1
|
Li Q, Ye Z, Liu M, Liu W, Zhang P, Sun X, Zhang H, Li Z, Gui L. Precision enhanced alignment bonding technique with sacrificial strategy. Front Bioeng Biotechnol 2023; 11:1105154. [PMID: 36873376 PMCID: PMC9978516 DOI: 10.3389/fbioe.2023.1105154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
This work proposes an "N2-1" sacrificial strategy to help to improve the accuracy of the bonding technique from the existing level. The target micropattern is copied N2 times, and (N2-1) of them are sacrificed to obtain the most accurate alignment. Meanwhile, a method for manufacturing auxiliary solid alignment lines on transparent materials is proposed to visualize auxiliary marks and facilitate the alignment. Though the principle and procedure of alignment are straightforward, the alignment accuracy substantially improved compared to the original method. With this technique, we have successfully fabricated a high-precision 3D electroosmotic micropump just using a conventional desktop aligner. Because of the high precision during the alignment, the flow velocity is up to 435.62 μm/s at a driven voltage of 40 V, which far exceeds the previous similar reports. Thus, we believe that it has great potential for high precision microfluidic device fabrications.
Collapse
Affiliation(s)
- Qian Li
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zi Ye
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Mingyang Liu
- Energy Storage and Novel Technology of Electrical Engineering Department, China Electric Power Research Institute, Beijing, China
| | - Wei Liu
- Energy Storage and Novel Technology of Electrical Engineering Department, China Electric Power Research Institute, Beijing, China
| | - Pan Zhang
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Sun
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Zhang
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenming Li
- Energy Storage and Novel Technology of Electrical Engineering Department, China Electric Power Research Institute, Beijing, China
| | - Lin Gui
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Guglielmotti V, Saffioti NA, Tohmé AL, Gambarotta M, Corthey G, Pallarola D. A portable and affordable aligner for the assembly of microfluidic devices. HARDWAREX 2022; 12:e00348. [PMID: 36105917 PMCID: PMC9465365 DOI: 10.1016/j.ohx.2022.e00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The incorporation of sophisticated capabilities within microfluidic devices often requires the assembly of different layers in a correct arrangement. For example, when it is desired to include electrodes inside microfluidic channels or to create 3D microfluidic structures. However, the alignment between different substrates at the microscale requires expensive equipment not available for all research groups. In this work, we present an affordable, compact and portable aligner for assembling multilayered composite microfluidic chips. The instrument is composed of aluminum machined pieces combined with precision stages and includes a digital microscope with a LED illumination system for monitoring the alignment process. An interchangeable holder was created for substrate fixing, allowing the bonding of PDMS with other materials. Microscopic visualization is achieved through any device with internet access, avoiding the need of a computer attached to the aligner. To test the performance of the aligner, the center of an indium tin oxide microelectrode on a glass substrate was aligned with the center of a microchannel in a PDMS chip. The accuracy and precision of the instrument are suited for many microfluidic applications. The small and inexpensive design of the aligner makes it a cost-effective option for small groups working in microfluidics.
Collapse
|
3
|
Lai X, Yang M, Wu H, Li D. Modular Microfluidics: Current Status and Future Prospects. MICROMACHINES 2022; 13:1363. [PMID: 36014285 PMCID: PMC9414757 DOI: 10.3390/mi13081363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
This review mainly studies the development status, limitations, and future directions of modular microfluidic systems. Microfluidic technology is an important tool platform for scientific research and plays an important role in various fields. With the continuous development of microfluidic applications, conventional monolithic microfluidic chips show more and more limitations. A modular microfluidic system is a system composed of interconnected, independent modular microfluidic chips, which are easy to use, highly customizable, and on-site deployable. In this paper, the current forms of modular microfluidic systems are classified and studied. The popular fabrication techniques for modular blocks, the major application scenarios of modular microfluidics, and the limitations of modular techniques are also discussed. Lastly, this review provides prospects for the future direction of modular microfluidic technologies.
Collapse
Affiliation(s)
- Xiaochen Lai
- School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mingpeng Yang
- School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hao Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Mou L, Zhang Y, Feng Y, Hong H, Xia Y, Jiang X. Multiplexed Lab-on-a-Chip Bioassays for Testing Antibodies against SARS-CoV-2 and Its Variants in Multiple Individuals. Anal Chem 2022; 94:2510-2516. [PMID: 35080377 PMCID: PMC8805706 DOI: 10.1021/acs.analchem.1c04383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/17/2022] [Indexed: 01/04/2023]
Abstract
Neutralization assays that can measure neutralizing antibodies in serum are vital for large-scale serodiagnosis and vaccine evaluation. Here, we establish multiplexed lab-on-a-chip bioassays for testing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Compared with enzyme-linked immunosorbent assay (ELISA), our method exhibits a low consumption of sample and reagents (10 μL), a low limit of detection (LOD: 0.08 ng/mL), a quick sample-to-answer time (about 70 min), and multiplexed ability (5 targets in each of 7 samples in one assay). We can also increase the throughput as needed. The concentrations of antibodies against RBD, D614G, N501Y, E484K, and L452R/E484Q-mutants after two doses of vaccines are 6.6 ± 3.6, 8.7 ± 4.6, 3.4 ± 2.8, 3.8 ± 2.8, and 2.8 ± 2.3 ng/mL, respectively. This suggests that neutralizing activities against N501Y, E484K, and L452R/E484Q-mutants were less effective than RBD and D614G-mutant. We performed a plaque reduction neutralization test (PRNT) for all volunteers. Compared with PRNT, our assay is fast, accurate, inexpensive, and multiplexed with multiple-sample processing ability, which is good for large-scale serodiagnosis and vaccine evaluation.
Collapse
Affiliation(s)
- Lei Mou
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
- Department
of Biomedical Engineering, Southern University
of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yingying Zhang
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
- Department
of Clinical Laboratory, Bao’an Authentic
TCM Therapy Hospital, No. 99, Laian Road, Baoan District, Shenzhen, Guangdong 518101, P. R. China
| | - Yao Feng
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
| | - Honghai Hong
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
| | - Yong Xia
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
| | - Xingyu Jiang
- Department
of Clinical Laboratory, Third Affiliated
Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
- Department
of Biomedical Engineering, Southern University
of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
5
|
Chen G, Wang F, Nie M, Zhang H, Zhang H, Zhao Y. Roe-inspired stem cell microcapsules for inflammatory bowel disease treatment. Proc Natl Acad Sci U S A 2021; 118:e2112704118. [PMID: 34686606 PMCID: PMC8639345 DOI: 10.1073/pnas.2112704118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which exert regulatory effects on various immune cells, have been a promising therapy for inflammatory bowel disease treatment. However, their therapeutic effects are limited by lack of nutritional supply, immune system attack, and low accumulation on the target site. Here, inspired by the natural incubation mechanism of roe, we present immune-isolating, wet-adhesive, and nutrient-rich microcapsules for therapeutic MSCs encapsulation. The adhesive shells were fabricated by ionic cross-linking of alginate and visible curing of epsilon-poly-L-lysine-graft-methacrylamide and dopamine methacrylamide, which encapsulated the liquid core of the MSCs and roe proteins. Due to the core-shell construction of the resultant microcapsules, the MSCs might escape from attack of the immune system while still maintaining immunomodulating functions. In addition, the roe proteins encapsulated in the core phase offered sufficient nutrient supply for MSCs' survival and proliferation. Furthermore, after intraperitoneal transplantation, the wet-adhesive radicals on the shell surface could immobilize the MSCs-encapsulating microcapsules onto the bowel. Based on these features, practical values of the roe-inspired microcapsules with MSCs encapsulation were demonstrated by applying them to treat dextran sulfate sodium (DSS)-induced colitis through increasing residence time, regulating immune imbalance, and relieving disease progression. We believe that the proposed roe-inspired microcapsules with MSCs encapsulation are potential for clinical application.
Collapse
Affiliation(s)
- Guopu Chen
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Fengyuan Wang
- Department of Dermatology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Min Nie
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China;
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|