1
|
Wang J, Xing W, Lin Y, Uskenbayeva N, Yan H, Xu Y, Fang L. Blocking PARP activity with the inhibitor veliparib enhances radiotherapy sensitivity in endometrial carcinoma. J Clin Lab Anal 2022; 36:e24435. [PMID: 35421273 PMCID: PMC9102625 DOI: 10.1002/jcla.24435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Our study aimed to investigate the potential clinical utility of a poly(ADP-ribose) polymerase (PARP) inhibitor, veliparib (ABT-888), as a radiosensitizer in the medication of endometrial carcinoma (EC). METHODS Human Ishikawa endometrial adenocarcinoma cells were treated with veliparib, radiotherapy (RT), or combination treatment. The viabilities, radiosensitivity enhancement ratio (sensitizer enhancement ratio (SER), and apoptosis of Ishikawa cells were, respectively, evaluated by Cell Counting Kit-8 (CCK-8), colony formation experiment, and flow cytometry. The tumor growth was assessed by xenograft mice models. Western blot assay investigated the expression of DNA damage and apoptosis-related proteins in vivo and in vitro. RESULTS Cell Counting Kit-8 revealed that the 10% inhibition concentration (IC10 ) and 50% inhibition concentration (IC50 ) values of veliparib-treated Ishikawa cells were 1.7 and 133.5 µM, respectively. The SER of veliparib combined with RT was 1.229 in vitro. Flow cytometry analysis results indicated that the apoptosis rate of the veliparib + RT group was markedly higher than that of the RT group in vitro (p < 0.05). Furthermore, in vivo data revealed that veliparib + RT treatment significantly decreased tumor growth compared with single treatments of veliparib or RT and with the control group (p < 0.05). Then western blot confirmed the levels of anti-phospho-histone (γH2AX), caspase-3, and B-cell lymphoma 2 (Bcl-2) associated protein X (Bax) were significantly higher in the veliparib + RT group, while the level of Bcl-2 was lower compared with that of the RT group (p < 0.05), both in vivo and in vitro. CONCLUSION Our results indicate that veliparib in combination with RT markedly improved the therapeutic efficiency in human endometrial carcinoma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Reproductive Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weizhen Xing
- Department of Gynecology, Sanya Women and Children's Hospital (Sanya Maternal and Child Health Care Hospital), Sanya, China
| | - Yanling Lin
- Department of Gynecology, Sanya Women and Children's Hospital (Sanya Maternal and Child Health Care Hospital), Sanya, China
| | | | - Hongchao Yan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Xu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lisha Fang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Williams KS, Secomb TW, El-Kareh AW. Additive Damage Models for Cellular Pharmacodynamics of Radiation-Chemotherapy Combinations. Bull Math Biol 2017; 80:1236-1258. [PMID: 28849417 DOI: 10.1007/s11538-017-0316-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
Abstract
Many cancer patients receive combination treatments with radiation and chemotherapy. Available mathematical models for cellular pharmacodynamics have limited ability to represent observed in vitro responses to radiochemotherapy. Here, a family of additive damage models is proposed to describe cell kill resulting from radiochemotherapy with fixed schedule and variable doses. The pathways by which the agents produce cellular damage are assumed to converge in a single cell death process, so that survival depends on total damage, which can be represented as a sum of contributions from the various damage pathways. Heterogeneity in response across the cell population is ascribed to variations in the damage threshold for cell kill. The family of proposed models includes effects of one or two pathways of damage for each agent, saturation in drug responses, and cooperative or antagonistic interactions between agents. Models from this family with 4-7 unknown parameters are tested for their ability to fit 218 in vitro literature data sets for a range of drugs and cell lines. Overall, the additive damage models are found to outperform models based on the existing concept of independent cell kill, according to the corrected Akaike Information Criterion. The results are used to assess the importance of the various effects included in the models. These additive damage models have potential applications to the optimization of treatment and to the analysis and interpretation of in vitro screening data for new drug-radiation combinations.
Collapse
Affiliation(s)
| | - Timothy W Secomb
- Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA.,Microcirculation Division, University of Arizona, Tucson, AZ, USA.,Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Ardith W El-Kareh
- Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA. .,Microcirculation Division, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Solovyev AY, Tarnovskaya SI, Chernova IA, Shataeva LK, Skorik YA. The interaction of amino acids, peptides, and proteins with DNA. Int J Biol Macromol 2015; 78:39-45. [PMID: 25841380 DOI: 10.1016/j.ijbiomac.2015.03.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Amino acids that carry charges on their side groups can bind to double stranded DNA (dsDNA) and change the strength of the double helix. Measurement of the DNA melting temperature (Tm) confirmed that acidic amino acids (Glu, Asp) weaken the H-bonds between DNA strands, whereas basic amino acids (Arg, Lys) strengthen the interaction between the strands. A rank correlation exists between the amino acid isoelectric points and the observed changes in Tm. A similar dependence of the hyperchromic effect on the isoelectric point of a protein (pepsin, insulin, cortexin, and protamine) was observed for DNA-protein complexes at room temperature. Short peptides (KE, AEDG, and KEDP) containing a mixture of acidic and basic amino acid residues also affect Tm and the stability of the double helix. A model for binding Glu and Lys to dsDNA was explored by a docking simulation. The model shows that Glu, in an untwisted shape, binds to dsDNA in its major groove and disrupts three H-bonds between the strands, thereby destabilizing the double helix. Lys, in an untwisted shape, binds to the external side of the dsDNA and forms two bonds with O atoms of neighboring phosphodiester groups, thereby strengthening the DNA helix.
Collapse
Affiliation(s)
- Andrey Y Solovyev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Svetlana I Tarnovskaya
- St. Petersburg State Polytechnical University, Polytekhnicheskaya ul. 29, St. Petersburg 195251, Russian Federation
| | - Irina A Chernova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Larisa K Shataeva
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. VO 31, St. Petersburg 199004, Russian Federation; St. Petersburg State Chemical Pharmaceutical Academy, ul. Prof. Popova 14, St. Petersburg 197022, Russian Federation.
| |
Collapse
|
4
|
Kummar S, Chen A, Parchment RE, Kinders RJ, Ji J, Tomaszewski JE, Doroshow JH. Advances in using PARP inhibitors to treat cancer. BMC Med 2012; 10:25. [PMID: 22401667 PMCID: PMC3312820 DOI: 10.1186/1741-7015-10-25] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/09/2012] [Indexed: 01/03/2023] Open
Abstract
The poly (ADP-ribose) polymerase (PARP) family of enzymes plays a critical role in the maintenance of DNA integrity as part of the base excision pathway of DNA repair. PARP1 is overexpressed in a variety of cancers, and its expression has been associated with overall prognosis in cancer, especially breast cancer. A series of new therapeutic agents that are potent inhibitors of the PARP1 and PARP2 isoforms have demonstrated important clinical activity in patients with breast or ovarian cancers that are caused by mutations in either the BRCA1 or 2 genes. Results from such studies may define a new therapeutic paradigm, wherein simultaneous loss of the capacity to repair DNA damage may have antitumor activity in itself, as well as enhance the antineoplastic potential of cytotoxic chemotherapeutic agents.
Collapse
Affiliation(s)
- Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, 31 Center Drive, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Lin K, Ye D, Xie X. Protein expression levels of excision repair cross-complementation group 1 and xeroderma pigmentosum D correlate with response to platinum-based chemotherapy in the patients with advanced epithelial ovarian cancer. Int J Gynecol Cancer 2008; 18:1007-12. [PMID: 18081788 DOI: 10.1111/j.1525-1438.2007.01155.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This study was undertaken to examine whether there is an association between excision repair cross-complementation group 1 (ERCC1) and xeroderma pigmentosum D (XPD) protein expression levels and response to platinum-based chemotherapy in epithelial ovarian cancer (EOC). The study cohort consisted of 91 consecutive patients suffering from stage III or IV disease of primary EOC from 1999 to 2004 at the Women's Hospital, School of Medicine, Zhejiang University. There were 36 sensitive cases of serous ovarian cancer, 27 resistant cases of serous ovarian cancer, 15 cases of clear cell cancer, and 13 cases with serous ovarian cancer receiving neoadjuvant chemotherapy. The ovarian tissue microsections were stained by standard immunohistochemical techniques to show ERCC1 and XPD protein expression levels. In resistance group of serous ovarian cancer, ERCC1 and XPD protein expression levels were significantly higher than those of sensitivity group, and after receiving neoadjuvant chemotherapy, they showed 23% and 32% higher than before. Meanwhile, their levels of clear cell cancer group were significantly higher than serous ovarian cancer group's. Upregulation of ERCC1 and XPD protein expression was associated with resistance process to platinum-based chemotherapy in advanced EOC. This study provided evidence that differences of nucleotide excision repair-related genes expression may have an effect on the observed differences in clinical behavior of EOC.
Collapse
Affiliation(s)
- K Lin
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | | | | |
Collapse
|
6
|
Franekova M, Halasova E, Bukovska E, Luptak J, Dobrota D. Gene polymorphisms in bladder cancer. Urol Oncol 2008; 26:1-8. [DOI: 10.1016/j.urolonc.2006.10.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 11/26/2022]
|
7
|
Yang JY, Yang MQ, Luo Z, Ma Y, Li J, Deng Y, Huang X. A hybrid machine learning-based method for classifying the Cushing's Syndrome with comorbid adrenocortical lesions. BMC Genomics 2008; 9 Suppl 1:S23. [PMID: 18366613 PMCID: PMC2386065 DOI: 10.1186/1471-2164-9-s1-s23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The prognosis for many cancers could be improved dramatically if they could be detected while still at the microscopic disease stage. It follows from a comprehensive statistical analysis that a number of antigens such as hTERT, PCNA and Ki-67 can be considered as cancer markers, while another set of antigens such as P27KIP1 and FHIT are possible markers for normal tissue. Because more than one marker must be considered to obtain a classification of cancer or no cancer, and if cancer, to classify it as malignant, borderline, or benign, we must develop an intelligent decision system that can fullfill such an unmet medical need. RESULTS We have developed an intelligent decision system using machine learning techniques and markers to characterize tissue as cancerous, non-cancerous or borderline. The system incorporates learning techniques such as variants of support vector machines, neural networks, decision trees, self-organizing feature maps (SOFM) and recursive maximum contrast trees (RMCT). These variants and algorithms we have developed, tend to detect microscopic pathological changes based on features derived from gene expression levels and metabolic profiles. We have also used immunohistochemistry techniques to measure the gene expression profiles from a number of antigens such as cyclin E, P27KIP1, FHIT, Ki-67, PCNA, Bax, Bcl-2, P53, Fas, FasL and hTERT in several particular types of neuroendocrine tumors such as pheochromocytomas, paragangliomas, and the adrenocortical carcinomas (ACC), adenomas (ACA), and hyperplasia (ACH) involved with Cushing's syndrome. We provided statistical evidence that higher expression levels of hTERT, PCNA and Ki-67 etc. are associated with a higher risk that the tumors are malignant or borderline as opposed to benign. We also investigated whether higher expression levels of P27KIP1 and FHIT, etc., are associated with a decreased risk of adrenomedullary tumors. While no significant difference was found between cell-arrest antigens such as P27KIP1 for malignant, borderline, and benign tumors, there was a significant difference between expression levels of such antigens in normal adrenal medulla samples and in adrenomedullary tumors. CONCLUSIONS Our frame work focused on not only different classification schemes and feature selection algorithms, but also ensemble methods such as boosting and bagging in an effort to improve upon the accuracy of the individual classifiers. It is evident that when all sorts of machine learning and statistically learning techniques are combined appropriately into one integrated intelligent medical decision system, the prediction power can be enhanced significantly. This research has many potential applications; it might provide an alternative diagnostic tool and a better understanding of the mechanisms involved in malignant transformation as well as information that is useful for treatment planning and cancer prevention.
Collapse
Affiliation(s)
- Jack Y Yang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary Qu Yang
- Genomic Functional Analysis Laboratory, National Human Genome Research Institute, National Institutes of Health, U.S. Department of Health and Human Services. Bethesda, MD 20852, USA
| | - Zuojie Luo
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Yan Ma
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Jianling Li
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Youping Deng
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Xudong Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Harki DA, Graci JD, Galarraga JE, Chain WJ, Cameron CE, Peterson BR. Synthesis and antiviral activity of 5-substituted cytidine analogues: identification of a potent inhibitor of viral RNA-dependent RNA polymerases. J Med Chem 2006; 49:6166-9. [PMID: 17034123 PMCID: PMC2094219 DOI: 10.1021/jm060872x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As part of our studies of lethal viral mutagens, a series of 5-substituted cytidine analogues were synthesized and evaluated for antiviral activity. Among the compounds examined, 5-nitrocytidine was effective against poliovirus (PV) and coxsackievirus B3 (CVB3) and exhibited greater activity than the clinically employed drug ribavirin. Instead of promoting viral mutagenesis, 5-nitrocytidine triphosphate inhibited PV RNA-dependent RNA polymerase (K(d) = 1.1 +/- 0.1 microM), and this inhibition is sufficient to explain the observed antiviral activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Blake R. Peterson
- * To whom correspondence should be addressed. Phone: (814) 865-2969. Fax: (814) 863-5319. E-mail:
| |
Collapse
|
9
|
Genovese C, Trani D, Caputi M, Claudio PP. Cell cycle control and beyond: emerging roles for the retinoblastoma gene family. Oncogene 2006; 25:5201-9. [PMID: 16936738 DOI: 10.1038/sj.onc.1209652] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rb family proteins (pRb/p105, Rb2/p130 and p107) play a key role in cell cycle control and are worthily involved in transcription repression and tumor suppression. The mechanisms of transcriptional activation and repression by the Rb gene family has been extensively investigated: pRb, pRb2/p130 and p107 interact with different E2F family factors and can inhibit E2F responsive promoters, interfering with progression of cell cycle, gene transcription, initiation of apoptotic process and cell differentiation. Recent studies have indicated that Rb and Rb2/p130 may be involved in cellular response to DNA damage events, by influencing the transcription of factors involved in DNA repair pathways. In particular, evidences suggest that Rb loss and target gene deregulation impacts on the repair of UV-induced pyrimidine pyrimidone photoproducts (6-4 PP) by regulating the expression of several DNA damage factors involved in UV DNA damage repair processes, including proliferating cell nuclear antigen. Ongoing studies are focused on the mechanisms by which Rb family genes drive cell cycle exit following DNA damage induction, and how Rb gene family's interaction with chromatin remodeling factors can influence DNA repair dynamics.
Collapse
Affiliation(s)
- C Genovese
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | |
Collapse
|