1
|
Zhang Y, Feng X, Zheng B, Liu Y. Regulation and mechanistic insights into tensile strain in mesenchymal stem cell osteogenic differentiation. Bone 2024; 187:117197. [PMID: 38986825 DOI: 10.1016/j.bone.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are integral to bone remodeling and homeostasis, as they are capable of differentiating into osteogenic and adipogenic lineages. This differentiation is substantially influenced by mechanosensitivity, particularly to tensile strain, which is a prevalent mechanical stimulus known to enhance osteogenic differentiation. This review specifically examines the effects of various cyclic tensile stress (CTS) conditions on BMSC osteogenesis. It delves into the effects of different loading devices, magnitudes, frequencies, elongation levels, dimensionalities, and coculture conditions, providing a comparative analysis that aids identification of the most conducive parameters for the osteogenic differentiation of BMSCs. Subsequently, this review delineates the signaling pathways activated by CTS, such as Wnt/β-catenin, BMP, Notch, MAPK, PI3K/Akt, and Hedgehog, which are instrumental in mediating the osteogenic differentiation of BMSCs. Through a detailed examination of these pathways, this study elucidates the intricate mechanisms whereby tensile strain promotes osteogenic differentiation, offering valuable guidance for optimizing therapeutic strategies aimed at enhancing bone regeneration.
Collapse
Affiliation(s)
- Yongxin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China
| | - Xu Feng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China
| | - Bowen Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China.
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China.
| |
Collapse
|
2
|
Cai Z, Badr RGM, Hauer L, Chaudhuri K, Skabeev A, Schmid F, Pham JT. Phase separation dynamics in wetting ridges of polymer surfaces swollen with oils of different viscosities. SOFT MATTER 2024; 20:7300-7312. [PMID: 39248033 DOI: 10.1039/d4sm00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
When drops are placed on a sufficiently soft surface, the drop surface tension drives an out of plane deformation around the contact line (i.e., a wetting ridge). For soft elastomeric surfaces that are swollen with a liquid, capillarity from a drop can induce a phase separation in the wetting ridge. Using confocal microscopy, we study the dynamics of phase separation at the wetting ridge of glycerol drops on silicone elastomers, which are swollen with silicone oils of varying viscosity (i.e., molecular weight). We show that the viscosity of the swelling oil plays a large role in the oil separation size and separation rate. For networks swollen to near their maximum swelling (i.e., saturated), lower viscosity oil separates more and separates faster at early times compared to larger viscosity oil. During late-stage wetting, the growth rate of the separation is a function of viscosity and swelling ratio, which can be described by a simple diffusive model and a defined wetting ridge geometry. In this late-stage wetting, the higher viscosity oil evidently grows faster, likely because it is further from reaching equilibrium. Interestingly, the separated oil phase region grows with a nearly constant, geometrically similar shape. Understanding how phase separation occurs on swollen substrates should provide information on how to control drop spreading, sliding, adhesion, or friction on such surfaces.
Collapse
Affiliation(s)
- Zhuoyun Cai
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Rodrique G M Badr
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudingerweg 7, 55099, Germany.
| | - Lukas Hauer
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Krishnaroop Chaudhuri
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Artem Skabeev
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudingerweg 7, 55099, Germany.
| | - Jonathan T Pham
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
3
|
Apa L, Martire MV, Carraro S, Cosentino M, Del Prete Z, Peruzzi B, Rizzuto E. Development of an Optical System for Strain Drop Measurement of Osteosarcoma Cells on Substrates with Different Stiffness. SENSORS (BASEL, SWITZERLAND) 2024; 24:3383. [PMID: 38894171 PMCID: PMC11175146 DOI: 10.3390/s24113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Adherent cells perceive mechanical feedback from the underlying matrix and convert it into biochemical signals through a process known as mechanotransduction. The response to changes in the microenvironment relies on the cell's mechanical properties, including elasticity, which was recently identified as a biomarker for various diseases. Here, we propose the design, development, and characterization of a new system for the measurement of adherent cells' strain drop, a parameter correlated with cells' elasticity. To consider the interplay between adherent cells and the host extracellular matrix, cell stretching was combined with adhesion on substrates with different stiffnesses. The technique is based on the linear stretching of silicone chambers, high-speed image acquisition, and feedback for image centering. The system was characterized in terms of the strain homogeneity, impact of collagen coating, centering capability, and sensitivity. Subsequently, it was employed to measure the strain drop of two osteosarcoma cell lines, low-aggressive osteoblast-like SaOS-2 and high-aggressive 143B, cultured on two different substrates to recall the stiffness of the bone and lung extracellular matrices. Results demonstrated good substrate homogeneity, a negligible effect of the collagen coating, and an accurate image centering. Finally, the experimental results showed an average strain drop that was lower in the 143B cells in comparison with the SaOS-2 cells in all the tested conditions.
Collapse
Affiliation(s)
- Ludovica Apa
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (L.A.); (M.V.M.); (S.C.); (Z.D.P.)
| | - Maria Vittoria Martire
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (L.A.); (M.V.M.); (S.C.); (Z.D.P.)
| | - Serena Carraro
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (L.A.); (M.V.M.); (S.C.); (Z.D.P.)
| | - Marianna Cosentino
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (L.A.); (M.V.M.); (S.C.); (Z.D.P.)
| | - Barbara Peruzzi
- Bone Physiopathology Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (L.A.); (M.V.M.); (S.C.); (Z.D.P.)
| |
Collapse
|
4
|
Combriat T, Olsen PA, Låstad SB, Malthe-Sørenssen A, Krauss S, Dysthe DK. Acoustic Wave-Induced Stroboscopic Optical Mechanotyping of Adherent Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307929. [PMID: 38417124 DOI: 10.1002/advs.202307929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Indexed: 03/01/2024]
Abstract
In this study, a novel, high content technique using a cylindrical acoustic transducer, stroboscopic fast imaging, and homodyne detection to recover the mechanical properties (dynamic shear modulus) of living adherent cells at low ultrasonic frequencies is presented. By analyzing the micro-oscillations of cells, whole populations are simultaneously mechanotyped with sub-cellular resolution. The technique can be combined with standard fluorescence imaging allowing to further cross-correlate biological and mechanical information. The potential of the technique is demonstrated by mechanotyping co-cultures of different cell types with significantly different mechanical properties.
Collapse
Affiliation(s)
- Thomas Combriat
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
- Hybrid Technology Hub, University of Oslo, Institute of Basic Medical Sciences P.O. Box 1110 Blindern, Oslo, 0317, Norway
- Center for Computing in Science Education, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| | - Petter Angell Olsen
- Hybrid Technology Hub, University of Oslo, Institute of Basic Medical Sciences P.O. Box 1110 Blindern, Oslo, 0317, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
| | - Silja Borring Låstad
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| | - Anders Malthe-Sørenssen
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
- Center for Computing in Science Education, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| | - Stefan Krauss
- Hybrid Technology Hub, University of Oslo, Institute of Basic Medical Sciences P.O. Box 1110 Blindern, Oslo, 0317, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
| | - Dag Kristian Dysthe
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| |
Collapse
|
5
|
Constantinou I, Bastounis EE. Cell-stretching devices: advances and challenges in biomedical research and live-cell imaging. Trends Biotechnol 2023; 41:939-950. [PMID: 36604290 DOI: 10.1016/j.tibtech.2022.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023]
Abstract
Basic human functions such as breathing and digestion require mechanical stretching of cells and tissues. However, when it comes to laboratory experiments, the mechanical stretching that cells experience in the body is not often replicated, limiting the biomimetic nature of the studies and the relevance of results. Herein, we establish the importance of mechanical stretching during in vitro investigations by reviewing seminal works performed using cell-stretching platforms, highlighting important outcomes of these works as well as the engineering characteristics of the platforms used. Emphasis is placed on the compatibility of cell-stretching devices (CSDs) with live-cell imaging as well as their limitations and on the research advancements that could arise from live-cell imaging performed during cell stretching.
Collapse
Affiliation(s)
- Iordania Constantinou
- Institute of Microtechnology (IMT), Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Effie E Bastounis
- Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" EXC 2124, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
Hussien AA, Niederoest B, Bollhalder M, Goedecke N, Snedeker JG. The Stiffness-Sensitive Transcriptome of Human Tendon Stromal Cells. Adv Healthc Mater 2023; 12:e2101216. [PMID: 36509005 PMCID: PMC11468939 DOI: 10.1002/adhm.202101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/20/2022] [Indexed: 12/14/2022]
Abstract
Extracellular matrix stiffness is a major regulator of cellular states. Stiffness-sensing investigations are typically performed using cells that have acquired "mechanical memory" through prolonged conditioning in rigid environments, e.g., tissue culture plastic (TCP). This potentially masks the full extent of the matrix stiffness-driven mechanosensing programs. Here, a biomaterial composed of 2D mechanovariant silicone substrates with simplified and scalable surface biofunctionalization chemistry is developed to facilitate large-scale cell culture expansion processes. Using RNA sequencing, stiffness-mediated mechano-responses of human tendon-derived stromal cells are broadly mapped. Matrix elasticity (E.) approximating tendon microscale stiffness range (E. ≈ 35 kPa) distinctly favors transcriptional programs related to chromatin remodeling and Hippo signaling; whereas compliant stiffnesses (E. ≈ 2 kPa) are enriched in processes related to cell stemness, synapse assembly, and angiogenesis. While tendon stromal cells undergo dramatic phenotypic drift on conventional TCP, mechanovariant substrates abrogate this activation with tenogenic stiffnesses inducing a transcriptional program that strongly correlates with established tendon tissue-specific expression signature. Computational inference predicts that AKT1 and ERK1/2 are major stiffness-sensing signaling hubs. Together, these findings highlight how matrix biophysical cues may dictate the transcriptional identity of tendon cells, and how matrix mechano-reciprocity regulates diverse sets of previously underappreciated mechanosensitive processes in tendon fibroblasts.
Collapse
Affiliation(s)
- Amro A. Hussien
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Barbara Niederoest
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Maja Bollhalder
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Nils Goedecke
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Jess G. Snedeker
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| |
Collapse
|
7
|
Bermudez A, Gonzalez Z, Zhao B, Salter E, Liu X, Ma L, Jawed MK, Hsieh CJ, Lin NYC. Supracellular measurement of spatially varying mechanical heterogeneities in live monolayers. Biophys J 2022; 121:3358-3369. [PMID: 36028999 PMCID: PMC9515370 DOI: 10.1016/j.bpj.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/10/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
The mechanical properties of tissues have profound impacts on a wide range of biological processes such as embryo development (1,2), wound healing (3-6), and disease progression (7). Specifically, the spatially varying moduli of cells largely influence the local tissue deformation and intercellular interaction. Despite the importance of characterizing such a heterogeneous mechanical property, it has remained difficult to measure the supracellular modulus field in live cell layers with a high-throughput and minimal perturbation. In this work, we developed a monolayer effective modulus measurement by integrating a custom cell stretcher, light microscopy, and AI-based inference. Our approach first quantifies the heterogeneous deformation of a slightly stretched cell layer and converts the measured strain fields into an effective modulus field using an AI inference. This method allowed us to directly visualize the effective modulus distribution of thousands of cells virtually instantly. We characterized the mean value, SD, and correlation length of the effective cell modulus for epithelial cells and fibroblasts, which are in agreement with previous results. We also observed a mild correlation between cell area and stiffness in jammed epithelia, suggesting the influence of cell modulus on packing. Overall, our reported experimental platform provides a valuable alternative cell mechanics measurement tool that can be integrated with microscopy-based characterizations.
Collapse
Affiliation(s)
- Alexandra Bermudez
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Bioengineering, University of California, Los Angeles, California.
| | - Zachary Gonzalez
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Physics and Astronomy, University of California, Los Angeles, California
| | - Bao Zhao
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Ethan Salter
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Bioengineering, University of California, Los Angeles, California
| | - Xuanqing Liu
- Department of Computer Science, University of California, Los Angeles, California
| | - Leixin Ma
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Mohammad Khalid Jawed
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Cho-Jui Hsieh
- Department of Computer Science, University of California, Los Angeles, California
| | - Neil Y C Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Bioengineering, University of California, Los Angeles, California; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
8
|
Bio-Functionalized Ultra-Thin, Large-Area and Waterproof Silicone Membranes for Biomechanical Cellular Loading and Compliance Experiments. Polymers (Basel) 2022; 14:polym14112213. [PMID: 35683887 PMCID: PMC9182891 DOI: 10.3390/polym14112213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Biocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.) must be precisely controlled. The following parameters of membrane fabrication by means of the Floating-on-Water (FoW) method were investigated: (1) PDMS volume, (2) ambient temperature, (3) membrane deflection and (4) membrane mechanical compliance. Significant differences were found between all PDMS volumes and thicknesses tested (p < 0.01). They also differed from the calculated values. At room temperatures between 22 and 26 °C, significant differences in average thickness values were found, as well as a continuous decrease in thicknesses within a 4 °C temperature elevation. No correlation was found between the membrane thickness groups (between 3−4 µm) in terms of deflection and compliance. We successfully present a fabrication method for thin bio-functionalized membranes in conjunction with a four-step quality management system. The results highlight the importance of tight regulation of production parameters through quality control. The use of membranes described here could also become the basis for material testing on thin, viscous layers such as polymers, dyes and adhesives, which goes far beyond biological applications.
Collapse
|
9
|
Focus on time: dynamic imaging reveals stretch-dependent cell relaxation and nuclear deformation. Biophys J 2021; 120:764-772. [PMID: 33524370 DOI: 10.1016/j.bpj.2021.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Among the stimuli to which cells are exposed in vivo, it has been shown that tensile deformations induce specific cellular responses in musculoskeletal, cardiovascular, and stromal tissues. However, the early response of cells to sustained substrate-based stretch has remained elusive because of the short timescale at which it occurs. To measure the tensile mechanical properties of adherent cells immediately after the application of substrate deformations, we have developed a dynamic traction force microscopy method that enables subsecond temporal resolution imaging of transient subcellular events. The system employs a novel, to our knowledge, tracking approach with minimal computational overhead to compensate substrate-based, stretch-induced motion/drift of stretched single cells in real time, allowing capture of biophysical phenomena on multiple channels by fluorescent multichannel imaging on a single camera, thus avoiding the need for beam splitting with the associated loss of light. Using this tool, we have characterized the transient subcellular forces and nuclear deformations of single cells immediately after the application of equibiaxial strain. Our experiments reveal significant differences in the cell relaxation dynamics and in the intracellular propagation of force to the nuclear compartment in cells stretched at different strain rates and exposes the need for time control for the correct interpretation of dynamic cell mechanics experiments.
Collapse
|
10
|
Glover JD, Pham JT. Capillary-driven indentation of a microparticle into a soft, oil-coated substrate. SOFT MATTER 2020; 16:5812-5818. [PMID: 32412022 DOI: 10.1039/d0sm00296h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Small scale contact between a soft, liquid-coated layer and a stiff surface is common in many situations, from synovial fluid on articular cartilage to adhesives in humid environments. Moreover, many model studies on soft adhesive contacts are conducted with soft silicone elastomers, which possess uncrosslinked liquid molecules (i.e. silicone oil) when the modulus is low. We investigate how the thickness of a silicone oil layer on a soft substrate relates to the indentation depth of glass microspheres in contact with crosslinked PDMS, which have a modulus of <10 kPa. The particles indent into the underlying substrate more as a function of decreasing oil layer thickness. This is due to the presence of the liquid layer at the surface that causes capillary forces to pull down on the particle. A simple model that balances the capillary force of the oil layer and the minimal particle-substrate adhesion with the elastic and surface tension forces from the substrate is proposed to predict the particle indentation depth.
Collapse
Affiliation(s)
- Justin D Glover
- Department of Chemical and Material Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | | |
Collapse
|
11
|
Seelbinder B, Scott AK, Nelson I, Schneider SE, Calahan K, Neu CP. TENSCell: Imaging of Stretch-Activated Cells Reveals Divergent Nuclear Behavior and Tension. Biophys J 2020; 118:2627-2640. [PMID: 32407683 DOI: 10.1016/j.bpj.2020.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/08/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Mechanisms of cellular and nuclear mechanosensation are unclear, partially because of a lack of methods that can reveal dynamic processes. Here, we present a new concept for a low-cost, three-dimensionally printed device that enables high-magnification imaging of cells during stretch. We observed that nuclei of mouse embryonic skin fibroblasts underwent rapid (within minutes) and divergent responses, characterized by nuclear area expansion during 5% strain but nuclear area shrinkage during 20% strain. Only responses to low strain were dependent on calcium signaling, whereas actin inhibition abrogated all nuclear responses and increased nuclear strain transfer and DNA damage. Imaging of actin dynamics during stretch revealed similar divergent trends, with F-actin shifting away from (5% strain) or toward (20% strain) the nuclear periphery. Our findings emphasize the importance of simultaneous stimulation and data acquisition to capture mechanosensitive responses and suggest that mechanical confinement of nuclei through actin may be a protective mechanism during high mechanical stretch or loading.
Collapse
Affiliation(s)
- Benjamin Seelbinder
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Adrienne K Scott
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Isabel Nelson
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Stephanie E Schneider
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Kristin Calahan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
12
|
Glover JD, McLaughlin CE, McFarland MK, Pham JT. Extracting uncrosslinked material from low modulus sylgard 184 and the effect on mechanical properties. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Justin D. Glover
- Department of Chemical and Materials EngineeringUniversity of Kentucky, 177 F. Paul Anderson Tower Lexington Kentucky 40506
| | - Colbi E. McLaughlin
- Department of Chemical and Materials EngineeringUniversity of Kentucky, 177 F. Paul Anderson Tower Lexington Kentucky 40506
| | - Mary K. McFarland
- Department of Chemical and Materials EngineeringUniversity of Kentucky, 177 F. Paul Anderson Tower Lexington Kentucky 40506
| | - Jonathan T. Pham
- Department of Chemical and Materials EngineeringUniversity of Kentucky, 177 F. Paul Anderson Tower Lexington Kentucky 40506
| |
Collapse
|
13
|
Horvath AN, Holenstein CN, Silvan U, Snedeker JG. The Protein Mat(ters)-Revealing the Biologically Relevant Mechanical Contribution of Collagen- and Fibronectin-Coated Micropatterns. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41791-41798. [PMID: 31589401 DOI: 10.1021/acsami.9b12430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding cell-material interactions requires accurate characterization of the substrate mechanics, which are generally measured by indentation-type atomic force microscopy. To facilitate cell-substrate interaction, model extracellular matrix coatings are used although their tensile mechanical properties are generally unknown. In this study, beyond standard compressive stiffness estimation, we performed a novel tensile mechanical characterization of collagen- and fibronectin-micropatterned polyacrylamide hydrogels. We further demonstrate the impact of the protein mat on the tensile stiffness characterization of adherent cells. To our knowledge, our study is the first to uncover direction-dependent mechanical behavior of the protein coatings and to demonstrate that it affects cellular response relative to substrate mechanics.
Collapse
Affiliation(s)
- Aron N Horvath
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| | - Claude N Holenstein
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| | - Unai Silvan
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| | - Jess G Snedeker
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| |
Collapse
|
14
|
Holenstein CN, Horvath A, Schär B, Schoenenberger AD, Bollhalder M, Goedecke N, Bartalena G, Otto O, Herbig M, Guck J, Müller DA, Snedeker JG, Silvan U. The relationship between metastatic potential and in vitro mechanical properties of osteosarcoma cells. Mol Biol Cell 2019; 30:887-898. [PMID: 30785850 PMCID: PMC6589788 DOI: 10.1091/mbc.e18-08-0545] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma is the most frequent primary tumor of bone and is characterized by its high tendency to metastasize in lungs. Although treatment in cases of early diagnosis results in a 5-yr survival rate of nearly 60%, the prognosis for patients with secondary lesions at diagnosis is poor, and their 5-yr survival rate remains below 30%. In the present work, we have used a number of analytical methods to investigate the impact of increased metastatic potential on the biophysical properties and force generation of osteosarcoma cells. With that aim, we used two paired osteosarcoma cell lines, with each one comprising a parental line with low metastatic potential and its experimentally selected, highly metastatic form. Mechanical characterization was performed by means of atomic force microscopy, tensile biaxial deformation, and real-time deformability, and cell traction was measured using two-dimensional and micropost-based traction force microscopy. Our results reveal that the low metastatic osteosarcoma cells display larger spreading sizes and generate higher forces than the experimentally selected, highly malignant variants. In turn, the outcome of cell stiffness measurements strongly depends on the method used and the state of the probed cell, indicating that only a set of phenotyping methods provides the full picture of cell mechanics.
Collapse
Affiliation(s)
- Claude N Holenstein
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Aron Horvath
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Barbara Schär
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Angelina D Schoenenberger
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Maja Bollhalder
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Nils Goedecke
- Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Guido Bartalena
- Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.,Zentrum für Innovationskompetenz, Universität Greifswald, 17489 Greifswald, Germany
| | - Maik Herbig
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Daniel A Müller
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland
| | - Jess G Snedeker
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Unai Silvan
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| |
Collapse
|
15
|
Snedeker JG, Foolen J. Tendon injury and repair - A perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 2017; 63:18-36. [PMID: 28867648 DOI: 10.1016/j.actbio.2017.08.032] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
Tendon is an intricately organized connective tissue that efficiently transfers muscle force to the bony skeleton. Its structure, function, and physiology reflect the extreme, repetitive mechanical stresses that tendon tissues bear. These mechanical demands also lie beneath high clinical rates of tendon disorders, and present daunting challenges for clinical treatment of these ailments. This article aims to provide perspective on the most urgent frontiers of tendon research and therapeutic development. We start by broadly introducing essential elements of current understanding about tendon structure, function, physiology, damage, and repair. We then introduce and describe a novel paradigm explaining tendon disease progression from initial accumulation of damage in the tendon core to eventual vascular recruitment from the surrounding synovial tissues. We conclude with a perspective on the important role that biomaterials will play in translating research discoveries to the patient. STATEMENT OF SIGNIFICANCE Tendon and ligament problems represent the most frequent musculoskeletal complaints for which patients seek medical attention. Current therapeutic options for addressing tendon disorders are often ineffective, and the need for improved understanding of tendon physiology is urgent. This perspective article summarizes essential elements of our current knowledge on tendon structure, function, physiology, damage, and repair. It also describes a novel framework to understand tendon physiology and pathophysiology that may be useful in pushing the field forward.
Collapse
|
16
|
Abdalrahman T, Dubuis L, Green J, Davies N, Franz T. Cellular mechanosensitivity to substrate stiffness decreases with increasing dissimilarity to cell stiffness. Biomech Model Mechanobiol 2017; 16:2063-2075. [PMID: 28733924 DOI: 10.1007/s10237-017-0938-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/11/2017] [Indexed: 01/07/2023]
Abstract
Computational modelling has received increasing attention to investigate multi-scale coupled problems in micro-heterogeneous biological structures such as cells. In the current study, we investigated for a single cell the effects of (1) different cell-substrate attachment (2) and different substrate modulus [Formula: see text] on intracellular deformations. A fibroblast was geometrically reconstructed from confocal micrographs. Finite element models of the cell on a planar substrate were developed. Intracellular deformations due to substrate stretch of [Formula: see text], were assessed for: (1) cell-substrate attachment implemented as full basal contact (FC) and 124 focal adhesions (FA), respectively, and [Formula: see text]140 KPa and (2) [Formula: see text], 140, 1000, and 10,000 KPa, respectively, and FA attachment. The largest strains in cytosol, nucleus and cell membrane were higher for FC (1.35[Formula: see text], 0.235[Formula: see text] and 0.6[Formula: see text]) than for FA attachment (0.0952[Formula: see text], 0.0472[Formula: see text] and 0.05[Formula: see text]). For increasing [Formula: see text], the largest maximum principal strain was 4.4[Formula: see text], 5[Formula: see text], 5.3[Formula: see text] and 5.3[Formula: see text] in the membrane, 9.5[Formula: see text], 1.1[Formula: see text], 1.2[Formula: see text] and 1.2[Formula: see text] in the cytosol, and 4.5[Formula: see text], 5.3[Formula: see text], 5.7[Formula: see text] and 5.7[Formula: see text] in the nucleus. The results show (1) the importance of representing FA in cell models and (2) higher cellular mechanical sensitivity for substrate stiffness changes in the range of cell stiffness. The latter indicates that matching substrate stiffness to cell stiffness, and moderate variation of the former is very effective for controlled variation of cell deformation. The developed methodology is useful for parametric studies on cellular mechanics to obtain quantitative data of subcellular strains and stresses that cannot easily be measured experimentally.
Collapse
Affiliation(s)
- Tamer Abdalrahman
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Laura Dubuis
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Jason Green
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Neil Davies
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa. .,Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.
| |
Collapse
|
17
|
Chiu CH, Liu JL, Chang CH, Lei KF, Chen ACY. Investigation of osteogenic activity of primary rabbit periosteal cells stimulated by multi-axial tensile strain. Biomed Microdevices 2017; 19:13. [PMID: 28229307 DOI: 10.1007/s10544-017-0154-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Periosteum-derived cells was indicated to respond to mechanical force and have stem cell potential capable of differentiating into multiple tissue. Investigation of osteogenic activity under mechanical stimulation is important to understand the therapeutic conditions of fracture healing. In this work, a cell culture platform was developed for respectively providing isotropic and anisotropic axial strain. Primary rabbit periosteal cells were isolated and cultured in the chamber. Multi-axial tensile strain was received and osteogenic activity was investigated by mRNA expressions of CBFA1 and OPN. The highest mRNA expression was found in moderate strain (5-8%) under anisotropic axial strain. These results provided important foundation for further in vivo studies and development of tailor-made stretching rehabilitation equipment.
Collapse
Affiliation(s)
- Chih-Hao Chiu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Tooyuan Branch, Taoyuan, Taiwan
| | - Jun-Liang Liu
- Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hsuan Chang
- Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan, Taiwan
| | - Kin Fong Lei
- Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan, Taiwan.
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.
| | - Alvin Chao-Yu Chen
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Tooyuan Branch, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Design, Manufacture and Testing of Capacitive Pressure Sensors for Low-Pressure Measurement Ranges. MICROMACHINES 2017. [PMCID: PMC6190296 DOI: 10.3390/mi8020041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This article presents the design, manufacture and testing of a capacitive pressure sensor with a high, tunable performance to low compressive loads (<10 kPa) and a resolution of less than 0.5 kPa. Such a performance is required for the monitoring of treatment efficacy delivered by compression garments to treat or prevent medical conditions such as deep vein thrombosis, leg ulcers, varicose veins or hypertrophic scars. Current commercial sensors used in such medical applications have been found to be either impractical, costly or of insufficient resolution. A microstructured elastomer film of a polydimethylsiloxane (PDMS) blend with a tunable Young’s modulus was used as the force-sensing dielectric medium. The resulting 18 mm × 18 mm parallel-plate capacitive pressure sensor was characterised in the range of 0.8 to 6.5 kPa. The microstructuring of the surface morphology of the elastomer film combined with the tuning of the Young’s modulus of the PDMS blend is demonstrated to enhance the sensor performance achieving a 0.25 kPa pressure resolution and a 10 pF capacitive change under 6.5 kPa compressive load. The resulting sensor holds good potential for the targeted medical application.
Collapse
|
19
|
Bergert M, Lendenmann T, Zündel M, Ehret AE, Panozzo D, Richner P, Kim DK, Kress SJP, Norris DJ, Sorkine-Hornung O, Mazza E, Poulikakos D, Ferrari A. Confocal reference free traction force microscopy. Nat Commun 2016; 7:12814. [PMID: 27681958 PMCID: PMC5056408 DOI: 10.1038/ncomms12814] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/01/2016] [Indexed: 02/08/2023] Open
Abstract
The mechanical wiring between cells and their surroundings is fundamental to the regulation of complex biological processes during tissue development, repair or pathology. Traction force microscopy (TFM) enables determination of the actuating forces. Despite progress, important limitations with intrusion effects in low resolution 2D pillar-based methods or disruptive intermediate steps of cell removal and substrate relaxation in high-resolution continuum TFM methods need to be overcome. Here we introduce a novel method allowing a one-shot (live) acquisition of continuous in- and out-of-plane traction fields with high sensitivity. The method is based on electrohydrodynamic nanodrip-printing of quantum dots into confocal monocrystalline arrays, rendering individually identifiable point light sources on compliant substrates. We demonstrate the undisrupted reference-free acquisition and quantification of high-resolution continuous force fields, and the simultaneous capability of this method to correlatively overlap traction forces with spatial localization of proteins revealed using immunofluorescence methods. Traction force microscopy is an effective method of measuring forces between cells and their environment, but requires removing the cells to obtain a reference image. Here the authors use nanodrip printing of quantum dots into compliant substrates to provide a regular array of fiducial spots, removing the need for a reference image.
Collapse
Affiliation(s)
- Martin Bergert
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Tobias Lendenmann
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Manuel Zündel
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Alexander E Ehret
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland.,Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Daniele Panozzo
- ETH Zurich, Institute for Visual Computing, Interactive Geometry Lab, Universitätstrasse 6, 8092 Zurich, Switzerland.,Courant Institute of Mathematical Sciences, New York University, 719 Broadway, New York 10003, USA
| | - Patrizia Richner
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - David K Kim
- ETH Zurich, Optical Materials Engineering Laboratory, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Stephan J P Kress
- ETH Zurich, Optical Materials Engineering Laboratory, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - David J Norris
- ETH Zurich, Optical Materials Engineering Laboratory, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Olga Sorkine-Hornung
- ETH Zurich, Institute for Visual Computing, Interactive Geometry Lab, Universitätstrasse 6, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland.,Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Dimos Poulikakos
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Aldo Ferrari
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|
20
|
Pearson YE, Lund AW, Lin AWH, Ng CP, Alsuwaidi A, Azzeh S, Gater DL, Teo JCM. Non-invasive single-cell biomechanical analysis using live-imaging datasets. J Cell Sci 2016; 129:3351-64. [PMID: 27422102 DOI: 10.1242/jcs.191205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 12/31/2022] Open
Abstract
The physiological state of a cell is governed by a multitude of processes and can be described by a combination of mechanical, spatial and temporal properties. Quantifying cell dynamics at multiple scales is essential for comprehensive studies of cellular function, and remains a challenge for traditional end-point assays. We introduce an efficient, non-invasive computational tool that takes time-lapse images as input to automatically detect, segment and analyze unlabeled live cells; the program then outputs kinematic cellular shape and migration parameters, while simultaneously measuring cellular stiffness and viscosity. We demonstrate the capabilities of the program by testing it on human mesenchymal stem cells (huMSCs) induced to differentiate towards the osteoblastic (huOB) lineage, and T-lymphocyte cells (T cells) of naïve and stimulated phenotypes. The program detected relative cellular stiffness differences in huMSCs and huOBs that were comparable to those obtained with studies that utilize atomic force microscopy; it further distinguished naïve from stimulated T cells, based on characteristics necessary to invoke an immune response. In summary, we introduce an integrated tool to decipher spatiotemporal and intracellular dynamics of cells, providing a new and alternative approach for cell characterization.
Collapse
Affiliation(s)
- Yanthe E Pearson
- Department of Applied Mathematics and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alex W H Lin
- Endothelix, Inc., 2500 West Loop, South Houston, TX 77027, USA
| | - Chee P Ng
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 Mimetas BV, JH Oortweg 19, Leiden 2333 CH, The Netherlands
| | - Aysha Alsuwaidi
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Sara Azzeh
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Deborah L Gater
- Department of Applied Mathematics and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Jeremy C M Teo
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| |
Collapse
|
21
|
Application of reference point indentation for micro-mechanical surface characterization of calcium silicate based dental materials. Biomed Microdevices 2016; 18:25. [DOI: 10.1007/s10544-016-0047-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Goedecke N, Bollhalder M, Bernet R, Silvan U, Snedeker J. Easy and Accurate Mechano-profiling on Micropost Arrays. J Vis Exp 2015. [PMID: 26650118 DOI: 10.3791/53350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cell culture substrates with integrated flexible microposts enable a user to study the mechanical interactions between cells and their immediate surroundings. Particularly, cell-substrate interactions are the main interest. Today micropost arrays are a well-characterized and established method with a broad range of applications that have been published over the last decade. However, there seems to be a reservation among biologists to adapt the technique due to the lengthy and challenging process of micropost manufacture along with the lack of easily approachable software for analyzing images of cells interacting with microposts. The force read-out from microposts is surprisingly easy. A micropost acts like a spring with the cell ideally attached at its tip. Depending on size a cell applies force from its cytoskeleton through one or multiple focal adhesion points to the micropost, thus deflecting the micropost. The amount of deflection correlates directly to the applied force in direction and in magnitude. The number of microposts covered by a cell and the post deflection patterns are characteristic and allow determination of values like force per post and many biologically relevant parameters that allow "mechano-profiling" of cell phenotypes. A convenient method for mechano-profiling is described here combining the first generation of ready-to-use commercially available microposts with an in-house developed software package that is now accessible to all researchers. As a demonstration of typical application, single images of bone cancer cells were taken in bright-field microscopy for mechano-profiling of cell line models of metastasis. This combination of commercial traction force sensors and open source software for analysis allows for the first time a rapid implementation of the micropost array technique into routine lab work done by non-expert users. Furthermore, a robust and streamlined analysis process enables a user to analyze a large number of micropost images in a highly time-efficient manner.
Collapse
Affiliation(s)
| | | | - Remo Bernet
- University of Zurich, Balgrist University Hospital
| | - Unai Silvan
- University of Zurich, Balgrist University Hospital
| | - Jess Snedeker
- University of Zurich, Balgrist University Hospital; Institute for Biomechanics, ETH Zurich;
| |
Collapse
|
23
|
Palchesko RN, Zhang L, Sun Y, Feinberg AW. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One 2012; 7:e51499. [PMID: 23240031 PMCID: PMC3519875 DOI: 10.1371/journal.pone.0051499] [Citation(s) in RCA: 351] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 11/02/2012] [Indexed: 11/18/2022] Open
Abstract
Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.
Collapse
Affiliation(s)
- Rachelle N. Palchesko
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ling Zhang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Yan Sun
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Adam W. Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|