1
|
Crane HM, Asher S, Conway L, Drivas TG, Kallish S. Unraveling a history of overlap: A phenotypic comparison of RBCK1-related disease and glycogen storage disease type IV. Am J Med Genet A 2024; 194:e63574. [PMID: 38436530 DOI: 10.1002/ajmg.a.63574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
RBCK1-related disease is a rare, multisystemic disorder for which our current understanding of the natural history is limited. A number of individuals initially carried clinical diagnoses of glycogen storage disease IV (GSD IV), but were later found to harbor RBCK1 pathogenic variants, demonstrating challenges of correctly diagnosing RBCK1-related disease. This study carried out a phenotypic comparison between RBCK1-related disease and GSD IV to identify features that clinically differentiate these diagnoses. Literature review and retrospective chart review identified 25 individuals with RBCK1-related disease and 36 with the neuromuscular subtype of GSD IV. Clinical features were evaluated to assess for statistically significant differences between the conditions. At a system level, any cardiac, autoinflammation, immunodeficiency, growth, or dermatologic involvement were suggestive of RBCK1, whereas any respiratory involvement suggested GSD IV. Several features warrant further exploration as predictors of RBCK1, such as generalized weakness, heart transplant, and recurrent infections, among others. Distinguishing RBCK1-related disease will facilitate correct diagnoses and pave the way for accurately identifying affected individuals, as well as for developing management recommendations, treatment, and an enhanced understanding of the natural history. This knowledge may also inform which individuals thought to have GSD IV should undergo reevaluation for RBCK1.
Collapse
Affiliation(s)
- Haley M Crane
- Master of Science in Genetic Counseling Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie Asher
- Penn Medicine, Department of Medicine, Division of Translational Medicine and Human Genetics, Philadelphia, Pennsylvania, USA
| | - Laura Conway
- Master of Science in Genetic Counseling Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theodore G Drivas
- Penn Medicine, Department of Medicine, Division of Translational Medicine and Human Genetics, Philadelphia, Pennsylvania, USA
| | - Staci Kallish
- Penn Medicine, Department of Medicine, Division of Translational Medicine and Human Genetics, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Gayed MM, Sgobbi P, Pinto WBVDR, Kishnani PS, Koch RL. Case report: Expanding the understanding of the adult polyglucosan body disease continuum: novel presentations, diagnostic pitfalls, and clinical pearls. Front Genet 2023; 14:1282790. [PMID: 38164512 PMCID: PMC10758020 DOI: 10.3389/fgene.2023.1282790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Adult polyglucosan body disease (APBD) has long been regarded as the adult-onset form of glycogen storage disease type IV (GSD IV) and is caused by biallelic pathogenic variants in GBE1. Advances in the understanding of the natural history of APBD published in recent years have led to the use of discrete descriptors ("typical" versus "atypical") based on adherence to traditional symptomatology and homozygosity for the p.Y329S variant. Although these general descriptors are helpful in summarizing common findings and symptoms in APBD, they are inherently limited and may affect disease recognition in diverse populations. Methods: This case series includes three American patients (cases 1-3) and four Brazilian patients (cases 4-7) diagnosed with APBD. Patient-reported outcome (PRO) measures were employed to evaluate pain, fatigue, and quality of life in cases 1-3. Results: We describe the clinical course and diagnostic odyssey of seven cases of APBD that challenge the utility and efficacy of discrete descriptors. Cases 1-3 are compound heterozygotes that harbor the previously identified deep intronic variant in GBE1 and presented with "typical" APBD phenotypically, despite lacking two copies of the pathogenic p.Y329S variant. Patient-reported outcome measures in these three cases revealed the moderate levels of pain and fatigue as well as an impacted quality of life. Cases 4-7 have unique genotypic profiles and emphasize the growing recognition of presentations of APBD in diverse populations with broad neurological manifestations. Conclusion: Collectively, these cases underscore the understanding of APBD as a spectrum disorder existing on the GSD IV phenotypic continuum. We draw attention to the pitfalls of commonly used genetic testing methods when diagnosing APBD and highlight the utility of patient-reported outcome questionnaires in managing this disease.
Collapse
Affiliation(s)
- Matthew M. Gayed
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Paulo Sgobbi
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Rebecca L. Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
3
|
Bezirganoglu H, Adanur Saglam K. An Unusual Case of Neonatal Hypotonia and Femur Fracture: Neuromuscular Variant of Glycogen Storage Disease Type IV. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1375. [PMID: 37628374 PMCID: PMC10453659 DOI: 10.3390/children10081375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Glycogen storage disease type IV (GSD IV) (OMIM #232500) is an autosomal recessive disorder caused by deficiency of the glycogen-branching enzyme. Here, we report a patient presenting with prematurity and severe hypotonia resulting from a complicated pregnancy with polyhydramnios. During her stay in the neonatal unit, the infant remained dependent on a ventilator, and her movements were mostly absent, except for occasional small movements of her fingers. A spontaneous fracture of femur shaft occurred in the postnatal fourth week. Whole-exome sequencing of DNA from the patient revealed a homozygous missense variant in the GBE1 gene (c.1693C>T, p.Arg565Trp). The variation detected in the index case was also confirmed by Sanger sequencing in the patient and respective parents. This study showed that the neuromuscular subtypes of GSD-IV should be considered as a possible differential diagnosis in severe neonatal hypotonia cases.
Collapse
Affiliation(s)
- Handan Bezirganoglu
- Division of Neonatology, Trabzon Kanuni Training and Research Hospital, Trabzon 61080, Türkiye
| | - Kubra Adanur Saglam
- Department of Medical Genetics, Karadeniz Technical University Medical Faculty, Trabzon 61080, Türkiye
| |
Collapse
|
4
|
Gümüş E, Özen H. Glycogen storage diseases: An update. World J Gastroenterol 2023; 29:3932-3963. [PMID: 37476587 PMCID: PMC10354582 DOI: 10.3748/wjg.v29.i25.3932] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 04/30/2023] [Indexed: 06/28/2023] Open
Abstract
Glycogen storage diseases (GSDs), also referred to as glycogenoses, are inherited metabolic disorders of glycogen metabolism caused by deficiency of enzymes or transporters involved in the synthesis or degradation of glycogen leading to aberrant storage and/or utilization. The overall estimated GSD incidence is 1 case per 20000-43000 live births. There are over 20 types of GSD including the subtypes. This heterogeneous group of rare diseases represents inborn errors of carbohydrate metabolism and are classified based on the deficient enzyme and affected tissues. GSDs primarily affect liver or muscle or both as glycogen is particularly abundant in these tissues. However, besides liver and skeletal muscle, depending on the affected enzyme and its expression in various tissues, multiorgan involvement including heart, kidney and/or brain may be seen. Although GSDs share similar clinical features to some extent, there is a wide spectrum of clinical phenotypes. Currently, the goal of treatment is to maintain glucose homeostasis by dietary management and the use of uncooked cornstarch. In addition to nutritional interventions, pharmacological treatment, physical and supportive therapies, enzyme replacement therapy (ERT) and organ transplantation are other treatment approaches for both disease manifestations and long-term complications. The lack of a specific therapy for GSDs has prompted efforts to develop new treatment strategies like gene therapy. Since early diagnosis and aggressive treatment are related to better prognosis, physicians should be aware of these conditions and include GSDs in the differential diagnosis of patients with relevant manifestations including fasting hypoglycemia, hepatomegaly, hypertransaminasemia, hyperlipidemia, exercise intolerance, muscle cramps/pain, rhabdomyolysis, and muscle weakness. Here, we aim to provide a comprehensive review of GSDs. This review provides general characteristics of all types of GSDs with a focus on those with liver involvement.
Collapse
Affiliation(s)
- Ersin Gümüş
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| | - Hasan Özen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| |
Collapse
|
5
|
Koch RL, Soler-Alfonso C, Kiely BT, Asai A, Smith AL, Bali DS, Kang PB, Landstrom AP, Akman HO, Burrow TA, Orthmann-Murphy JL, Goldman DS, Pendyal S, El-Gharbawy AH, Austin SL, Case LE, Schiffmann R, Hirano M, Kishnani PS. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: A clinical practice resource. Mol Genet Metab 2023; 138:107525. [PMID: 36796138 DOI: 10.1016/j.ymgme.2023.107525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.
Collapse
Affiliation(s)
- Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bridget T Kiely
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Akihiro Asai
- Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ariana L Smith
- Division of Urology, Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Deeksha S Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - T Andrew Burrow
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | | | - Deberah S Goldman
- Adult Polyglucosan Body Disease Research Foundation, Brooklyn, NY, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg H El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Stephanie L Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E Case
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA; Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Li Y, Tian C, Huang S, Zhang W, Liutang Q, Wang Y, Ma G, Chen R. Case report: Familial glycogen storage disease type IV caused by novel compound heterozygous mutations in a glycogen branching enzyme 1 gene. Front Genet 2022; 13:1033944. [PMID: 36425069 PMCID: PMC9679404 DOI: 10.3389/fgene.2022.1033944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 01/14/2024] Open
Abstract
Glycogen storage disease type IV (GSD IV), caused by a mutation in the glycogen branching enzyme 1 (GBE1) gene, is a rare metabolic disorder with an autosomal recessive inheritance that involves the liver, neuromuscular, and cardiac systems. Here, we reported a case of familial GSD IV induced by novel compound heterozygous mutations in GBE1. The proband (at age 1) and her younger brother (at age 10 months) manifested hepatosplenomegaly, liver dysfunction, and growth retardation at onset, followed by progressive disease deterioration to liver cirrhosis with liver failure. During the disease course, the proband presented rare intractable asymptomatic hypoglycemia. The liver pathology was in line with GSD IV. Both cases carried pathogenic compound heterozygous mutations in GBE1 mutations, i.e., a missense mutation (c.271T>A, p. W91R) in exon 2 and a deletion mutation in partial exons 3-7. Both mutations are first reported. The internationally pioneered split-liver transplantation was performed during progression to end-stage liver disease, and the patients had normal liver function and blood glucose after. This study broadens the mutation spectrum of the GBE1 gene and the phenotypic spectrum of GSD IV.
Collapse
Affiliation(s)
- Yiyang Li
- Department of Pediatrics, Shunde Women and Children’s Hospital of Guangdong Medical University, Foshan, China
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuan Tian
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Si Huang
- Department of Pediatrics, Shunde Women and Children’s Hospital of Guangdong Medical University, Foshan, China
| | - Weijie Zhang
- Department of Pediatrics, Shunde Women and Children’s Hospital of Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Qiuyu Liutang
- Department of Pediatrics, Shunde Women and Children’s Hospital of Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Yajun Wang
- Department of Pediatrics, Shunde Women and Children’s Hospital of Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Department of Pediatrics, Shunde Women and Children’s Hospital of Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children’s Hospital of Guangdong Medical University, Foshan, China
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Novel Gene-Correction-Based Therapeutic Modalities for Monogenic Liver Disorders. Bioengineering (Basel) 2022; 9:bioengineering9080392. [PMID: 36004917 PMCID: PMC9404740 DOI: 10.3390/bioengineering9080392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The majority of monogenic liver diseases are autosomal recessive disorders, with few being sex-related or co-dominant. Although orthotopic liver transplantation (LT) is currently the sole therapeutic option for end-stage patients, such an invasive surgical approach is severely restricted by the lack of donors and post-transplant complications, mainly associated with life-long immunosuppressive regimens. Therefore, the last decade has witnessed efforts for innovative cellular or gene-based therapeutic strategies. Gene therapy is a promising approach for treatment of many hereditary disorders, such as monogenic inborn errors. The liver is an organ characterized by unique features, making it an attractive target for in vivo and ex vivo gene transfer. The current genetic approaches for hereditary liver diseases are mediated by viral or non-viral vectors, with promising results generated by gene-editing tools, such as CRISPR-Cas9 technology. Despite massive progress in experimental gene-correction technologies, limitations in validated approaches for monogenic liver disorders have encouraged researchers to refine promising gene therapy protocols. Herein, we highlighted the most common monogenetic liver disorders, followed by proposed genetic engineering approaches, offered as promising therapeutic modalities.
Collapse
|
8
|
Wu S, Yin S, Zhou B. Molecular physiology of iron trafficking in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100888. [PMID: 35158107 DOI: 10.1016/j.cois.2022.100888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Iron homeostasis in insects is less-well understood comparatively to mammals. The classic model organism Drosophila melanogaster has been recently employed to explore how iron is trafficked between and within cells. An outline for iron absorption, systemic delivery, and efflux is thus beginning to emerge. The proteins Malvolio, ZIP13, mitoferrin, ferritin, transferrin, and IRP-1A are key players in these processes. While many features are shared with those in mammals, some physiological differences may also exist. Notable remaining questions include the existence and identification of functional transferrin and ferritin receptors, and of an iron exporter like ferroportin, how systemic iron homeostasis is controlled, and the roles of different tissues in regulating iron physiology. By focusing on aspects of iron trafficking, this review updates on presently known complexities of iron homeostasis in Drosophila.
Collapse
Affiliation(s)
- Shitao Wu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sai Yin
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Derks TGJ, Peeks F, de Boer F, Fokkert‐Wilts M, van der Doef HPJ, van den Heuvel MC, Szymańska E, Rokicki D, Ryan PT, Weinstein DA. The potential of dietary treatment in patients with glycogen storage disease type IV. J Inherit Metab Dis 2021; 44:693-704. [PMID: 33332610 PMCID: PMC8246821 DOI: 10.1002/jimd.12339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
There is paucity of literature on dietary treatment in glycogen storage disease (GSD) type IV and formal guidelines are not available. Traditionally, liver transplantation was considered the only treatment option for GSD IV. In light of the success of dietary treatment for the other hepatic forms of GSD, we have initiated this observational study to assess the outcomes of medical diets, which limit the accumulation of glycogen. Clinical, dietary, laboratory, and imaging data for 15 GSD IV patients from three centres are presented. Medical diets may have the potential to delay or prevent liver transplantation, improve growth and normalize serum aminotransferases. Individual care plans aim to avoid both hyperglycaemia, hypoglycaemia and/or hyperketosis, to minimize glycogen accumulation and catabolism, respectively. Multidisciplinary monitoring includes balancing between traditional markers of metabolic control (ie, growth, liver size, serum aminotransferases, glucose homeostasis, lactate, and ketones), liver function (ie, synthesis, bile flow and detoxification of protein), and symptoms and signs of portal hypertension.
Collapse
Affiliation(s)
- Terry G. J. Derks
- Department of Metabolic DiseasesBeatrix Children's Hospital, University Medical Centre Groningen, University of GroningenGroningenthe Netherlands
| | - Fabian Peeks
- Department of Metabolic DiseasesBeatrix Children's Hospital, University Medical Centre Groningen, University of GroningenGroningenthe Netherlands
| | - Foekje de Boer
- Department of Metabolic DiseasesBeatrix Children's Hospital, University Medical Centre Groningen, University of GroningenGroningenthe Netherlands
| | - Marieke Fokkert‐Wilts
- Department of Metabolic DiseasesBeatrix Children's Hospital, University Medical Centre Groningen, University of GroningenGroningenthe Netherlands
| | - Hubert P. J. van der Doef
- Department of Pediatric Gastroenterology Hepatology and NutritionBeatrix Children's Hospital, University Medical Centre Groningen, University of GroningenGroningenthe Netherlands
| | - Marius C. van den Heuvel
- Department of Pathology & Medical Biology, Pathology Section, University of GroningenUniversity Medical Center GroningenHanzepleinGroningenNetherlands
| | - Edyta Szymańska
- Department of Gastroenterology, Hepatology, Feeding Disorders and PediatricsThe Childrens' Memorial Health InstituteWarsawPoland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic DisordersThe Childrens' Memorial Health InstituteWarsawPoland
| | - Patrick T. Ryan
- Glycogen Storage Disease Program, Connecticut Children's Medical CenterHartfordConnecticutUSA
| | - David A. Weinstein
- Glycogen Storage Disease Program, Connecticut Children's Medical CenterHartfordConnecticutUSA
- Department of PediatricsUniversity of Connecticut Health CenterFarmingtonConnecticutUSA
| |
Collapse
|
10
|
Butler DC, Glen WB, Schandl C, Phillips A. Glycogen Storage Disease Type IV Diagnosed at Fetal Autopsy. Pediatr Dev Pathol 2020; 23:301-305. [PMID: 31747834 DOI: 10.1177/1093526619890224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycogen storage disease type IV (GSD IV; Andersen's disease) is a rare autosomal recessive disorder that results from defects in the GBE1 gene (3p12.2) and subsequent deficiencies of glycogen branching. We report a case of GSD IV diagnosed at autopsy in a 35 4/7 weeks gestational age female neonate that died shortly after birth. Multisystem blue, ground glass inclusions initially presumed artefactual were periodic acid-Schiff positive, diastase resistant. Chromosomal microarray analysis identified a deletion of exons 2 through 16 of the GBE1 gene and whole exome sequencing identified a nonsense mutation within exon 14, confirming the diagnosis of GSD IV. A strong index of suspicion was required determine GSD IV as the ultimate cause of death, illustrating the need for critical evaluation of postmortem artifact in the setting of fetal demise of unknown etiology and highlighting the role of postmortem molecular diagnostics in a subset of cases.
Collapse
Affiliation(s)
- Daniel C Butler
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - W Bailey Glen
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Cynthia Schandl
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Angelina Phillips
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
11
|
Hernández-Gallardo AK, Missirlis F. Cellular iron sensing and regulation: Nuclear IRP1 extends a classic paradigm. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118705. [PMID: 32199885 DOI: 10.1016/j.bbamcr.2020.118705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 01/26/2023]
Abstract
The classic view is that iron regulatory proteins operate at the post-transcriptional level. Iron Regulatory Protein 1 (IRP1) shifts between an apo-form that binds mRNAs and a holo-form that harbors a [4Fe4S] cluster. The latter form is not considered relevant to iron regulation, but rather thought to act as a non-essential cytosolic aconitase. Recent work in Drosophila, however, shows that holo-IRP1 can also translocate to the nucleus, where it appears to downregulate iron metabolism genes, preparing the cell for a decline in iron uptake. The shifting of IRP1 between states requires a functional mitoNEET pathway that includes a glycogen branching enzyme for the repair or disassembly of IRP1's oxidatively damaged [3Fe4S] cluster. The new findings add to the notion that glucose metabolism is modulated by iron metabolism. Furthermore, we propose that ferritin ferroxidase activity participates in the repair of the IRP1 [3Fe4S] cluster leading to the hypothesis that cytosolic ferritin directly contributes to cellular iron sensing.
Collapse
Affiliation(s)
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, CDMX, Mexico.
| |
Collapse
|
12
|
Huynh N, Ou Q, Cox P, Lill R, King-Jones K. Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET. Nat Commun 2019; 10:5463. [PMID: 31784520 PMCID: PMC6884552 DOI: 10.1038/s41467-019-13237-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/22/2019] [Indexed: 11/25/2022] Open
Abstract
Iron Regulatory Protein 1 (IRP1) is a bifunctional cytosolic iron sensor. When iron levels are normal, IRP1 harbours an iron-sulphur cluster (holo-IRP1), an enzyme with aconitase activity. When iron levels fall, IRP1 loses the cluster (apo-IRP1) and binds to iron-responsive elements (IREs) in messenger RNAs (mRNAs) encoding proteins involved in cellular iron uptake, distribution, and storage. Here we show that mutations in the Drosophila 1,4-Alpha-Glucan Branching Enzyme (AGBE) gene cause porphyria. AGBE was hitherto only linked to glycogen metabolism and a fatal human disorder known as glycogen storage disease type IV. AGBE binds specifically to holo-IRP1 and to mitoNEET, a protein capable of repairing IRP1 iron-sulphur clusters. This interaction ensures nuclear translocation of holo-IRP1 and downregulation of iron-dependent processes, demonstrating that holo-IRP1 functions not just as an aconitase, but throttles target gene expression in anticipation of declining iron requirements. Higher organisms regulate cellular iron concentrations through Iron Regulatory Proteins (IRPs), which regulate specific messenger RNAs. Here Huynh et al. show that IRP1 requires a Glycogen Branching Enzyme for proper function, and that IRP1 has additional regulatory roles in cell nuclei.
Collapse
Affiliation(s)
- Nhan Huynh
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
| | - Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
| | - Pendleton Cox
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032, Marburg, Germany.,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
13
|
Kishnani PS, Sun B, Koeberl DD. Gene therapy for glycogen storage diseases. Hum Mol Genet 2019; 28:R31-R41. [PMID: 31227835 PMCID: PMC6796997 DOI: 10.1093/hmg/ddz133] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/02/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
The focus of this review is the development of gene therapy for glycogen storage diseases (GSDs). GSD results from the deficiency of specific enzymes involved in the storage and retrieval of glucose in the body. Broadly, GSDs can be divided into types that affect liver or muscle or both tissues. For example, glucose-6-phosphatase (G6Pase) deficiency in GSD type Ia (GSD Ia) affects primarily the liver and kidney, while acid α-glucosidase (GAA) deficiency in GSD II causes primarily muscle disease. The lack of specific therapy for the GSDs has driven efforts to develop new therapies for these conditions. Gene therapy needs to replace deficient enzymes in target tissues, which has guided the planning of gene therapy experiments. Gene therapy with adeno-associated virus (AAV) vectors has demonstrated appropriate tropism for target tissues, including the liver, heart and skeletal muscle in animal models for GSD. AAV vectors transduced liver and kidney in GSD Ia and striated muscle in GSD II mice to replace the deficient enzyme in each disease. Gene therapy has been advanced to early phase clinical trials for the replacement of G6Pase in GSD Ia and GAA in GSD II (Pompe disease). Other GSDs have been treated in proof-of-concept studies, including GSD III, IV and V. The future of gene therapy appears promising for the GSDs, promising to provide more efficacious therapy for these disorders in the foreseeable future.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
14
|
Ndugga-Kabuye MK, Maleszewski J, Chanprasert S, Smith KD. Glycogen storage disease type IV: dilated cardiomyopathy as the isolated initial presentation in an adult patient. BMJ Case Rep 2019; 12:e230068. [PMID: 31527204 PMCID: PMC6747896 DOI: 10.1136/bcr-2019-230068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2019] [Indexed: 11/03/2022] Open
Abstract
Glycogen storage disease type IV (GSD IV, Andersen disease) is a rare autosomal recessive condition. The childhood neuromuscular subtype of GSD IV is characterised by a progressive skeletal myopathy with cardiomyopathy also reported in some individuals. We report a case of a 19-year-old man who presented with severe non-ischaemic dilated cardiomyopathy (NIDCM) necessitating heart transplantation, with biopsy showing aggregations of polyglucosan bodies in cardiac myocytes. He had no signs or symptoms of muscle weakness, liver dysfunction or neurologic involvement. A homozygous GBE1 c.607C>A (p.His203Asn) variant was identified. Our case is unusual in that our patient presented with an isolated NIDCM in the absence of other clinical manifestations of GSD IV. This case highlights the importance of considering storage disorders in young adults presenting with isolated NIDCM of unknown aetiology. It also emphasises the potential synergy between histopathological evaluation and genomic testing in enhancing diagnostic certainty.
Collapse
Affiliation(s)
| | - Joseph Maleszewski
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kelly D Smith
- Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Novel pathogenic variants in GBE1 causing fetal akinesia deformation sequence and severe neuromuscular form of glycogen storage disease type IV. Clin Dysmorphol 2019; 28:17-21. [PMID: 30303820 DOI: 10.1097/mcd.0000000000000248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glycogen storage disease IV (GSD IV), caused by a defect in GBE1, is a clinically heterogeneous disorder. A classical hepatic form and a neuromuscular form have been described. The severe neuromuscular form presents as a fetal akinesia deformation sequence or a congenital subtype. We ascertained three unrelated families with fetuses/neonates who presented with fetal akinesia deformation sequence to our clinic for genetic counseling. We performed a detailed clinical evaluation, exome sequencing, and histopathology examination of two fetuses and two neonates from three unrelated families presenting with these perinatally lethal neuromuscular forms of GSD IV. Exome sequencing in the affected fetuses/neonates identified four novel pathogenic variants (c.1459G>T, c.144-1G>A, c.1680C>G, and c.1843G>C) in GBE1 (NM_000158). Histopathology examination of tissues from the affected fetuses/neonate was consistent with the diagnosis. Here, we add three more families with the severe perinatally lethal neuromuscular forms of GSD IV to the GBE1 mutation spectrum.
Collapse
|
16
|
Schene IF, Korenke CG, Huidekoper HH, van der Pol L, Dooijes D, Breur JMPJ, Biskup S, Fuchs SA, Visser G. Glycogen Storage Disease Type IV: A Rare Cause for Neuromuscular Disorders or Often Missed? JIMD Rep 2018; 45:99-104. [PMID: 30569318 DOI: 10.1007/8904_2018_148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/14/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
Advancements in genetic testing now allow early identification of previously unresolved neuromuscular phenotypes. To illustrate this, we here present diagnoses of glycogen storage disease IV (GSD IV) in two patients with hypotonia and delayed development of gross motor skills. Patient 1 was diagnosed with congenital myopathy based on a muscle biopsy at the age of 6 years. The genetic cause of his disorder (two compound heterozygous missense mutations in GBE1 (c.[760A>G] p.[Thr254Ala] and c.[1063C>T] p.[Arg355Cys])), however, was only identified at the age of 17, after panel sequencing of 314 genes associated with neuromuscular disorders. Thanks to the availability of next-generation sequencing, patient 2 was diagnosed before the age of 2 with two compound heterozygous mutations in GBE1 (c.[691+2T>C] (splice donor variant) and the same c.[760A>G] p.[Thr254Ala] mutation as patient 1). GSD IV is an autosomal recessive metabolic disorder with a broad and expanding clinical spectrum, which hampers targeted diagnostics. The current cases illustrate the value of novel genetic testing for rare genetic disorders with neuromuscular phenotypes, especially in case of clinical heterogeneity. We argue that genetic testing by gene panels or whole exome sequencing should be considered early in the diagnostic procedure of unresolved neuromuscular disorders.
Collapse
Affiliation(s)
- Imre F Schene
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Christoph G Korenke
- Department of Neuropediatrics, Children's Hospital Klinikum Oldenburg, Oldenburg, Germany
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ludo van der Pol
- Department of Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Iijima H, Iwano R, Tanaka Y, Muroya K, Fukuda T, Sugie H, Kurosawa K, Adachi M. Analysis of GBE1 mutations via protein expression studies in glycogen storage disease type IV: A report on a non-progressive form with a literature review. Mol Genet Metab Rep 2018; 17:31-37. [PMID: 30228975 PMCID: PMC6140619 DOI: 10.1016/j.ymgmr.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022] Open
Abstract
Background Glycogen storage disease type IV (GSD IV), caused by GBE1 mutations, has a quite wide phenotypic variation. While the classic hepatic form and the perinatal/neonatal neuromuscular forms result in early mortality, milder manifestations include non-progressive form (NP-GSD IV) and adult polyglucosan body disease (APBD). Thus far, only one clinical case of a patient with compound heterozygous mutations has been reported for the molecular analysis of NP-GSD IV. This study aimed to elucidate the molecular basis in a NP-GSD IV patient via protein expression analysis and to obtain a clearer genotype-phenotype relationship in GSD IV. Case presentation A Japanese boy presented hepatosplenomegaly at 2 years of age. Developmental delay, neurological symptoms, and cardiac dysfunction were not apparent. Observation of hepatocytes with periodic acid-Schiff-positive materials resistant to diastase, coupled with resolution of hepatosplenomegaly at 8 years of age, yielded a diagnosis of NP-GSD IV. Glycogen branching enzyme activity was decreased in erythrocytes. At 13 years of age, he developed epilepsy, which was successfully controlled by carbamazepine. Molecular analysis In this study, we identified compound heterozygous GBE1 mutations (p.Gln46Pro and p.Glu609Lys). The branching activities of the mutant proteins expressed using E. coli were examined in a reaction with starch. The result showed that both mutants had approximately 50% activity of the wild type protein. Conclusion This is the second clinical report of a NP-GSD IV patient with a definite molecular elucidation. Based on the clinical and genotypic overlapping between NP-GSD IV and APBD, we suggest both are in a continuum.
Collapse
Affiliation(s)
- Hiroyuki Iijima
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| | - Reiko Iwano
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Handayama, 1-20-1 Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hideo Sugie
- Faculty of Health and Medical Sciences, Tokoha University, Sena, 1-22-1 Aoi-ku, Shizuoka 420-0911, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| | - Masanori Adachi
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| |
Collapse
|
18
|
Szymańska E, Szymańska S, Truszkowska G, Ciara E, Pronicki M, Shin YS, Podskarbi T, Kępka A, Śpiewak M, Płoski R, Bilińska ZT, Rokicki D. Variable clinical presentation of glycogen storage disease type IV: from severe hepatosplenomegaly to cardiac insufficiency. Some discrepancies in genetic and biochemical abnormalities. Arch Med Sci 2018; 14:237-247. [PMID: 29379554 PMCID: PMC5778435 DOI: 10.5114/aoms.2018.72246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Edyta Szymańska
- Department of Pediatrics, Nutrition and Metabolic Disorders, the Children’s Memorial Health Institute, Warsaw, Poland
| | - Sylwia Szymańska
- Department of Pathology, the Children’s Memorial Health Institute, Warsaw, Poland
| | - Grażyna Truszkowska
- Department of Medical Biology, Molecular Biology Laboratory, Institute of Cardiology, Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, the Children’s Memorial Health Institute, Warsaw, Poland
| | - Maciej Pronicki
- Department of Pathology, the Children’s Memorial Health Institute, Warsaw, Poland
| | - Yoon S. Shin
- University Children’s Hospital and Molecular Genetics and Metabolism Laboratory, Munich, Germany
| | | | - Alina Kępka
- Department of Biochemistry, Radioimmunology and Experimental Medicine, the Children’s Memorial Health Institute, Warsaw, Poland
| | - Mateusz Śpiewak
- Cardiac Magnetic Resonance Unit, Institute of Cardiology, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Centre of Biostructure, Medical University of Warsaw, Warsaw, Poland
| | - Zofia T. Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, Institute of Cardiology, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Disorders, the Children’s Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
19
|
McKiernan P. Pathobiology of the Hepatic Glycogen Storage Diseases. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Chen MA, Weinstein DA. Glycogen storage diseases: Diagnosis, treatment and outcome. ACTA ACUST UNITED AC 2016. [DOI: 10.3233/trd-160006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - David A. Weinstein
- Glycogen Storage Disease Program, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
21
|
Said SM, Murphree MI, Mounajjed T, El-Youssef M, Zhang L. A novel GBE1 gene variant in a child with glycogen storage disease type IV. Hum Pathol 2016; 54:152-6. [DOI: 10.1016/j.humpath.2016.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/21/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023]
|
22
|
Adult Polyglucosan Body Disease: Clinical and histological heterogeneity of a large Italian family. Neuromuscul Disord 2015; 25:423-8. [DOI: 10.1016/j.nmd.2015.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 11/20/2022]
|
23
|
Olpin SE, Murphy E, Kirk RJ, Taylor RW, Quinlivan R. The investigation and management of metabolic myopathies. J Clin Pathol 2015; 68:410-7. [DOI: 10.1136/jclinpath-2014-202808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 01/19/2023]
Abstract
Metabolic myopathies (MM) are rare inherited primary muscle disorders that are mainly due to abnormalities of muscle energy metabolism resulting in skeletal muscle dysfunction. These diseases include disorders of fatty acid oxidation, glyco(geno)lytic muscle disorders and mitochondrial respiratory chain (MRC) disease. Clinically these disorders present with a range of symptoms including infantile hypotonia, myalgia/exercise tolerance, chronic or acute muscle weakness, cramps/spasms/stiffness or episodic acute rhabdomyolysis. The precipitant may be fasting, infection, general anaesthesia, heat/cold or most commonly, exercise. However, the differential diagnosis includes a wide range of both acquired and inherited conditions and these include exposure to drugs/toxins, inflammatory myopathies, dystrophies and channelopathies. Streamlining of existing diagnostic protocols has now become a realistic prospect given the availability of second-generation sequencing. A diagnostic pathway using a ‘rhabdomyolysis’ gene panel at an early stage of the diagnostic process is proposed. Following detailed clinical evaluation and first-line investigations, some patients will be identified as candidates for McArdle disease/glycogen storage disease type V or MRC disease and these will be referred directly to the specialised services. However, for the majority of patients, second-line investigation is best undertaken through next-generation sequencing using a ‘rhabdomyolysis’ gene panel. Following molecular analysis and careful evaluation of the findings, some patients will receive a clear diagnosis. Further functional or specific targeted testing may be required in other patients to evaluate the significance of uncertain/equivocal findings. For patients with no clear diagnosis, further investigations will be required through a specialist centre.
Collapse
|
24
|
Hechtman JF, Gordon RE, McBride RB, Harpaz N. Corpora amylacea in gastrointestinal leiomyomas: a clinical, light microscopic, ultrastructural and immunohistochemical study with comparison to hyaline globules. J Clin Pathol 2013; 66:951-5. [PMID: 23833049 DOI: 10.1136/jclinpath-2013-201701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CONTEXT Corpora amylacea (CA) are inclusions with starch-like composition that occur in various conditions. We have observed CA in gastrointestinal leiomyomas (GILM) and hypothesised that they differ from intracytoplasmic hyaline globules (HG) of GILM. We aimed to investigate the anatomical distribution, prevalence, staining characteristics and ultrastructural features of CA and compare them with HG of GILM. DESIGN Slides from a consecutive series of resected GILM and bland spindle cell tumours were examined for CA and HG. Special stains, electron microscopy and elemental analysis were performed on select leiomyomas. RESULTS CA occurred in 13/35 GILM (37%) from the following sites: oesophagus (4/8), stomach (5/7) including one frozen section, small intestine (1/2) and large intestine (3/18), but were not identified in 19 gastrointestinal stromal tumours (12 gastric, 7 small intestinal; p=0.0019), five schwannomas (three gastric, two small intestinal; p=0.154) and 35 non-GILM (p=0.0001). The densities of CA ranged from one per 4-200 mm(2). CA stained intensely with periodic acid Schiff after diastase predigestion (PASD), Alcian blue and ubiquitin, and faintly in peripheral zones for desmin and smooth muscle actin. Ultrastructurally, CA consisted of an electron-dense outer layer and a fibrillar core with scattered particle matter. HG were present in all leiomyomas, but showed variable staining for PASD, negative staining for Alcian blue and ubiquitin, and positive staining for smooth muscle markers. CONCLUSIONS CA are a distinctive histological feature of approximately one third of GILM with different composition to HG. These differences may represent divergent degenerative processes or different stages of a single degenerative process over time.
Collapse
|
25
|
Hechtman JF, Gordon RE, Harpaz N. Intramuscular corpora amylacea adjacent to ileal low-grade neuroendocrine tumours (typical carcinoids): a light microscopic, immunohistochemical and ultrastructural study. J Clin Pathol 2013; 66:569-72. [PMID: 23443895 DOI: 10.1136/jclinpath-2012-201415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS The purposes of this study are to (1) document the prevalence of intracytoplasmic inclusions adjacent to ileal well-differentiated neuroendocrine tumours (WNETs), (2) examine whether and how tumour and patient characteristics are associated with inclusions and (3) investigate their properties on special stains and electron microscopy in comparison with corpora amylacea (CA). METHODS We examined the resection slides from 26 ileal, 5 gastric and 5 rectal cases of WNET. Inclusions were readily identified with H&E staining. Histochemical, immunohistochemical and ultrastructural evaluations were performed on the block with the highest number of inclusions. RESULTS Intracytoplasmic inclusions occurred adjacent (<1 mm) to 15 of 26 (57.7%) ileal WNETs. Patients with and without inclusions were of similar mean ages (59.5 vs 57.4 years; p=0.88), but NETs with inclusions were larger than those without inclusions (3.3 vs 1.7 cm, p=0.03). Inclusions were neither associated with gastric (mean age=65 years, mean diameter=1.5 cm) or rectal WNETs (mean age=47.8 years, mean diameter=0.5 cm) (p=0.01), nor were they present >1 mm from ileal NETs. CA stained strongly for ubiquitin, DPAS and Alcian blue; faintly and peripherally for desmin and smooth muscle actin and negatively for calcium. Ultrastructurally, their appearance was consistent with filaments, some with cores of particle matter. CONCLUSIONS Our results suggest that these inclusions are virtually identical to CA and present adjacent to the majority of ileal WNET. They may be the result of a degenerative process, possibly due to chronic myocyte stress from an infiltrating slow growing tumour mass or local hormonal effects.
Collapse
|
26
|
Magoulas PL, El-Hattab AW, Roy A, Bali DS, Finegold MJ, Craigen WJ. Diffuse reticuloendothelial system involvement in type IV glycogen storage disease with a novel GBE1 mutation: a case report and review. Hum Pathol 2012; 43:943-51. [DOI: 10.1016/j.humpath.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/08/2011] [Accepted: 10/07/2011] [Indexed: 10/14/2022]
|
27
|
Shih CK, Chen CM, Chen YC, Huang HC, Chen YT, Li SC. Screening of Ethylnitrosourea Mice With Fatty Acid Oxidation Disorders by a Candidate Gene Approach After Proteome Analysis. JOURNAL OF EXPERIMENTAL & CLINICAL MEDICINE 2010; 2:231-238. [DOI: 10.1016/s1878-3317(10)60036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|