1
|
Tucci S, Wagner C, Grünert SC, Matysiak U, Weinhold N, Klein J, Porta F, Spada M, Bordugo A, Rodella G, Furlan F, Sajeva A, Menni F, Spiekerkoetter U. Genotype and residual enzyme activity in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: Are predictions possible? J Inherit Metab Dis 2021; 44:916-925. [PMID: 33580884 DOI: 10.1002/jimd.12368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/30/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common defect of mitochondrial β-oxidation. Confirmation diagnostics after newborn screening (NBS) can be performed either by enzyme testing and/or by sequencing of the ACADM gene. Here, we report the results from enzyme testing in lymphocytes with gene variants from molecular analysis of the ACADM gene and with the initial acylcarnitine concentrations in the NBS sample. From April 2013 to August 2019, in 388 individuals with characteristic acylcarnitine profiles suggestive of MCADD the octanoyl-CoA-oxidation was measured in lymphocytes. In those individuals with residual activities <50%, molecular genetic analysis of the ACADM gene was performed. In 50% of the samples (195/388), MCADD with a residual activity ranging from 0% to 30% was confirmed. Forty-five percent of the samples (172/388) showed a residual activity >35% excluding MCADD. In the remaining 21 individuals, MCAD residual activity ranged from 30% to 35%. The latter group comprised both heterozygous carriers and individuals carrying two gene variants on different alleles. Twenty new variants could be identified and functionally classified based on their effect on enzyme function. C6 and C8 acylcarnitine species in NBS correlated with MCAD activity and disease severity. MCADD was only confirmed in half of the cases referred suggesting a higher false positive rate than expected. Measurement of the enzyme function in lymphocytes allowed fast confirmation diagnostics and clear determination of the pathogenicity of new gene variants. There is a clear correlation between genotype and enzyme function underlining the reproducibility of the functional measurement in vitro.
Collapse
Affiliation(s)
- Sara Tucci
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christine Wagner
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Uta Matysiak
- Pediatric Genetics, Center for Pediatrics and Adolescent Medicine, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Weinhold
- Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Center for Chronically Sick Children, Berlin, Germany
| | - Jeannette Klein
- Newborn Screening Laboratory, Otto-Heubner-Center for Pediatrics and Adolescent Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Francesco Porta
- Department of Pediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | - Marco Spada
- Department of Pediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Turin, Italy
| | - Andrea Bordugo
- Department of Mother and Child, Pediatric Clinic, University Hospital of Verona, Verona, Italy
- Inherited Metabolic Diseases Unit, Department of Paediatrics, Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine Diseases, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giulia Rodella
- Department of Mother and Child, Pediatric Clinic, University Hospital of Verona, Verona, Italy
- Inherited Metabolic Diseases Unit, Department of Paediatrics, Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine Diseases, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Francesca Furlan
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Sajeva
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Menni
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
2
|
Verkerk AO, Knottnerus SJG, Portero V, Bleeker JC, Ferdinandusse S, Guan K, IJlst L, Visser G, Wanders RJA, Wijburg FA, Bezzina CR, Mengarelli I, Houtkooper RH. Electrophysiological Abnormalities in VLCAD Deficient hiPSC-Cardiomyocytes Do not Improve with Carnitine Supplementation. Front Pharmacol 2021; 11:616834. [PMID: 33597881 PMCID: PMC7883678 DOI: 10.3389/fphar.2020.616834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with a deficiency in very long-chain acyl-CoA dehydrogenase (VLCAD), an enzyme that is involved in the mitochondrial beta-oxidation of long-chain fatty acids, are at risk for developing cardiac arrhythmias. In human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), VLCAD deficiency (VLCADD) results in a series of abnormalities, including: 1) accumulation of long-chain acylcarnitines, 2) action potential shortening, 3) higher systolic and diastolic intracellular Ca2+ concentrations, and 4) development of delayed afterdepolarizations. In the fatty acid oxidation process, carnitine is required for bidirectional transport of acyl groups across the mitochondrial membrane. Supplementation has been suggested as potential therapeutic approach in VLCADD, but its benefits are debated. Here, we studied the effects of carnitine supplementation on the long-chain acylcarnitine levels and performed electrophysiological analyses in VLCADD patient-derived hiPSC-CMs with a ACADVL gene mutation (p.Val283Ala/p.Glu381del). Under standard culture conditions, VLCADD hiPSC-CMs showed high concentrations of long-chain acylcarnitines, short action potentials, and high delayed afterdepolarizations occurrence. Incubation of the hiPSC-CMs with 400 µM L-carnitine for 48 h led to increased long-chain acylcarnitine levels both in medium and cells. In addition, carnitine supplementation neither restored abnormal action potential parameters nor the increased occurrence of delayed afterdepolarizations in VLCADD hiPSC-CMs. We conclude that long-chain acylcarnitine accumulation and electrophysiological abnormalities in VLCADD hiPSC-CMs are not normalized by carnitine supplementation, indicating that this treatment is unlikely to be beneficial against cardiac arrhythmias in VLCADD patients.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Suzan J G Knottnerus
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Vincent Portero
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeannette C Bleeker
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Gepke Visser
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Frits A Wijburg
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Isabella Mengarelli
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|
3
|
Tucci S, Behringer S, Sturm M, Grünert SC, Spiekerkoetter U. Implementation of a fast method for the measurement of carnitine palmitoyltransferase 2 activity in lymphocytes by tandem mass spectrometry as confirmation for newborn screening. J Inherit Metab Dis 2019; 42:850-856. [PMID: 30957255 DOI: 10.1002/jimd.12098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/03/2019] [Indexed: 11/10/2022]
Abstract
Carnitine palmitoyltransferase II (CPT2) is a rare autosomal recessive inherited disorder affecting mitochondrial β-oxidation. Confirmation diagnostics are mostly based on molecular sequencing of the CPT2 gene, especially to distinguish CPT2 and carnitine:aclycarnitine translocase deficiencies, which present with identical acylcarnitine profiles on newborn screening (NBS). In the past, different enzyme tests in muscle biopsies have been developed in order to study the functional effect in one of the main target organs. In this study, we implemented a method for measurement of CPT2 enzyme activity in human lymphocytes with detection of the reaction products via liquid chromatography mass spectrometry to enable the simultaneous evaluation of the functional impairment and the clear diagnosis of the disease. CPT2 activity was measured in samples collected from CPT2 patients (n = 11), heterozygous carriers (n = 6), and healthy individuals (n = 52). Seven patients out of 11 were homozygous for the common mutation c.338T>C and showed a residual activity with median values of 19.2 ± 3.7% of healthy controls. Heterozygous carriers showed a residual activity in the range of 42% to 75%. Four individuals carrying the heterozygous mutation c.338T>C showed a 2-fold higher residual activity as compared to homozygous individuals. Our optimized method for the measurement of CPT2 activity is able to clearly discriminate between patients and healthy individuals and offers the possibility to determine CPT2 activity in human lymphocytes avoiding the need of an invasive muscle biopsy. This method can be successfully used for confirmation diagnosis in case of positive NBS and would markedly reduce the time to define diagnosis.
Collapse
Affiliation(s)
- Sara Tucci
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sidney Behringer
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Marga Sturm
- Department of General Pediatrics, University Children's Hospital Duesseldorf, Duesseldorf, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
4
|
Two siblings with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency suffered from rhabdomyolysis after l-carnitine supplementation. Mol Genet Metab Rep 2018; 15:121-123. [PMID: 30023301 PMCID: PMC6047112 DOI: 10.1016/j.ymgmr.2018.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/21/2022] Open
Abstract
Introduction Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an autosomal recessive mitochondrial fatty acid oxidation disorder and presents as hypoketotic hypoglycemia or rhabdomyolysis during childhood. l-Carnitine supplementation for patients with VLCAD deficiency is controversial. Herein, we describe two siblings with VLCAD deficiency who experienced more frequent episodes of rhabdomyolysis after l-carnitine supplementation. Case presentation Case 1 involved a 6-year-old boy who was diagnosed with VLCAD deficiency after repeated episodes of hypoketotic hypoglycemia at 3 years of age. He developed rhabdomyolysis more frequently after starting l-carnitine supplementation. Case 2 involved an 8-year-old boy, the elder brother of case 1, who was also diagnosed with VLCAD deficiency by sibling screening at the age of 5 years. He first developed rhabdomyolysis during a common cold after treatment with l-carnitine. Both patients had fewer rhabdomyolysis episodes after the cessation of l-carnitine supplementation. Conclusion Our cases suggest that l-carnitine supplementation can increase rhabdomyolysis attacks in patients with VLCAD deficiency.
Collapse
|
5
|
Bakermans AJ, van Weeghel M, Denis S, Nicolay K, Prompers JJ, Houten SM. Carnitine supplementation attenuates myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice. J Inherit Metab Dis 2013; 36:973-81. [PMID: 23563854 DOI: 10.1007/s10545-013-9604-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 12/31/2022]
Abstract
PURPOSE Elevation of long-chain acylcarnitine levels is a hallmark of long-chain mitochondrial β-oxidation (FAO) disorders, and can be accompanied by secondary carnitine deficiency. To restore free carnitine levels, and to increase myocardial export of long-chain fatty acyl-CoA esters, supplementation of L-carnitine in patients has been proposed. However, carnitine supplementation is controversial, because it may enhance the potentially lipotoxic buildup of long-chain acylcarnitines in the FAO-deficient heart. In this longitudinal study, we investigated the effects of carnitine supplementation in an animal model of long-chain FAO deficiency, the long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mouse. METHODS Cardiac size and function, and triglyceride (TG) levels were quantified using proton magnetic resonance imaging (MRI) and spectroscopy ((1)H-MRS) in LCAD KO and wild-type (WT) mice. Carnitine was supplemented orally for 4 weeks starting at 5 weeks of age. Non-supplemented animals served as controls. In vivo data were complemented with ex vivo biochemical assays. RESULTS LCAD KO mice displayed cardiac hypertrophy and elevated levels of myocardial TG compared to WT mice. Carnitine supplementation lowered myocardial TG, normalizing myocardial TG levels in LCAD KO mice. Furthermore, carnitine supplementation did not affect cardiac performance and hypertrophy, or induce an accumulation of potentially toxic long-chain acylcarnitines in the LCAD KO heart. CONCLUSION This study lends support to the proposed beneficial effect of carnitine supplementation alleviating toxicity by exporting acylcarnitines out of the FAO-deficient myocardium, rather than to the concern about a potentially detrimental effect of supplementation-induced production of lipotoxic long-chain acylcarnitines.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
Sturm M, Herebian D, Mueller M, Laryea MD, Spiekerkoetter U. Functional effects of different medium-chain acyl-CoA dehydrogenase genotypes and identification of asymptomatic variants. PLoS One 2012; 7:e45110. [PMID: 23028790 PMCID: PMC3444485 DOI: 10.1371/journal.pone.0045110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/17/2012] [Indexed: 12/30/2022] Open
Abstract
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (OMIM 201450) is the most common inherited disorder of fatty acid metabolism presenting with hypoglycaemia, hepatopathy and Reye-like symptoms during catabolism. In the past, the majority of patients carried the prevalent c.985A>G mutation in the ACADM gene. Since the introduction of newborn screening many other mutations with unknown clinical relevance have been identified in asymptomatic newborns. In order to identify functional effects of these mutant genotypes we correlated residual MCAD (OMIM 607008) activities as measured by octanoyl-CoA oxidation in lymphocytes with both genotype and relevant medical reports in 65 newborns harbouring mutant alleles. We identified true disease-causing mutations with residual activities of 0 to 20%. In individuals carrying the c.199T>C or c.127G>A mutation on one allele, residual activities were much higher and in the range of heterozygotes (31%-60%). Therefore, both mutations cannot clearly be associated with a clinical phenotype. This demonstrates a correlation between the octanoyl-CoA oxidation rate in lymphocytes and the clinical outcome. With newborn screening, the natural course of disease is difficult to assess. The octanoyl-CoA oxidation rate, therefore, allows a risk assessment at birth and the identification of new ACADM genotypes associated with asymptomatic disease variants.
Collapse
Affiliation(s)
- Marga Sturm
- Department of General Pediatrics, University Childreńs Hospital, Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Inherited biochemical defects may present with acute life-threatening illness with a high mortality and morbidity. Some are treatable and have a good outcome with early appropriate intervention. However, because of their rarity, diagnosis is often delayed; they are not considered or investigated appropriately. This is especially likely in those presenting in previously healthy adults. The collection of acute samples is crucial. There are numerous disorders, and front-line tests must cast a wide net. A small core of emergency tests generally indicates which metabolic pathway is defective and provides a working diagnosis and basis for treatment. Later confirmation and identification of the precise defect are essential for long-term management and for genetic counselling and prenatal diagnosis of future pregnancies. An escalating number of specialist tests and mutation analyses are undertaken by metabolic laboratories worldwide, but they are not widely available, are expensive, and must be requested selectively. Guidelines are presented here for the front-line investigation of acutely ill children with hypoglycaemia, metabolic acidosis, encephalopathy and intractable seizures, and for a dying child with a suspected, undiagnosed, inherited metabolic defect. With modification, these are also applicable to adults with a metabolic defect. In order to guide further investigation, selected disorders are described briefly along with their diagnostic work-up. Information about sample collection and processing is provided.
Collapse
|
8
|
Goetzman ES. Modeling Disorders of Fatty Acid Metabolism in the Mouse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:389-417. [DOI: 10.1016/b978-0-12-384878-9.00010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Hori T, Fukao T, Kobayashi H, Teramoto T, Takayanagi M, Hasegawa Y, Yasuno T, Yamaguchi S, Kondo N. Carnitine palmitoyltransferase 2 deficiency: the time-course of blood and urinary acylcarnitine levels during initial L-carnitine supplementation. TOHOKU J EXP MED 2010; 221:191-5. [PMID: 20543534 DOI: 10.1620/tjem.221.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Carnitine palmitoyltransferase 2 (CPT2) deficiency is one of the most common mitochondrial beta-oxidation defects. A female patient with an infantile form of CPT2 deficiency first presented as having a Reye-like syndrome with hypoglycemic convulsions. Oral L-carnitine supplementation was administered since serum free carnitine level was very low (less than 10 micromol/L), indicating secondary carnitine deficiency. Her serum and urinary acylcarnitine profiles were analyzed successively to evaluate time-course effects of L-carnitine supplementation. After the first two days of L-carnitine supplementation, the serum level of free carnitine was elevated; however, the serum levels of acylcarnitines and the urinary excretion of both free carnitine and acylcarnitines remained low. A peak of the serum free carnitine level was detected on day 5, followed by a peak of acetylcarnitine on day 7, and peaks of long-chain acylcarnitines, such as C16, C18, C18:1 and C18:2 carnitines, on day 9. Thereafter free carnitine became predominant again. These peaks of the serum levels corresponded to urinary excretion peaks of free carnitine, acetylcarnitine, and medium-chain dicarboxylic carnitines, respectively. It took several days for oral L-carnitine administration to increase the serum carnitine levels, probably because the intracellular stores were depleted. Thereafter, the administration increased the excretion of abnormal acylcarnitines, some of which had accumulated within the tissues. The excretion of medium-chain dicarboxylic carnitines dramatically decreased on day 13, suggesting improvement of tissue acylcarnitine accumulation. These time-course changes in blood and urinary acylcarnitine levels after L-carnitine supplementation support the effectiveness of L-carnitine supplementation to CPT2-deficient patients.
Collapse
Affiliation(s)
- Tomohiro Hori
- Department of Pediatrics, Gifu University Graduate School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Laforêt P, Vianey-Saban C, Vissing J. 162nd ENMC International Workshop: Disorders of muscle lipid metabolism in adults 28–30 November 2008, Bussum, The Netherlands. Neuromuscul Disord 2010; 20:283-9. [DOI: 10.1016/j.nmd.2010.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Spiekerkoetter U, Lindner M, Santer R, Grotzke M, Baumgartner MR, Boehles H, Das A, Haase C, Hennermann JB, Karall D, de Klerk H, Knerr I, Koch HG, Plecko B, Röschinger W, Schwab KO, Scheible D, Wijburg FA, Zschocke J, Mayatepek E, Wendel U. Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis 2009; 32:498-505. [PMID: 19452263 DOI: 10.1007/s10545-009-1126-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 12/13/2022]
Abstract
Published data on treatment of fatty acid oxidation defects are scarce. Treatment recommendations have been developed on the basis of observations in 75 patients with long-chain fatty acid oxidation defects from 18 metabolic centres in Central Europe. Recommendations are based on expert practice and are suggested to be the basis for further multicentre prospective studies and the development of approved treatment guidelines. Considering that disease complications and prognosis differ between different disorders of long-chain fatty acid oxidation and also depend on the severity of the underlying enzyme deficiency, treatment recommendations have to be disease-specific and depend on individual disease severity. Disorders of the mitochondrial trifunctional protein are associated with the most severe clinical picture and require a strict fat-reduced and fat-modified (medium-chain triglyceride-supplemented) diet. Many patients still suffer acute life-threatening events or long-term neuropathic symptoms despite adequate treatment, and newborn screening has not significantly changed the prognosis for these severe phenotypes. Very long-chain acyl-CoA dehydrogenase deficiency recognized in neonatal screening, in contrast, frequently has a less severe disease course and dietary restrictions in many patients may be loosened. On the basis of the collected data, recommendations are given with regard to the fat and carbohydrate content of the diet, the maximal length of fasting periods and the use of l-carnitine in long-chain fatty acid oxidation defects.
Collapse
Affiliation(s)
- U Spiekerkoetter
- Department of General Pediatrics, University Children's Hospital, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Spiekerkoetter U, Lindner M, Santer R, Grotzke M, Baumgartner MR, Boehles H, Das A, Haase C, Hennermann JB, Karall D, de Klerk H, Knerr I, Koch HG, Plecko B, Röschinger W, Schwab KO, Scheible D, Wijburg FA, Zschocke J, Mayatepek E, Wendel U. Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop. J Inherit Metab Dis 2009; 32:488-97. [PMID: 19399638 DOI: 10.1007/s10545-009-1125-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
Abstract
At present, long-chain fatty acid oxidation (FAO) defects are diagnosed in a number of countries by newborn screening using tandem mass spectrometry. In the majority of cases, affected newborns are asymptomatic at time of diagnosis and acute clinical presentations can be avoided by early preventive measures. Because evidence-based studies on management of long-chain FAO defects are lacking, we carried out a retrospective analysis of 75 patients from 18 metabolic centres in Germany, Switzerland, Austria and the Netherlands with special regard to treatment and disease outcome. Dietary treatment is effective in many patients and can prevent acute metabolic derangements and prevent or reverse severe long-term complications such as cardiomyopathy. However, 38% of patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency had intermittent muscle weakness and pain despite adhering to therapy. Seventy-six per cent of patients with disorders of the mitochondrial trifunctional protein (TFP)-complex including long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency, had long-term myopathic symptoms. Of these, 21% had irreversible peripheral neuropathy and 43% had retinopathy. The main principle of treatment was a fat-reduced and fat-modified diet. Fat restriction differed among patients with different enzyme defects and was strictest in disorders of the TFP-complex. Patients with a medium-chain fat-based diet received supplementation of essential long-chain fatty acids. l-Carnitine was supplemented in about half of the patients, but in none of the patients with VLCAD deficiency identified by newborn screening. In summary, in this cohort the treatment regimen was adapted to the severity of the underlying enzyme defect and thus differed among the group of long-chain FAO defects.
Collapse
Affiliation(s)
- U Spiekerkoetter
- Department of General Pediatrics, University Children's Hospital, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Arnold GL, Van Hove J, Freedenberg D, Strauss A, Longo N, Burton B, Garganta C, Ficicioglu C, Cederbaum S, Harding C, Boles RG, Matern D, Chakraborty P, Feigenbaum A. A Delphi clinical practice protocol for the management of very long chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2009; 96:85-90. [PMID: 19157942 PMCID: PMC3219055 DOI: 10.1016/j.ymgme.2008.09.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/29/2008] [Accepted: 09/29/2008] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is a disorder of oxidation of long chain fat, and can present as cardiomyopathy or fasting intolerance in the first months to years of life, or as myopathy in later childhood to adulthood. Expanded newborn screening has identified a relatively high incidence of this disorder (1:31,500), but there is a dearth of evidence-based outcomes data to guide the development of clinical practice protocols. This consensus protocol is intended to assist clinicians in the diagnosis and management of screen-positive newborns for VLCAD deficiency until evidence-based guidelines are available. METHOD The Oxford Centre for Evidence-based Medicine system was used to grade the literature review and create recommendations graded from A (evidence level of randomized clinical trials) to D (expert opinion). Delphi was used as the consensus tool. A panel of 14 experts (including clinicians, diagnostic laboratory directors and researchers) completed three rounds of survey questions and had a face-to-face meeting. RESULT Panelists reviewed the initial evaluation of the screen-positive infant, diagnostic testing and management of diagnosed patients. Grade C and D consensus recommendations were made in each of these three areas. The panel did not reach consensus on all issues, particularly in the dietary management of asymptomatic infants diagnosed by newborn screening.
Collapse
Affiliation(s)
- Georgianne L Arnold
- Department of Pediatrics, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
ter Veld F, Primassin S, Hoffmann L, Mayatepek E, Spiekerkoetter U. Corresponding increase in long-chain acyl-CoA and acylcarnitine after exercise in muscle from VLCAD mice. J Lipid Res 2008; 50:1556-62. [PMID: 18980943 DOI: 10.1194/jlr.m800221-jlr200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-chain acylcarnitines accumulate in long-chain fatty acid oxidation defects, especially during periods of increased energy demand from fat. To test whether this increase in long-chain acylcarnitines in very long-chain acyl-CoA dehydrogenase (VLCAD(-/-)) knock-out mice correlates with acyl-CoA content, we subjected wild-type (WT) and VLCAD(-/-) mice to forced treadmill running and analyzed muscle long-chain acyl-CoA and acylcarnitine with tandem mass spectrometry (MS/MS) in the same tissues. After exercise, long-chain acyl-CoA displayed a significant increase in muscle from VLCAD(-/-) mice [C16:0-CoA, C18:2-CoA and C18:1-CoA in sedentary VLCAD(-/-): 5.95 +/- 0.33, 4.48 +/- 0.51, and 7.70 +/- 0.30 nmol x g(-1) wet weight, respectively; in exercised VLCAD(-/-): 8.71 +/- 0.42, 9.03 +/- 0.93, and 14.82 +/- 1.20 nmol x g(-1) wet weight, respectively (P < 0.05)]. Increase in acyl-CoA in VLCAD-deficient muscle was paralleled by a significant increase in the corresponding chain length acylcarnitine. Exercise resulted in significant lowering of the free carnitine pool in VLCAD(-/-) muscle. This is the first study demonstrating that acylcarnitines and acyl-CoA directly correlate and concomitantly increase after exercise in VLCAD-deficient muscle.
Collapse
Affiliation(s)
- Frank ter Veld
- Department of General Pediatrics, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
15
|
Primassin S, Ter Veld F, Mayatepek E, Spiekerkoetter U. Carnitine supplementation induces acylcarnitine production in tissues of very long-chain acyl-CoA dehydrogenase-deficient mice, without replenishing low free carnitine. Pediatr Res 2008; 63:632-7. [PMID: 18317232 DOI: 10.1203/pdr.0b013e31816ff6f0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) results in accumulation of C14-C18 acylcarnitines and low free carnitine. Carnitine supplementation is still controversial. VLCAD knockout (VLCAD(+/-)) mice exhibit a similar clinical and biochemical phenotype to those observed in humans. VLCAD(+/-) mice were fed with carnitine dissolved in drinking water. Carnitine, acylcarnitines, and gamma-butyrobetaine were measured in blood and tissues. Measurements were performed under resting conditions, after exercise and after 24 h of regeneration. HepG2 cells were incubated with palmitoyl-CoA and palmitoyl-carnitine, respectively, to examine toxicity. With carnitine supplementation, acylcarnitine production was significantly induced. Nevertheless, carnitine was low in skeletal muscle after exercise. Without carnitine supplementation, liver carnitine significantly increased after exercise, and after 24 h of regeneration, carnitine concentrations in skeletal muscle completely replenished to initial values. Incubation of hepatic cells with palmitoyl-CoA and palmitoyl-carnitine revealed a significantly reduced cell viability after incubation with palmitoyl-carnitine. The present study demonstrates that carnitine supplementation results in significant accumulation of potentially toxic acylcarnitines in tissues. The expected prevention of low tissue carnitine was not confirmed. The principle mechanism regulating carnitine homeostasis seems to be endogenous carnitine biosynthesis, also under conditions with increased demand of carnitine such as in VLCAD-deficiency.
Collapse
Affiliation(s)
- Sonja Primassin
- Department of General Pediatrics, University Children's Hospital, Duesseldorf D-40225, Germany.
| | | | | | | |
Collapse
|