1
|
A neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide. Sci Rep 2016; 6:26940. [PMID: 27245782 PMCID: PMC4887886 DOI: 10.1038/srep26940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022] Open
Abstract
The integration of microfluidic devices—which efficiently handle small liquid volumes—with separations/mass spectrometry (MS) is an effective approach for profiling the neurochemistry occurring in selected neurons. Interfacing the microfluidic cell culture to the mass spectrometer is challenging because of geometric and scaling issues. Here we demonstrate the hyphenation of a neuron-in-capillary platform to a solid phase extraction device and off-line MS. A primary neuronal culture of Aplysia californica neurons was established directly inside a cylindrical polyimide capillary. The approach also uses a particle-embedded monolith to condition neuropeptide releasates collected from several Aplysia neurons cultured in the capillary, with the subsequent characterization of released peptides via MS. This system presents a number of advances compared to more traditional microfluidic devices fabricated with polydimethylsiloxane. These include low cost, easy access to cell culture, rigidity, ease of transport, and minimal fluid handling. The cylindrical geometry of the platform allows convenient interface with a wide range of analytical tools that utilize capillary columns.
Collapse
|
2
|
Wei W, Song Y, Fan X, Zhang S, Wang L, Xu S, Wang M, Cai X. Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials. NANOTECHNOLOGY 2016; 27:114001. [PMID: 26871752 DOI: 10.1088/0957-4484/27/11/114001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.
Collapse
Affiliation(s)
- Wenjing Wei
- State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Bruhn BR, Liu H, Schuhladen S, Hunt AJ, Mordovanakis A, Mayer M. Dual-pore glass chips for cell-attached single-channel recordings. LAB ON A CHIP 2014; 14:2410-7. [PMID: 24844315 PMCID: PMC4121072 DOI: 10.1039/c4lc00370e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
While high-throughput planar patch-clamp instruments are now established to perform whole-cell recordings for drug screening, the conventional micropipette-based approach remains the gold standard for performing cell-attached single-channel recordings. Generally, planar platforms are not well-suited for such studies due to excess noise resulting from low seal resistances and the use of substrates with poor dielectric properties. Since these platforms tend to use the same pore to position a cell by suction and establish a seal, biological debris from the cell suspension can contaminate the pore surface prior to seal formation, reducing the seal resistance. Here, femtosecond laser ablation was used to fabricate dual-pore glass chips optimized for use in cell-attached single-channel recordings that circumvent this problem by using different pores to position a cell and to establish a seal. This dual-pore design also permitted the use of a relatively small patch aperture (D ~ 150 to 300 nm) that is better-suited for establishing high-resistance seals than the micropores used typically in planar patch-clamp setups (D ~ 1 to 2 μm) without compromising the ability of the device to position a cell. Taking advantage of the high seal resistances and low capacitive and dielectric noise realized using glass substrates, patch-clamp experiments with these dual-pore chips consistently achieved high seal resistances (rate of gigaseal formation = 61%, mean seal resistance = 53 GΩ), maintained gigaseals for prolonged durations (up to 6 hours), achieved RMS noise values as low as 0.46 pA at 5 kHz bandwidth, and enabled single-channel recordings in the cell-attached configuration that are comparable to those obtained by conventional patch-clamp.
Collapse
Affiliation(s)
- Brandon R Bruhn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Bosca A, Martina M, Py C. Planar patch clamp for neuronal networks--considerations and future perspectives. Methods Mol Biol 2014; 1183:93-113. [PMID: 25023304 DOI: 10.1007/978-1-4939-1096-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The patch-clamp technique is generally accepted as the gold standard for studying ion channel activity allowing investigators to either "clamp" membrane voltage and directly measure transmembrane currents through ion channels, or to passively monitor spontaneously occurring intracellular voltage oscillations. However, this resulting high information content comes at a price. The technique is labor-intensive and requires highly trained personnel and expensive equipment. This seriously limits its application as an interrogation tool for drug development. Patch-clamp chips have been developed in the last decade to overcome the tedious manipulations associated with the use of glass pipettes in conventional patch-clamp experiments. In this chapter, we describe some of the main materials and fabrication protocols that have been developed to date for the production of patch-clamp chips. We also present the concept of a patch-clamp chip array providing high resolution patch-clamp recordings from individual cells at multiple sites in a network of communicating neurons. On this chip, the neurons are aligned with the aperture-probes using chemical patterning. In the discussion we review the potential use of this technology for pharmaceutical assays, neuronal physiology and synaptic plasticity studies.
Collapse
Affiliation(s)
- Alessandro Bosca
- Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy,
| | | | | |
Collapse
|
5
|
Tanzi S, Matteucci M, Christiansen TL, Friis S, Christensen MT, Garnaes J, Wilson S, Kutchinsky J, Taboryski R. Ion channel recordings on an injection-molded polymer chip. LAB ON A CHIP 2013; 13:4784-4793. [PMID: 24154831 DOI: 10.1039/c3lc50760b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system.
Collapse
Affiliation(s)
- Simone Tanzi
- Department of Micro- and Nanotechnology, Technical University of Denmark, Building 345E, DK-2800 Kongens Lyngby, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Martinez D, Py C, Denhoff M, Monette R, Comas T, Krantis A, Mealing G. Polymer peel-off mask for high-resolution surface derivatization, neuron placement and guidance. Biotechnol Bioeng 2013; 110:2236-41. [DOI: 10.1002/bit.24887] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/11/2022]
|
7
|
Schmold N, Syed NI. Molluscan neurons in culture: shedding light on synapse formation and plasticity. J Mol Histol 2012; 43:383-99. [PMID: 22538479 DOI: 10.1007/s10735-012-9398-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/20/2012] [Indexed: 12/29/2022]
Abstract
From genes to behaviour, the simple model system approach has played many pivotal roles in deciphering nervous system function in both invertebrates and vertebrates. However, with the advent of sophisticated imaging and recording techniques enabling the direct investigation of single vertebrate neurons, the utility of simple invertebrate organisms as model systems has been put to question. To address this subject meaningfully and comprehensively, we first review the contributions made by invertebrates in the field of neuroscience over the years, paving the way for similar breakthroughs in higher animals. In particular, we focus on molluscan (Lymnaea, Aplysia, and Helisoma) and leech (Hirudo) models and the pivotal roles they have played in elucidating mechanisms of synapse formation and plasticity. While the ultimate goal in neuroscience is to understand the workings of the human brain in both its normal and diseased states, the sheer complexity of most vertebrate models still makes it difficult to define the underlying principles of nervous system function. Investigators have thus turned to invertebrate models, which are unique with respect to their simple nervous systems that are endowed with a finite number of large, individually identifiable neurons of known function. We start off by discussing in vivo and semi-intact preparations, regarding their amenability to simple circuit analysis. Despite the 'simplicity' of invertebrate nervous systems however, it is still difficult to study individual synaptic connections in detail. We therefore emphasize in the next section, the utility of studying identified invertebrate neurons in vitro, to directly examine the development, specificity, and plasticity of synaptic connections in a well-defined environment, at a resolution that it is still unapproachable in the intact brain. We conclude with a discussion of the future of invertebrates in neuroscience in elucidating mechanisms of neurological disease and developing neuron-silicon interfaces.
Collapse
Affiliation(s)
- Nichole Schmold
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada0.
| | | |
Collapse
|
8
|
Py C, Martina M, Monette R, Comas T, Denhoff MW, Luk C, Syed NI, Mealing G. Culturing and electrophysiology of cells on NRCC patch-clamp chips. J Vis Exp 2012:3288. [PMID: 22348948 PMCID: PMC3567197 DOI: 10.3791/3288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Due to its exquisite sensitivity and the ability to monitor and control individual cells at the level of ion channels, patch-clamping is the gold standard of electrophysiology applied to disease models and pharmaceutical screens alike. The method traditionally involves gently contacting a cell with a glass pipette filled by a physiological solution in order to isolate a patch of the membrane under its apex. An electrode inserted in the pipette captures ion-channel activity within the membrane patch or, when ruptured, for the whole cell. In the last decade, patch-clamp chips have been proposed as an alternative: a suspended film separates the physiological medium from the culture medium, and an aperture microfabricated in the film replaces the apex of the pipette. Patch-clamp chips have been integrated in automated systems and commercialized for high-throughput screening. To increase throughput, they include the fluidic delivery of cells from suspension, their positioning on the aperture by suction, and automated routines to detect cell-to-probe seals and enter into whole cell mode. We have reported on the fabrication of a silicon patch-clamp chip with optimized impedance and orifice shape that permits the high-quality recording of action potentials in cultured snail neurons; recently, we have also reported progress towards interrogating mammalian neurons. Our patch-clamp chips are fabricated at the Canadian Photonics Fabrication Centre, a commercial foundry, and are available in large series. We are eager to engage in collaborations with electrophysiologists to validate the use of the NRCC technology in different models. The chips are used according to the general scheme represented in Figure 1: the silicon chip is at the bottom of a Plexiglas culture vial and the back of the aperture is connected to a subterranean channel fitted with tubes at either end of the package. Cells are cultured in the vial and the cell on top of the probe is monitored by a measuring electrode inserted in the channel .The two outside fluidic ports facilitate solution exchange with minimal disturbance to the cell; this is an advantage compared to glass pipettes for intracellular perfusion.
Collapse
Affiliation(s)
- Christophe Py
- Institute for Microstructural Sciences, National Research Council of Canada
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Py C, Martina M, Diaz-Quijada GA, Luk CC, Martinez D, Denhoff MW, Charrier A, Comas T, Monette R, Krantis A, Syed NI, Mealing GAR. From understanding cellular function to novel drug discovery: the role of planar patch-clamp array chip technology. Front Pharmacol 2011; 2:51. [PMID: 22007170 PMCID: PMC3184600 DOI: 10.3389/fphar.2011.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/05/2011] [Indexed: 11/20/2022] Open
Abstract
All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions - including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, thus limiting their use in modeling physiological function. These chips are therefore not most suitable for studies involving neuronal communication. Multielectrode arrays (MEAs), in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high-resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, approaches to chemical patterning for cell placement, and present physiological data from cultured neuronal cells.
Collapse
Affiliation(s)
- Christophe Py
- Institute for Microstructural Sciences, National Research Council of CanadaOttawa, ON, Canada
| | - Marzia Martina
- Institute for Biological Sciences, National Research Council of CanadaOttawa, ON, Canada
| | - Gerardo A. Diaz-Quijada
- Steacie Institute for Molecular Sciences, National Research Council of CanadaOttawa, ON, Canada
| | - Collin C. Luk
- Hotchkiss Brain Institute, University of CalgaryCalgary, AB, Canada
| | - Dolores Martinez
- Institute for Microstructural Sciences, National Research Council of CanadaOttawa, ON, Canada
| | - Mike W. Denhoff
- Institute for Microstructural Sciences, National Research Council of CanadaOttawa, ON, Canada
| | - Anne Charrier
- Centre Interdisciplinaire de Nanoscience de Marseille, Centre National de la Recherche ScientifiqueMarseille, France
| | - Tanya Comas
- Institute for Biological Sciences, National Research Council of CanadaOttawa, ON, Canada
| | - Robert Monette
- Institute for Biological Sciences, National Research Council of CanadaOttawa, ON, Canada
| | - Anthony Krantis
- Centre for Research in Biopharmaceuticals and Biotechnology. University of OttawaOttawa, ON, Canada
| | - Naweed I. Syed
- Hotchkiss Brain Institute, University of CalgaryCalgary, AB, Canada
| | - Geoffrey A. R. Mealing
- Institute for Biological Sciences, National Research Council of CanadaOttawa, ON, Canada
| |
Collapse
|
10
|
Diaz-Quijada GA, Maynard C, Comas T, Monette R, Py C, Krantis A, Mealing G. Surface Patterning with Chemisorbed Chemical Cues for Advancing Neurochip Applications. Ind Eng Chem Res 2011. [DOI: 10.1021/ie200358q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Anthony Krantis
- Centre for Research in Biopharmaceuticals and Biotechnology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
11
|
Martina M, Luk C, Py C, Martinez D, Comas T, Monette R, Denhoff M, Syed N, Mealing GAR. Recordings of cultured neurons and synaptic activity using patch-clamp chips. J Neural Eng 2011; 8:034002. [PMID: 21540486 DOI: 10.1088/1741-2560/8/3/034002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Planar patch-clamp chip technology has been developed to enhance the assessment of novel compounds for therapeutic efficacy and safety. However, this technology has been limited to recording ion channels expressed in isolated suspended cells, making the study of ion channel function in synaptic transmission impractical. Recently, we developed single- and dual-recording site planar patch-clamp chips and demonstrated their capacity to record ion channel activity from neurons established in culture. Such capacity provides the opportunity to record from synaptically connected neurons cultured on-chip. In this study we reconstructed, on-chip, a simple synaptic circuit between cultured pre-synaptic visceral dorsal 4 neurons and post-synaptic left pedal dorsal 1 neurons isolated from the mollusk Lymnaea stagnalis. Here we report the first planar patch-clamp chip recordings of synaptic phenomena from these paired neurons and pharmacologically demonstrate the cholinergic nature of this synapse. We also report simultaneous dual-site recordings from paired neurons, and demonstrate dedicated cytoplasmic perfusion of individual neurons via on-chip subterranean microfluidics. This is the first application of planar patch-clamp technology to examine synaptic communication.
Collapse
Affiliation(s)
- Marzia Martina
- Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mealing G, Py C. Patch-clamp array neurochips: value in interrogating simple neuronal networks with high resolution. Expert Rev Med Devices 2010; 8:3-5. [PMID: 21158534 DOI: 10.1586/erd.10.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|