quantity and quality than aluminum hydroxide (alum), which is currently the most widely used adjuvant in clinical human vaccination. CLDC-adjuvanted vaccine induced higher total influenza virus-specific IgG, particularly for the IgG2a/c subclass. Higher levels of multicytokine-producing influenza virus-specific CD4 and CD8 T cells were induced by CLDC-adjuvanted vaccine than with alum-adjuvanted vaccine. Importantly, CLDC-adjuvanted vaccine provided significant cross-protection from either a sublethal or lethal influenza A viral challenge with a different subtype than that used for vaccination. This superior cross-protection afforded by the CLDC adjuvant required CD8 T-cell recognition of viral peptides presented by classical major histocompatibility complex class I proteins. Together, these results suggest that CLDC has particular promise for vaccine strategies in which T cells play an important role and may offer new opportunities for more effective control of human influenza epidemics and pandemics by inactivated influenza virus vaccine.
Collapse
|
27
|
Rudzinski WE, Aminabhavi TM. Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm 2010; 399:1-11. [DOI: 10.1016/j.ijpharm.2010.08.022] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/29/2010] [Accepted: 08/16/2010] [Indexed: 12/17/2022]
|
28
|
Duan Y, Zhang S, Wang B, Yang B, Zhi D. The biological routes of gene delivery mediated by lipid-based non-viral vectors. Expert Opin Drug Deliv 2010; 6:1351-61. [PMID: 19780710 DOI: 10.1517/17425240903287153] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cationic lipid/DNA complexes (lipoplexes) represent an attractive alternative to viral vectors for cell transfection in vitro and in vivo but still suffer from relatively low efficiency. Comprehension of the interactions between vectors and DNA as well as cellular pathways and mechanisms in DNA entry into cells and ultimately nuclei will lead to the design of better adapted non-viral vectors for gene therapy applications. Here, some recent developments in the field on the pathways and mechanisms involved in lipoplex-mediated transfection are discussed. The techniques that are widely used to study the mechanism of gene delivery are also discussed.
Collapse
Affiliation(s)
- Yan Duan
- Dalian Nationalities University, College of Life Science, SEAC-ME Key Laboratory of Biotechnology and Bioresources Utilization, Dalian 116600, Liaoning, China
| | | | | | | | | |
Collapse
|
29
|
Pozzi D, Caracciolo G, Caminiti R, De Sanctis SC, Amenitsch H, Marchini C, Montani M, Amici A. Toward the rational design of lipid gene vectors: shape coupling between lipoplex and anionic cellular lipids controls the phase evolution of lipoplexes and the efficiency of DNA release. ACS APPLIED MATERIALS & INTERFACES 2009; 1:2237-2249. [PMID: 20355858 DOI: 10.1021/am900406b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interaction with anionic cellular lipids, resulting in DNA release. At the early stages of interaction, we found a universal behavior of lipoplex/anionic lipid (AL) mixtures: the lipoplex structure is slightly perturbed, while the one-dimensional DNA lattice between cationic membranes is largely diluted by ALs. This finding is in excellent agreement with previous suggestions on the mechanism of DNA unbinding from lipoplexes by ALs. Upon further interaction, the propensity of a given lipoplex structure to be solubilized by anionic cellular lipids strongly depends on the shape coupling between lipoplex and ALs. Furthermore, we investigated the effect of the membrane charge density and a general correlation resulted: the higher the membrane charge density of anionic membranes, the higher their ability to solubilize the structure of lipoplexes and to promote DNA release. Lastly, the formation of nonlamellar phases in lipoplex/AL mixtures is regulated by the propensity of anionic cellular lipids to adopt nonlamellar phases. Remarkably, also phase transition rates and DNA release were found to be strongly affected by the shape coupling between lipoplex and ALs. It thus seems likely that the structural and phase evolution of lipoplexes may only be meaningful in the context of specific anionic cellular membranes. These results highlight the phase properties of the carrier lipid/cellular lipid mixtures as a decisive factor for optimal DNA release and suggest a potential strategy for the rational design of efficient cationic lipid carriers.
Collapse
Affiliation(s)
- Daniela Pozzi
- Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Suh MS, Shim G, Lee HY, Han SE, Yu YH, Choi Y, Kim K, Kwon IC, Weon KY, Kim YB, Oh YK. Anionic amino acid-derived cationic lipid for siRNA delivery. J Control Release 2009; 140:268-76. [PMID: 19567256 DOI: 10.1016/j.jconrel.2009.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 06/18/2009] [Accepted: 06/20/2009] [Indexed: 01/03/2023]
Abstract
Viable siRNA therapeutic strategies require the concurrent development of effective and safe delivery systems. Here, we described the synthesis of a new cationic lipid, N,N''-dioleylglutamide (DG), and evaluated DG-based liposomes as an siRNA delivery system. DG, an amino acid derivative, was synthesized by peptide bond linkage of oleylamine to each carboxylic acid group of glutamic acid. Gel retardation assays showed that DG-based cationic liposomes and siRNA began to form complexes from the N/P ratio of 1.8. The viability of A549, HeLa and WM266.4 cells was significantly higher after treatment with DG-based liposomes than with Lipofectamine 2000 and cationic 3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol)-based liposomes. The DG-based cationic liposomes could effectively deliver a fluorescent model siRNA into A549, HeLa, and WM266.4 human cancer cell lines, showing at least 2-fold higher fluorescence mean intensity values than did Lipofectamine 2000. When survivin-specific siRNA was delivered to cells in lipoplexes, survivin mRNA levels were reduced by DG-based liposomes to the higher extent than Lipofectamine 2000 and DC-Chol-based liposomes. When red fluorescent protein (RFP)-expressing cells were treated with RFP-specific siRNA (siRFP), RFP expression significantly decreased in cells treated with DG-based liposomes. Molecular imaging revealed that intratumoral injection of siRFP and DG-based liposome complexes significantly reduced fluorescence in RFP-expressing tumor tissues in mice. These results suggest that DG-based cationic liposomes would be of value for cellular delivery and in vivo local delivery of siRNA.
Collapse
Affiliation(s)
- Min Sung Suh
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seungbuk-gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lipid-based emulsion system as non-viral gene carriers. Arch Pharm Res 2009; 32:639-46. [DOI: 10.1007/s12272-009-1500-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/26/2022]
|
32
|
Tresset G. The multiple faces of self-assembled lipidic systems. PMC BIOPHYSICS 2009; 2:3. [PMID: 19374753 PMCID: PMC2695813 DOI: 10.1186/1757-5036-2-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 04/17/2009] [Indexed: 11/10/2022]
Abstract
Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled.PACS Codes: 87.14.Cc, 82.70.Uv.
Collapse
Affiliation(s)
- Guillaume Tresset
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France.
| |
Collapse
|
33
|
Hecker JG, Berger GO, Scarfo KA, Zou S, Nantz MH. A flexible method for the conjugation of aminooxy ligands to preformed complexes of nucleic acids and lipids. ChemMedChem 2008; 3:1356-61. [PMID: 18666266 DOI: 10.1002/cmdc.200800084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Attachment of targeted ligands to nonviral DNA or RNA delivery systems is a promising strategy that seeks to overcome the poor target selectivity generally observed in systemic delivery applications. Several methods have been developed for the conjugation of ligands to lipids or polymers, however, direct conjugation of ligands onto lipid- or polymer-nucleic acid complexes is not as straightforward. Here, we examine an oximation approach to directly label a lipoplex formulation. Specifically, we report the synthesis of a cationic diketo lipid DMDK, and its use as a convenient ligation tool for attachment of aminooxy-functionalized reagents after its complexation with DNA. We demonstrate the feasibility of direct lipoplex labeling by attaching an aminooxy-functionalized fluorescent probe onto pre-formed plasmid DNA-DMDK lipoplexes (luciferase, GFP). The results reveal that DMDK protects DNA from degradation on exposure to either DNase or human cerebral spinal fluid, and that simple mixing of DMDK lipoplexes with the aminooxy probe labels the complexes without sacrificing transfection efficiency. The biocompatibility and selectivity of this method, as well as the ease of bioconjugation, make this labeling approach ideal for biological applications.
Collapse
Affiliation(s)
- James G Hecker
- Department of Anesthesia and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Kudsiova L, Arafiena C, Lawrence M. Characterisation of Chitosan-Coated Vesicles Encapsulating DNA Suitable for Gene Delivery. J Pharm Sci 2008; 97:3981-97. [DOI: 10.1002/jps.21355] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Cationic liposomal lipids: from gene carriers to cell signaling. Prog Lipid Res 2008; 47:340-7. [PMID: 18424270 DOI: 10.1016/j.plipres.2008.03.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 03/18/2008] [Accepted: 03/25/2008] [Indexed: 11/21/2022]
Abstract
Cationic lipids are positively charged amphiphilic molecules which, for most of them, form positively charged liposomes, sometimes in combination with a neutral helper lipid. Such liposomes are mainly used as efficient DNA, RNA or protein carriers for gene therapy or immunization trials. Over the past decade, significant progress has been made in the understanding of the cellular pathways and mechanisms involved in lipoplex-mediated gene transfection but the interaction of cationic lipids with cell components and the consequences of such an interaction on cell physiology remains poorly described. The data reported in the present review provide evidence that cationic lipids are not just carriers for molecular delivery into cells but do modify cellular pathways and stimulate immune or anti-inflammatory responses. Considering the wide number of cationic lipids currently available and the variety of cellular components that could be involved, it is likely that only a few cationic lipid-dependent functions have been identified so far.
Collapse
|
36
|
Matthäus C, Kale A, Chernenko T, Torchilin V, Diem M. New ways of imaging uptake and intracellular fate of liposomal drug carrier systems inside individual cells, based on Raman microscopy. Mol Pharm 2008; 5:287-93. [PMID: 18197626 PMCID: PMC2715828 DOI: 10.1021/mp7001158] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent developments, combining Raman spectroscopy with optical microscopy, provide a new noninvasive technique to assess and image cellular processes. Of particular interest are the uptake mechanisms of various cytologically active compounds. In order to distinguish the species of interest from their cellular environment spectroscopically, compounds may be labeled with deuterium. Here, we apply Raman microspectroscopy to follow the uptake of liposomal drug carrier systems that have been introduced to deliver biologically active compounds to their site of action within human breast adenocarcinoma MCF-7 cells. The distribution patterns of liposomes and liposomes surface-modified with a cell-penetrating peptide (TAT-peptide, TATp) have been imaged over time. The spectroscopic information obtained provides a clear evidence for variable rates, as well as different efficiencies of liposome uptake depending on their surface properties. Depending on the experimental setup, the technique may be applied to fixed or living cell organisms.
Collapse
Affiliation(s)
- Christian Matthäus
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massacusetts 02115
| | - Amit Kale
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massacusetts 02115
| | - Tatyana Chernenko
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massacusetts 02115
| | - Vladimir Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massacusetts 02115
| | - Max Diem
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massacusetts 02115
| |
Collapse
|
37
|
Ragusa A, García I, Penadés S. Nanoparticles as nonviral gene delivery vectors. IEEE Trans Nanobioscience 2008; 6:319-30. [PMID: 18217625 DOI: 10.1109/tnb.2007.908996] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene therapy, as therapeutic treatment to genetic or acquired diseases, is attracting much interest in the research community, leading to noteworthy developments over the past two decades. Although this field is still dominated by viral vectors, nonviral vectors have recently received an ever increasing attention in order to overcome the safety problems of their viral counterpart. This review presents the biological aspects involved in the gene delivery process and explores the recent developments and achievements of nonviral gene carriers.
Collapse
Affiliation(s)
- Andrea Ragusa
- Laboratory of Glyconanotechnology, IIQ-CSIC, Americo Vespucio 49, 41092 Seville, Spain.
| | | | | |
Collapse
|
38
|
Matthäus C, Bird B, Miljković M, Chernenko T, Romeo M, Diem M. Chapter 10: Infrared and Raman microscopy in cell biology. Methods Cell Biol 2008; 89:275-308. [PMID: 19118679 DOI: 10.1016/s0091-679x(08)00610-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This chapter presents novel microscopic methods to monitor cell biological processes of live or fixed cells without the use of any dye, stains, or other contrast agent. These methods are based on spectral techniques that detect inherent spectroscopic properties of biochemical constituents of cells, or parts thereof. Two different modalities have been developed for this task. One of them is infrared micro-spectroscopy, in which an average snapshot of a cell's biochemical composition is collected at a spatial resolution of typically 25 mum. This technique, which is extremely sensitive and can collect such a snapshot in fractions of a second, is particularly suited for studying gross biochemical changes. The other technique, Raman microscopy (also known as Raman micro-spectroscopy), is ideally suited to study variations of cellular composition on the scale of subcellular organelles, since its spatial resolution is as good as that of fluorescence microscopy. Both techniques exhibit the fingerprint sensitivity of vibrational spectroscopy toward biochemical composition, and can be used to follow a variety of cellular processes.
Collapse
Affiliation(s)
- Christian Matthäus
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Gene delivery offers the promise of treatment for a range of human diseases. Although carried out initially with modified viruses, the use of synthetic molecules, including polymers, lipids and peptides, has extended the possibilities greatly for rationally designed vectors tailored to individual gene-delivery applications. Underlying the rational design of gene-delivery vectors is the need to understand the individual steps of the gene-delivery pathway. Using new methods in fluorescence microscopy, it is now possible to isolate individual steps along the gene-delivery pathway to characterize the mechanisms of cellular binding, cellular internalization and nuclear entry. This review describes the advances made in the gene-delivery field with the assistance of fluorescence microscopy. The focus of this review is the use of synthetic gene-delivery vectors, especially polyethylenimine, and the live-cell imaging and single-particle tracking techniques that reveal the intracellular dynamics of the gene-delivery process.
Collapse
Affiliation(s)
- Christine K Payne
- Georgia Institute of Technology, School of Chemistry and Biochemistry and Petit Institute of Bioengineering and Bioscience, 901 Atlantic Drive, Molecular Science and Engineering, Atlanta, GA 30332–0400, USA
| |
Collapse
|
40
|
Zhu J, House BE, Fleck E, Isaacsohn I, Drew AF, Smithrud DB. A host-rotaxane derivatized with carboxylic acids efficiently delivers a highly cationic fluoresceinated peptide. Bioorg Med Chem Lett 2007; 17:5058-62. [PMID: 17656089 DOI: 10.1016/j.bmcl.2007.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/05/2007] [Accepted: 07/06/2007] [Indexed: 10/23/2022]
Abstract
A cleft-[2]rotaxane (CR2+2-) was derivatized with carboxylic acids to enhance the intracellular delivery of a highly cationic or anionic pentapeptide. CR2+2- delivers the fluorescein (Fl) tagged peptide Fl-KKALR to a greater amount than Fl-QEAVD, and at a higher concentration, a greater amount than Fl-AVWAL. The level of delivery is largely temperature and ATP independent, suggesting that the Fl-peptide.CR2+2- complexes pass through the cellular membrane without requiring active cell-mediated processes. This study shows that selective delivery of peptides is possible by using a suitably derivatized host-rotaxane as the transporter.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Chemistry, University of Cincinnati, Cincinnati, PO Box 210172, OH 45221, USA
| | | | | | | | | | | |
Collapse
|
41
|
Caracciolo G, Pozzi D, Amenitsch H, Caminiti R. Interaction of lipoplexes with anionic lipids resulting in DNA release is a two-stage process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:8713-7. [PMID: 17645362 DOI: 10.1021/la7017665] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We propose a mechanism for DNA release from lipoplexes in cells that accounts for various observations of lipoplex-anionic lipid interactions. We examined the structural evolution of lipoplexes upon interaction with cellular lipids by synchrotron small-angle X-ray diffraction (SAXD), and the extent of DNA release from lipoplexes was determined by gel electrophoresis. We find that the interaction of lipoplexes with anionic cellular lipids is a two-stage process. In the first step, anionic lipids laterally diffuse into the complex and neutralize the cationic lipids. As a result, the membrane charge density of lipoplexes decreases and interactions between cationic lipids and DNA become weaker, but DNA is extremely poorly released. Only after the cationic charge of lipoplex membranes is completely neutralized by anionic lipids does DNA starts to be released significantly.
Collapse
Affiliation(s)
- Giulio Caracciolo
- Department of Chemistry, University of Rome "La Sapienza", P. le A. Moro 5, 00185 Rome, Italy
| | | | | | | |
Collapse
|
42
|
Hirashima N, Minatani K, Hattori Y, Ohwada T, Nakanishi M. Anchoring Cationic Amphiphiles for Nucleotide Delivery Significance of DNA Release from Cationic Liposomes for Transfection. Biol Pharm Bull 2007; 30:1117-22. [PMID: 17541164 DOI: 10.1248/bpb.30.1117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have designed and synthesized lithocholic acid-based cationic amphiphile molecules as components of cationic liposomes for gene transfection (lipofection). To study the relationship between the molecular structures of those amphiphilic molecules, particularly the extended hydrophobic appendant (anchor) at the 3-hydroxyl group, and transfection efficiency, we synthesized several lithocholic and isolithocholic acid derivatives, and examined their transfection efficiency. We also compared the physico-chemical properties of cationic liposomes prepared from these derivatives. We found that isolithocholic acid derivatives exhibit higher transfection efficiency than the corresponding lithocholic acid derivatives. This result indicates that the orientation and extension of hydrophobic regions influence the gene transfection process. Isolithocholic acid derivatives showed a high ability to encapsulate DNA in a compact liposome-DNA complex and to protect it from enzymatic degradation. Isolithocholic acid derivatives also facilitated the release of DNA from the liposome-DNA complex, which is a crucial step for DNA entry into the nucleus. Our results show that the transfection efficiency is directly influenced by the ability of the liposome complex to release DNA, rather than by the DNA-encapsulating ability. Molecular modeling revealed that isolithocholic acid derivatives take relatively extended conformations, while the lithocholic acid derivatives take folded structures. Thus, the efficiency of release of DNA from cationic liposomes in the cytoplasm, which contributes to high transfection efficiency, appears to be dependent upon the molecular shape of the cationic amphiphiles.
Collapse
Affiliation(s)
- Naohide Hirashima
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | | | | | | | | |
Collapse
|