1
|
Sikirica V, Banerjee G, Perera S, Simpson RB, Shen J, Zhen T, Madsen A, Sheridan P. Metabolic decompensation events among patients with propionic acidemia across the US: A large electronic medical record data study. Mol Genet Metab 2025; 145:109111. [PMID: 40311502 DOI: 10.1016/j.ymgme.2025.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
Propionic acidemia (PA) is a rare, inherited, metabolic disorder affecting amino acid metabolism. PA is characterized by periods of catabolism, which can lead to metabolic decompensation events (MDEs), commonly defined by metabolic acidosis and/or hyperammonemia. This retrospective study used TriNetX (1/1/2015-4/24/2022), a large longitudinal, electronic medical record database, to describe the clinical profile and burden of MDEs for patients with PA in the United States (US). Patients with known age were indexed on their first observed PA diagnosis on or after January 2015. Rates of MDEs, MDE-related clinical parameters, and healthcare resource utilization (HCRU) were assessed during the follow-up period (from index to death, end of data, or a 183-day gap in encounters). Among 269 patients with PA (55.0% adults, 51.3% male), 79 patients (29.4%) experienced ≥1 MDE in an inpatient (IP) or emergency room (ER) setting, and 128 patients (47.6%) experienced ≥1 MDE in any setting including the ambulatory setting. The rate of IP/ER MDEs was 0.53 per patient-year (PPY; 95% confidence interval: 0.36, 0.78); visually, rates followed a U-shaped distribution being higher in patients aged 0 to <2 years (0.58 PPY) and adults ≥18 years (0.72 PPY) compared to patients aged 2 to 18 years (0.22-0.34 PPY). Adults' MDEs commonly involved metabolic acidosis (86.7%) while pediatrics' MDEs commonly involved hyperammonemia (43.4-55.6%). Infection was the most common MDE trigger (63.3%); vomiting (45.6%) and seizure activity (41.8%) the most common MDE symptoms. A higher proportion of patients with MDEs died (21.5%) than those without MDEs (14.7%) during the entire study period; patients with MDEs also had a higher proportion of comorbidities and treatment usage than those without MDEs. This study provides the largest assessment of patients with PA across the US and documents the substantial morbidity with a focus on MDE burden, as well as mortality, highlighting clear unmet need.
Collapse
Affiliation(s)
- Vanja Sikirica
- Moderna Therapeutics, Inc., Princeton, NJ, United States of America.
| | | | - Sue Perera
- Moderna Therapeutics, Inc., Cambridge, MA, United States of America
| | - Ryan B Simpson
- Analysis Group, Inc., Boston, MA, United States of America
| | - John Shen
- Aetion, Inc., New York, NY, United States of America
| | - Thomas Zhen
- Aetion, Inc., New York, NY, United States of America
| | - Ann Madsen
- Aetion, Inc., New York, NY, United States of America
| | | |
Collapse
|
2
|
Kahraman AB, Yıldız Y, Çıkı K, Erdal I, Akar HT, Dursun A, Tokatlı A, Sivri S. COVID-19 in inherited metabolic disorders: Clinical features and risk factors for disease severity. Mol Genet Metab 2023; 139:107607. [PMID: 37201420 PMCID: PMC10171899 DOI: 10.1016/j.ymgme.2023.107607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Old age, obesity, and certain chronic conditions are among the risk factors for severe COVID-19. More information is needed on whether inherited metabolic disorders (IMD) confer risk of more severe COVID-19. We aimed to establish COVID-19 severity and associated risk factors in patients with IMD currently followed at a single metabolic center. METHODS Among all IMD patients followed at a single metabolic referral center who had at least one clinic visit since 2018, those with accessible medical records were reviewed for SARS-CoV-2 tests. COVID-19 severity was classified according to the WHO recommendations, and IMD as per the international classification of IMD. RESULTS Among the 1841 patients with IMD, 248 (13.5%) had tested positive for COVID-19, 223 of whom gave consent for inclusion in the study (131 children and 92 adults). Phenylalanine hydroxylase (48.4%) and biotinidase (12.1%) deficiencies were the most common diagnoses, followed by mucopolysaccharidoses (7.2%). 38.1% had comorbidities, such as neurologic disabilities (22%) or obesity (9.4%). The majority of COVID-19 episodes were asymptomatic (16.1%) or mild (77.6%), but 6 patients (2.7%) each had moderate and severe COVID-19, and two (0.9%) had critical COVID-19, both of whom died. 3 patients had an acute metabolic decompensation during the infection. Two children developed multisystem inflammatory syndrome (MIS-C). Long COVID symptoms were present in 25.2%. Presence of comorbidities was significantly associated with more severe COVID-19 in adults with IMD (p < 0.01), but not in children (p = 0.45). Compared to other categories of IMD, complex molecule degradation disorders were significantly associated with more severe COVID-19 in children (p < 0.01); such a significant IMD category distinction was not found in adults. DISCUSSION This is the largest study on COVID-19 in IMD patients relying on real-word data and objective definitions, and not on merely expert opinions or physician surveys. COVID-19 severity and long COVID incidence in IMD are probably similar to the general population, and the risk of acute metabolic decompensation is not likely to be greater than that in other acute infections. Disease category (complex molecule degradation) in children, and comorbidities in adults may be associated with COVID-19 severity in IMD. Additionally, the first documented accounts of COVID-19 in 27 different IMD are recorded. The high occurrence of MIS-C may be coincidental, but warrants further study.
Collapse
Affiliation(s)
- Ayca Burcu Kahraman
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism, Turkey.
| | - Yılmaz Yıldız
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism, Turkey.
| | - Kısmet Çıkı
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism, Turkey.
| | - Izzet Erdal
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism, Turkey.
| | - Halil Tuna Akar
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism, Turkey.
| | - Ali Dursun
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism, Turkey.
| | - Ayşegül Tokatlı
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism, Turkey.
| | - Serap Sivri
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism, Turkey.
| |
Collapse
|
3
|
Attarwala H, Lumley M, Liang M, Ivaturi V, Senn J. Translational Pharmacokinetic/Pharmacodynamic Model for mRNA-3927, an Investigational Therapeutic for the Treatment of Propionic Acidemia. Nucleic Acid Ther 2022; 33:141-147. [PMID: 36577040 PMCID: PMC10066765 DOI: 10.1089/nat.2022.0036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Propionic acidemia (PA) is an ultrarare disorder caused by deficiency of the mitochondrial enzyme, propionyl-CoA carboxylase (PCC), composed of PCCA and PCCB subunits. An enzyme replacement therapy is being developed using dual messenger RNA (mRNA) therapy composed of lipid nanoparticles (LNPs) encapsulating mRNAs encoding PCCA and PCCB subunits of the PCC enzyme. We herein report on development of a translational semimechanistic pharmacokinetic (PK) and PK/pharmacodynamic (PD) model to quantify the relationship between the mRNA components of mRNA-3927 (an LNP encapsulating PCCA and PCCB mRNAs) and dose levels; PCCA/B mRNA PK and PD responses were assessed as circulating levels of primary disease markers 2-methyl citrate, 3-hydroxypropionate, and propionyl carnitine normalized to acetyl carnitine (C3/C2 ratio) to inform the first-in-human dose range and regimen selection. The translational PK/PD model was developed using preclinical data available in mice with PA, Sprague Dawley rats, and cynomolgus monkeys at dose levels ranging from 0.2 to 9 mg/kg. PCCA/B mRNA PK in mice, rats, and monkeys was adequately described using allometric scaling of volume and clearance parameters. The interspecies preclinical model was scaled allometrically to humans to predict the dose-response relationship in adult and pediatric patients with PA to guide selection of dose range and regimen for the Phase 1 clinical trial (ClinicalTrials.gov Identifier NCT04159103).
Collapse
Affiliation(s)
| | | | - Min Liang
- Moderna, Inc., Cambridge, Massachusetts, USA
| | | | - Joe Senn
- Moderna, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Stanescu S, Belanger-Quintana A, Fernandez-Felix BM, Ruiz-Sala P, del Valle M, Garcia F, Arrieta F, Martinez-Pardo M. Interorgan amino acid interchange in propionic acidemia: the missing key to understanding its physiopathology. Amino Acids 2022; 54:777-786. [PMID: 35098378 PMCID: PMC9167193 DOI: 10.1007/s00726-022-03128-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Abstract
Background
Propionic acidemia is an inborn error of metabolism caused by a deficiency in the mitochondrial enzyme propionyl-CoA carboxylase that converts the propionyl CoA to methyl malonyl CoA. This leads to profound changes in distinct metabolic pathways, including the urea cycle, with consequences in ammonia detoxification. The implication of the tricarboxylic acid cycle is less well known, but its repercussions could explain both some of the acute and long-term symptoms of this disease.
Materials and methods
The present observational study investigates the amino acid profiles of patients with propionic acidemia being monitored at the Hospital Ramón y Cajal (Madrid, Spain), between January 2015 and September 2017, comparing periods of metabolic stability with those of decompensation with ketosis and/or hyperammonemia.
Results
The concentrations of 19 amino acids were determined in 188 samples provided by 10 patients. We identified 40 metabolic decompensation episodes (22 only with ketosis and 18 with hyperammonemia). Plasma glutamine and alanine levels were reduced during these metabolic crises, probably indicating deficiency of anaplerosis (p < 0.001 for both alanine and glutamine). Hypocitrulllinemia and hypoprolinemia were also detected during hyperammonemia (p < 0.001 and 0.03, respectively).
Conclusions
The amino acid profile detected during decompensation episodes suggests deficient anaplerosis from propionyl-CoA and its precursors, with implications in other metabolic pathways like synthesis of urea cycle amino acids and ammonia detoxification.
Collapse
Affiliation(s)
- Sinziana Stanescu
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, PC 28034, Madrid, Spain
| | - Amaya Belanger-Quintana
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, PC 28034, Madrid, Spain
| | - Borja Manuel Fernandez-Felix
- Unidad de Bioestadistica Clinica, Instituto Ramon y Cajal de Investigacion Sanitaria. Hospital Universitario Ramón y Cajal, Crta de Colmenar Viejo, km 9,100, PC 28034, Madrid, Spain
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, PC 28049, Madrid, Spain
| | - Mercedes del Valle
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, PC 28049, Madrid, Spain
| | - Fernando Garcia
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, PC 28049, Madrid, Spain
| | - Francisco Arrieta
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, CIBER-OBN, Crta de Colmenar Viejo, km 9,100, PC 28034, Madrid, Spain
| | - Mercedes Martinez-Pardo
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, Crta de Colmenar Viejo, km 9,100, PC 28034, Madrid, Spain
| |
Collapse
|
5
|
Forny P, Hörster F, Ballhausen D, Chakrapani A, Chapman KA, Dionisi‐Vici C, Dixon M, Grünert SC, Grunewald S, Haliloglu G, Hochuli M, Honzik T, Karall D, Martinelli D, Molema F, Sass JO, Scholl‐Bürgi S, Tal G, Williams M, Huemer M, Baumgartner MR. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J Inherit Metab Dis 2021; 44:566-592. [PMID: 33595124 PMCID: PMC8252715 DOI: 10.1002/jimd.12370] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ballhausen
- Paediatric Unit for Metabolic Diseases, Department of Woman‐Mother‐ChildUniversity Hospital LausanneLausanneSwitzerland
| | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Kimberly A. Chapman
- Rare Disease Institute, Children's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlo Dionisi‐Vici
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Sarah C. Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre‐University of FreiburgFaculty of MedicineFreiburgGermany
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Goknur Haliloglu
- Department of Pediatrics, Division of Pediatric NeurologyHacettepe University Children's HospitalAnkaraTurkey
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Daniela Karall
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jörn Oliver Sass
- Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA)Bonn‐Rhein Sieg University of Applied SciencesRheinbachGermany
| | - Sabine Scholl‐Bürgi
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children's HospitalRambam Health Care CampusHaifaIsrael
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
- Department of PaediatricsLandeskrankenhaus BregenzBregenzAustria
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
6
|
Armstrong AJ, Collado MS, Henke BR, Olson MW, Hoang SA, Hamilton CA, Pourtaheri TD, Chapman KA, Summar MM, Johns BA, Wamhoff BR, Reardon JE, Figler RA. A novel small molecule approach for the treatment of propionic and methylmalonic acidemias. Mol Genet Metab 2021; 133:71-82. [PMID: 33741272 PMCID: PMC9109253 DOI: 10.1016/j.ymgme.2021.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Propionic Acidemia (PA) and Methylmalonic Acidemia (MMA) are inborn errors of metabolism affecting the catabolism of valine, isoleucine, methionine, threonine and odd-chain fatty acids. These are multi-organ disorders caused by the enzymatic deficiency of propionyl-CoA carboxylase (PCC) or methylmalonyl-CoA mutase (MUT), resulting in the accumulation of propionyl-coenzyme A (P-CoA) and methylmalonyl-CoA (M-CoA in MMA only). Primary metabolites of these CoA esters include 2-methylcitric acid (MCA), propionyl-carnitine (C3), and 3-hydroxypropionic acid, which are detectable in both PA and MMA, and methylmalonic acid, which is detectable in MMA patients only (Chapman et al., 2012). We deployed liver cell-based models that utilized PA and MMA patient-derived primary hepatocytes to validate a small molecule therapy for PA and MMA patients. The small molecule, HST5040, resulted in a dose-dependent reduction in the levels of P-CoA, M-CoA (in MMA) and the disease-relevant biomarkers C3, MCA, and methylmalonic acid (in MMA). A putative working model of how HST5040 reduces the P-CoA and its derived metabolites involves the conversion of HST5040 to HST5040-CoA driving the redistribution of free and conjugated CoA pools, resulting in the differential reduction of the aberrantly high P-CoA and M-CoA. The reduction of P-CoA and M-CoA, either by slowing production (due to increased demands on the free CoA (CoASH) pool) or enhancing clearance (to replenish the CoASH pool), results in a net decrease in the CoA-derived metabolites (C3, MCA and MMA (MMA only)). A Phase 2 study in PA and MMA patients will be initiated in the United States.
Collapse
Affiliation(s)
| | | | - Brad R Henke
- HemoShear Therapeutics, Inc., Charlottesville, VA, USA
| | | | | | | | | | | | | | - Brian A Johns
- HemoShear Therapeutics, Inc., Charlottesville, VA, USA
| | | | | | | |
Collapse
|
7
|
Dimitrov B, Molema F, Williams M, Schmiesing J, Mühlhausen C, Baumgartner MR, Schumann A, Kölker S. Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise. J Inherit Metab Dis 2021; 44:9-21. [PMID: 32412122 DOI: 10.1002/jimd.12254] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work-up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence-based recommendations have improved neonatal survival and short-term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post-translational short-chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short-chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising.
Collapse
Affiliation(s)
- Bianca Dimitrov
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jessica Schmiesing
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Mühlhausen
- Department of Pediatrics and Adolescent Medicine, University Medical Centre Göttingen, Göttingen, Germany
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Anke Schumann
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Stanescu S, Belanger‐Quintana A, Fernández‐Felix BM, Pérez‐Cerdá C, Merinero B, Ruiz‐Sala P, Arrieta F, Martínez‐Pardo M. Long-term follow-up with filter paper samples in patients with propionic acidemia. JIMD Rep 2021; 57:44-51. [PMID: 33473339 PMCID: PMC7802619 DOI: 10.1002/jmd2.12166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Propionic acidemia (PA) is an inherited disorder caused by deficiency of propionyl CoA carboxylase. Most patients with this disorder are diagnosed during the neonatal period because of severe metabolic acidosis and hyperammonemia. Patients are required to undergo blood and urine analysis at least 3 to 4 times per year, depending on age and metabolic control. METHODS We designed a prospective study in which we investigated the results from blood and urinary samples collected monthly in filter paper from 10 PA patients followed in a single metabolic reference center from January 2015 to September 2017. The aim of this study was to evaluate the usefulness of filter paper samples in the follow-up of the PA patients. RESULTS During the follow-up period, 163 dried blood spot (DBS) and 119 urine dried spot samples were analyzed and compared with 160 plasma and 103 liquid urine specimens; 64 specimens of plasma were analyzed for odd-numbered long-chain fatty acids (OLCFAs). A total of 40 metabolic crises, 18 of them with hyperammonemia were documented. We observed a strong correlation between the filter paper and the urine/plasma samples for the main PA parameters both in stable metabolic conditions as well as in acute decompensations. Also, there was a strong correlation between OLCFAs measured in plasma and quantification of odd number acylcarnitines in DBS. CONCLUSIONS We conclude that filter paper blood and urinary samples can be used for the follow-up of the patients with PA, correctly reflecting their metabolic situation.
Collapse
Affiliation(s)
- Sinziana Stanescu
- Unidad de Enfermedades MetabólicasHospital Universitario Ramón y Cajal, IRYCIS, CIBER‐OBNMadridSpain
| | - Amaya Belanger‐Quintana
- Unidad de Enfermedades MetabólicasHospital Universitario Ramón y Cajal, IRYCIS, CIBER‐OBNMadridSpain
| | - Borja Manuel Fernández‐Felix
- Unidad de Bioestadística ClínicaInstituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y CajalMadridSpain
| | - Celia Pérez‐Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZMadridSpain
| | - Begoña Merinero
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZMadridSpain
| | - Pedro Ruiz‐Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZMadridSpain
| | - Francisco Arrieta
- Unidad de Enfermedades MetabólicasHospital Universitario Ramón y Cajal, IRYCIS, CIBER‐OBNMadridSpain
| | - Mercedes Martínez‐Pardo
- Unidad de Enfermedades MetabólicasHospital Universitario Ramón y Cajal, IRYCIS, CIBER‐OBNMadridSpain
| |
Collapse
|
9
|
Propionic and Methylmalonic Acidemias: Initial Clinical and Biochemical Presentation. Int J Pediatr 2020; 2020:7653716. [PMID: 33293965 PMCID: PMC7700050 DOI: 10.1155/2020/7653716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/07/2020] [Accepted: 11/07/2020] [Indexed: 11/18/2022] Open
Abstract
PA and MAA have numerous nonspecific presentations, potentially leading to delayed diagnosis or misdiagnosis. In this paper, we present the clinical and biochemical characteristics of MMA and PA patients at initial presentation. Results. This is a retrospective review of 20 patients with PA (n = 10) and MMA (n = 10). The most observed symptoms were vomiting (85%) and refusing feeding (70%). Ammonia was 108.75 ± 9.3 μmol/l, showing a negative correlation with pH and bicarbonate and positive correlation with lactate and anion gap. Peak ammonia did not correlate with age of onset (r = 0.11 and p = 0.64) or age at diagnosis (r = 0.39 and p = 0.089), nor did pH (r = 0.01, p = 0.96; r = −0.25, p = 0.28) or bicarbonate (r = 0.07, p = 0.76; r = −0.22, p = 0.34). There was no correlation between ammonia and C3 : C2 (r = 0.1 and p = 0.96) or C3 (r = 0.23 and p = 0.32). The glycine was 386 ± 167.1 μmol/l, and it was higher in PA (p = 0.003). There was a positive correlation between glycine and both pH (r = 0.56 and p = 0.01) and HCO3 (r = 0.49 and p = 0.026). There was no correlation between glycine and ammonia (r = −0.435 and p = 0.055) or lactate (r = 0.32 and p = 0.160). Conclusion. Clinical presentation of PA and MMA is nonspecific, though vomiting and refusing feeding are potential markers of decompensation. Blood gas, lactate, and ammonia levels are also good predictors of decompensation, though increasing levels of glycine may not indicate metabolic instability.
Collapse
|
10
|
Maines E, Catesini G, Boenzi S, Mosca A, Candusso M, Dello Strologo L, Martinelli D, Maiorana A, Liguori A, Olivieri G, Taurisano R, Piemonte F, Rizzo C, Spada M, Dionisi-Vici C. Plasma methylcitric acid and its correlations with other disease biomarkers: The impact in the follow up of patients with propionic and methylmalonic acidemia. J Inherit Metab Dis 2020; 43:1173-1185. [PMID: 32681732 DOI: 10.1002/jimd.12287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Methylcitric acid (MCA) analysis has been mainly utilized for the diagnosis of propionate disorders or as a second-tier test in newborn screening, but its utility for patients monitoring still needs to be established. We explored the potential contribution of MCA in the long-term management of organic acidurias. We prospectively evaluated plasma MCA and its relationship with disease biomarkers, clinical status, and disease burden in 22 patients, 13 with propionic acidemia (PA) and nine with methylmalonic acidemia (MMA) on standard treatment and/or after transplantation. Samples were collected at scheduled routine controls or during episodes of metabolic decompensation (MD), 10 patients were evaluated after transplantation (six liver, two combined liver and kidney, 2 kidney). MCA levels were higher in PA compared to MMA and its levels were not influenced by the clinical status (MD vs well state). In MMA, MCA was higher in elder patients and, along with fibroblast growth factor 21 (FGF21) and plasma methylmalonic acid, negatively correlated with GFR. In both diseases, MCA correlated with ammonia, glycine, lysine, C3, and the C3/C2, C3/C16 ratios. The disease burden showed a direct correlation with MCA and FGF21, for both diseases. All transplanted patients showed a significant reduction of MCA in comparison to baseline values, with some differences dependent on the type of transplantation. Our study provided new insights in understanding the disease pathophysiology, showing similarities between MCA and FGF21 in predicting disease burden, long-term complications and in evaluating the impact of organ transplantation.
Collapse
Affiliation(s)
- Evelina Maines
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giulio Catesini
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Boenzi
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Antonella Mosca
- Division of Hepatology, Gastroenterology and Nutrition, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Manila Candusso
- Division of Hepatology, Gastroenterology and Nutrition, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Arianna Maiorana
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandra Liguori
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giorgia Olivieri
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Roberta Taurisano
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Marco Spada
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
11
|
Jiang L, Park JS, Yin L, Laureano R, Jacquinet E, Yang J, Liang S, Frassetto A, Zhuo J, Yan X, Zhu X, Fortucci S, Hoar K, Mihai C, Tunkey C, Presnyak V, Benenato KE, Lukacs CM, Martini PGV, Guey LT. Dual mRNA therapy restores metabolic function in long-term studies in mice with propionic acidemia. Nat Commun 2020; 11:5339. [PMID: 33087718 PMCID: PMC7578066 DOI: 10.1038/s41467-020-19156-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Propionic acidemia/aciduria (PA) is an ultra-rare, life-threatening, inherited metabolic disorder caused by deficiency of the mitochondrial enzyme, propionyl-CoA carboxylase (PCC) composed of six alpha (PCCA) and six beta (PCCB) subunits. We herein report an enzyme replacement approach to treat PA using a combination of two messenger RNAs (mRNAs) (dual mRNAs) encoding both human PCCA (hPCCA) and PCCB (hPCCB) encapsulated in biodegradable lipid nanoparticles (LNPs) to produce functional PCC enzyme in liver. In patient fibroblasts, dual mRNAs encoded proteins localize in mitochondria and produce higher PCC enzyme activity vs. single (PCCA or PCCB) mRNA alone. In a hypomorphic murine model of PA, dual mRNAs normalize ammonia similarly to carglumic acid, a drug approved in Europe for the treatment of hyperammonemia due to PA. Dual mRNAs additionally restore functional PCC enzyme in liver and thus reduce primary disease-associated toxins in a dose-dependent manner in long-term 3- and 6-month repeat-dose studies in PA mice. Dual mRNAs are well-tolerated in these studies with no adverse findings. These studies demonstrate the potential of mRNA technology to chronically administer multiple mRNAs to produce large complex enzymes, with applicability to other genetic disorders. Propionic acidemia is a serious pediatric inherited disorder with no effective treatments. Here the authors demonstrate that delivering dual mRNAs as an enzyme replacement approach can be used as an effective therapy in a mouse model of propionic acidemia, with potential applicability to chronically administer multiple mRNAs in other genetic disorders.
Collapse
Affiliation(s)
- Lei Jiang
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Ji-Sun Park
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Ling Yin
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Eric Jacquinet
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Jinsong Yang
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Shi Liang
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Jenny Zhuo
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Xinhua Yan
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Xuling Zhu
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Steven Fortucci
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Kara Hoar
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Cosmin Mihai
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Vlad Presnyak
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | | | | | - Lin T Guey
- Moderna Inc., 200 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Collado MS, Armstrong AJ, Olson M, Hoang SA, Day N, Summar M, Chapman KA, Reardon J, Figler RA, Wamhoff BR. Biochemical and anaplerotic applications of in vitro models of propionic acidemia and methylmalonic acidemia using patient-derived primary hepatocytes. Mol Genet Metab 2020; 130:183-196. [PMID: 32451238 PMCID: PMC7337260 DOI: 10.1016/j.ymgme.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Propionic acidemia (PA) and methylmalonic acidemia (MMA) are autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, which are caused by a deficiency in the enzyme propionyl-CoA carboxylase or the enzyme methylmalonyl-CoA (MM-CoA) mutase, respectively. The functional consequence of PA or MMA is the inability to catabolize P-CoA to MM-CoA or MM-CoA to succinyl-CoA, resulting in the accumulation of P-CoA and other metabolic intermediates, such as propionylcarnitine (C3), 3-hydroxypropionic acid, methylcitric acid (MCA), and methylmalonic acid (only in MMA). P-CoA and its metabolic intermediates, at high concentrations found in PA and MMA, inhibit enzymes in the first steps of the urea cycle as well as enzymes in the tricarboxylic acid (TCA) cycle, causing a reduction in mitochondrial energy production. We previously showed that metabolic defects of PA could be recapitulated using PA patient-derived primary hepatocytes in a novel organotypic system. Here, we sought to investigate whether treatment of normal human primary hepatocytes with propionate would recapitulate some of the biochemical features of PA and MMA in the same platform. We found that high levels of propionate resulted in high levels of intracellular P-CoA in normal hepatocytes. Analysis of TCA cycle intermediates by GC-MS/MS indicated that propionate may inhibit enzymes of the TCA cycle as shown in PA, but is also incorporated in the TCA cycle, which does not occur in PA. To better recapitulate the disease phenotype, we obtained hepatocytes derived from livers of PA and MMA patients. We characterized the PA and MMA donors by measuring key proximal biomarkers, including P-CoA, MM-CoA, as well as clinical biomarkers propionylcarnitine-to-acetylcarnitine ratios (C3/C2), MCA, and methylmalonic acid. Additionally, we used isotopically-labeled amino acids to investigate the contribution of relevant amino acids to production of P-CoA in models of metabolic stability or acute metabolic crisis. As observed clinically, we demonstrated that the isoleucine and valine catabolism pathways are the greatest sources of P-CoA in PA and MMA donor cells and that each donor showed differential sensitivity to isoleucine and valine. We also studied the effects of disodium citrate, an anaplerotic therapy, which resulted in a significant increase in the absolute concentration of TCA cycle intermediates, which is in agreement with the benefit observed clinically. Our human cell-based PA and MMA disease models can inform preclinical drug discovery and development where mouse models of these diseases are inaccurate, particularly in well-described species differences in branched-chain amino acid catabolism.
Collapse
Affiliation(s)
- M Sol Collado
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | | | - Matthew Olson
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | | | - Nathan Day
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | - Marshall Summar
- Children's National Rare Disease Institute, Washington, DC, USA
| | | | - John Reardon
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | | | | |
Collapse
|
13
|
Understanding acute metabolic decompensation in propionic and methylmalonic acidemias: a deep metabolic phenotyping approach. Orphanet J Rare Dis 2020; 15:68. [PMID: 32143654 PMCID: PMC7060614 DOI: 10.1186/s13023-020-1347-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pathophysiology of life-threatening acute metabolic decompensations (AMD) in propionic acidemia (PA) and isolated methylmalonic acidemia (MMA) is insufficiently understood. Here, we study the metabolomes of PA and MMA patients over time, to improve insight in which biochemical processes are at play during AMD. METHODS Longitudinal data from clinical chemistry analyses and metabolic assays over the life-course of 11 PA and 13 MMA patients were studied retrospectively. Direct-infusion high-resolution mass spectrometry was performed on 234 and 154 remnant dried blood spot and plasma samples of PA and MMA patients, respectively. In addition, a systematic literature search was performed on reported biomarkers. All results were integrated in an assessment of biochemical processes at play during AMD. RESULTS We confirmed many of the metabolite alterations reported in literature, including increases of plasma valine and isoleucine during AMD in PA patients. We revealed that plasma leucine and phenylalanine, and urinary pyruvic acid were increased during AMD in PA patients. 3-hydroxyisovaleric acid correlated positively with plasma ammonia. We found that known diagnostic biomarkers were not significantly further increased, while intermediates of the branched-chain amino acid (BCAA) degradation pathway were significantly increased during AMD. CONCLUSIONS We revealed that during AMD in PA and MMA, BCAA and BCAA intermediates accumulate, while known diagnostic biomarkers remain essentially unaltered. This implies that these acidic BCAA intermediates are responsible for metabolic acidosis. Based on this, we suggest to measure plasma 3-hydroxyisovaleric acid and urinary ketones or 3-hydroxybutyric acid for the biochemical follow-up of a patient's metabolic stability.
Collapse
|
14
|
Haijes HA, van Hasselt PM, Jans JJM, Verhoeven-Duif NM. Pathophysiology of propionic and methylmalonic acidemias. Part 2: Treatment strategies. J Inherit Metab Dis 2019; 42:745-761. [PMID: 31119742 DOI: 10.1002/jimd.12128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
Despite realizing increased survival rates for propionic acidemia (PA) and methylmalonic acidemia (MMA) patients, the current therapeutic regimen is inadequate for preventing or treating the devastating complications that still can occur. The elucidation of pathophysiology of these complications allows us to evaluate and rethink treatment strategies. In this review we display and discuss potential therapy targets and we give a systematic overview on current, experimental and unexplored treatment strategies in order to provide insight in what we have to offer PA and MMA patients, now and in the future. Evidence on the effectiveness of treatment strategies is often scarce, since none were tested in randomized clinical trials. This raises concerns, since even the current consensus on best practice treatment for PA and MMA is not without controversy. To attain substantial improvements in overall outcome, gene, mRNA or enzyme replacement therapy is most promising since permanent reduction of toxic metabolites allows for a less strict therapeutic regime. Hereby, both mitochondrial-associated and therapy induced complications can theoretically be prevented. However, the road from bench to bedside is long, as it is challenging to design a drug that is delivered to the mitochondria of all tissues that require enzymatic activity, including the brain, without inducing any off-target effects. To improve survival rate and quality of life of PA and MMA patients, there is a need for systematic (re-)evaluation of accepted and potential treatment strategies, so that we can better determine who will benefit when and how from which treatment strategy.
Collapse
Affiliation(s)
- Hanneke A Haijes
- Section Metabolic Diagnostics, Department of Biomedical Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter M van Hasselt
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Judith J M Jans
- Section Metabolic Diagnostics, Department of Biomedical Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Biomedical Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Martini PGV, Guey LT. A New Era for Rare Genetic Diseases: Messenger RNA Therapy. Hum Gene Ther 2019; 30:1180-1189. [PMID: 31179759 DOI: 10.1089/hum.2019.090] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Exogenous delivery of messenger RNA (mRNA) is emerging as a new class of medicine with broad applicability including the potential to treat rare monogenic disorders. Recent advances in mRNA technology, including modifications to the mRNA itself along with improvements to the delivery vehicle, have transformed the utility of mRNA as a potential therapy to restore or replace different types of therapeutic proteins. Preclinical proof-of-concept has been demonstrated for mRNA therapy for three different rare metabolic disorders: methylmalonic acidemia, acute intermittent porphyria, and Fabry disease. Herein, we review those preclinical efficacy and safety studies in multiple animal models. For all three disorders, mRNA therapy restored functional protein to therapeutically relevant levels in target organs, led to sustained and reproducible pharmacology following each dose administration of mRNA, and was well tolerated as supported by liver function tests evaluated in animal models including nonhuman primates. These data provide compelling support for the clinical development of mRNA therapy as a treatment for various rare metabolic disorders.
Collapse
Affiliation(s)
| | - Lin T Guey
- Rare Diseases, Moderna, Inc., Cambridge, Massachusetts
| |
Collapse
|
16
|
Experimental evidence that maleic acid markedly compromises glutamate oxidation through inhibition of glutamate dehydrogenase and α-ketoglutarate dehydrogenase activities in kidney of developing rats. Mol Cell Biochem 2019; 458:99-112. [DOI: 10.1007/s11010-019-03534-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
|
17
|
Item C, Schanzer A, Metz T, Greber-Platzer S, Lischka J. Demethylation of the hypoxia induction factor 1 binding site of GPX3 at excess blood ammonia in propionic acidemia. Clin Biochem 2019; 66:100-102. [DOI: 10.1016/j.clinbiochem.2019.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 11/26/2022]
|
18
|
Jurecki E, Ueda K, Frazier D, Rohr F, Thompson A, Hussa C, Obernolte L, Reineking B, Roberts AM, Yannicelli S, Osara Y, Stembridge A, Splett P, Singh RH. Nutrition management guideline for propionic acidemia: An evidence- and consensus-based approach. Mol Genet Metab 2019; 126:341-354. [PMID: 30879957 DOI: 10.1016/j.ymgme.2019.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
Affiliation(s)
- E Jurecki
- BioMarin Pharmaceutical Inc., Novato, CA, USA.
| | - K Ueda
- British Colombia Children's Hospital, Vancouver, BC, Canada
| | - D Frazier
- University of North Carolina, Chapel Hill, NC, USA
| | - F Rohr
- Boston Children's Hospital, Boston, MA, USA
| | - A Thompson
- Greenwood Genetic Center, Greenwood, SC, USA
| | - C Hussa
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - L Obernolte
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | - B Reineking
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | | | | | - Y Osara
- Emory University, Atlanta, GA, USA
| | | | - P Splett
- University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
19
|
Tarasenko TN, McGuire PJ. The liver is a metabolic and immunologic organ: A reconsideration of metabolic decompensation due to infection in inborn errors of metabolism (IEM). Mol Genet Metab 2017; 121:283-288. [PMID: 28666653 PMCID: PMC5553615 DOI: 10.1016/j.ymgme.2017.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022]
Abstract
Metabolic decompensation in inborn errors of metabolism (IEM) is characterized by a rapid deterioration in metabolic status leading to life-threatening biochemical perturbations (e.g. hypoglycemia, hyperammonemia, acidosis, organ failure). Infection is the major cause of metabolic decompensation in patients with IEM. We hypothesized that activation of the immune system during infection leads to further perturbations in end-organ metabolism resulting in increased morbidity. To address this, we established model systems of metabolic decompensation due to infection. Using these systems, we have described the pathologic mechanisms of metabolic decompensation as well as changes in hepatic metabolic reserve associated with infection. First and foremost, our studies have demonstrated that the liver experiences a significant local innate immune response during influenza infection that modulates hepatic metabolism. Based on these findings, we are the first to suggest that the role of the liver as a metabolic and immunologic organ is central in the pathophysiology of metabolic decompensation due to infection in IEM. The dual function of the liver as a major metabolic regulator and a lymphoid organ responsible for immunosurveillance places this organ at risk for hepatotoxicity. Mobilization of hepatic reserve and the regenerative capacity of a healthy liver compensates for this calculated risk. However, activation of the hepatic innate immune system may be deleterious in IEM. Based on this assertion, strategies aimed at modulating the innate immune response may be a viable target for intervention in the treatment of hepatic metabolic decompensation.
Collapse
Affiliation(s)
- Tatyana N Tarasenko
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Recent clinical studies and management guidelines for the treatment of the organic acidopathies methylmalonic acidemia (MMA) and propionic acidemia address the scope of interventions to maximize health and quality of life. Unfortunately, these disorders continue to cause significant morbidity and mortality due to acute and chronic systemic and end-organ injury. RECENT FINDINGS Dietary management with medical foods has been a mainstay of therapy for decades, yet well controlled patients can manifest growth, development, cardiac, ophthalmological, renal, and neurological complications. Patients with organic acidopathies suffer metabolic brain injury that targets specific regions of the basal ganglia in a distinctive pattern, and these injuries may occur even with optimal management during metabolic stress. Liver transplantation has improved quality of life and metabolic stability, yet transplantation in this population does not entirely prevent brain injury or the development of optic neuropathy and cardiac disease. SUMMARY Management guidelines should identify necessary screening for patients with methylmalonic acidemia and propionic acidemia, and improve anticipatory management of progressive end-organ disease. Liver transplantation improves overall metabolic control, but injury to nonregenerative tissues may not be mitigated. Continued use of medical foods in these patients requires prospective studies to demonstrate evidence of benefit in a controlled manner.
Collapse
|
21
|
Burlina A, Cazzorla C, Zanonato E, Viggiano E, Fasan I, Polo G. Clinical experience with N-carbamylglutamate in a single-centre cohort of patients with propionic and methylmalonic aciduria. Mol Genet Metab Rep 2016; 8:34-40. [PMID: 27489777 PMCID: PMC4949587 DOI: 10.1016/j.ymgmr.2016.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/24/2016] [Indexed: 12/30/2022] Open
Abstract
Background The effect of long-term N-carbamylglutamate (NCG) treatment on the rate and severity of decompensations due to propionic aciduria (PA) and methylmalonic aciduria (MMA) is unknown. This paper presents clinical experience from a single-centre cohort of patients with PA and MMA who received continuous long-term treatment with NCG. Methods The effect of oral NCG treatment (initial dose: 50 mg/kg/day) was investigated in patients with PA or MMA who were experiencing frequent progressive episodes of metabolic decompensation, who had pathological levels of ammonia, and who were referred to the Division of Metabolic Diseases, University Hospital of Padova between August 2014 and December 2015. Clinical and biochemical data, including the number of metabolic decompensations, lactic acid, uric acid and plasma ammonia levels, protein intake and body weight, were collected before and after the initiation of NCG treatment. Results Eight patients with PA (n = 4) and MMA (n = 4) aged 2–20 years were treated with NCG (50 mg/kg/day) for 7–16 months. Metabolic decompensation episodes decreased in number and severity, with three of the patients having no episodes (pre-treatment: 24 episodes; post-treatment: 9 episodes). After NCG treatment, all episodes were treated at home and none required hospitalisation, lactic acid values were 1.3–2.1 mmol/L and uric acid values were 0.21–0.36 mmol/L. Significant reductions in blood ammonia levels after NCG initiation were observed in five patients, whereas levels were reduced or maintained in the normal range in the remainder. Over the treatment period, patients had an increase in natural protein intake of 20–50% and gained 0–6.5 kg in bodyweight. Conclusion These observations suggest that, in addition to short-term benefits for the acute treatment of hyperammonaemia, NCG may be effective and well tolerated as a long-term treatment in patients with severe PA and MMA, and that further prospective studies are warranted.
Collapse
Affiliation(s)
- Alberto Burlina
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| | - Elisa Zanonato
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| | - Emanuela Viggiano
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| | - Ilaria Fasan
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| | - Giulia Polo
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| |
Collapse
|
22
|
Kölker S, Garcia-Cazorla A, Valayannopoulos V, Lund AM, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, Zeman J, Dionisi-Vici C, Barić I, Karall D, Augoustides-Savvopoulou P, Aksglaede L, Arnoux JB, Avram P, Baumgartner MR, Blasco-Alonso J, Chabrol B, Chakrapani A, Chapman K, I Saladelafont EC, Couce ML, de Meirleir L, Dobbelaere D, Dvorakova V, Furlan F, Gleich F, Gradowska W, Grünewald S, Jalan A, Häberle J, Haege G, Lachmann R, Laemmle A, Langereis E, de Lonlay P, Martinelli D, Matsumoto S, Mühlhausen C, de Baulny HO, Ortez C, Peña-Quintana L, Ramadža DP, Rodrigues E, Scholl-Bürgi S, Sokal E, Staufner C, Summar ML, Thompson N, Vara R, Pinera IV, Walter JH, Williams M, Burgard P. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: the initial presentation. J Inherit Metab Dis 2015; 38:1041-57. [PMID: 25875215 DOI: 10.1007/s10545-015-9839-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND The clinical presentation of patients with organic acidurias (OAD) and urea cycle disorders (UCD) is variable; symptoms are often non-specific. AIMS/METHODS To improve the knowledge about OAD and UCD the E-IMD consortium established a web-based patient registry. RESULTS We registered 795 patients with OAD (n = 452) and UCD (n = 343), with ornithine transcarbamylase (OTC) deficiency (n = 196), glutaric aciduria type 1 (GA1; n = 150) and methylmalonic aciduria (MMA; n = 149) being the most frequent diseases. Overall, 548 patients (69 %) were symptomatic. The majority of them (n = 463) presented with acute metabolic crisis during (n = 220) or after the newborn period (n = 243) frequently demonstrating impaired consciousness, vomiting and/or muscular hypotonia. Neonatal onset of symptoms was most frequent in argininosuccinic synthetase and lyase deficiency and carbamylphosphate 1 synthetase deficiency, unexpectedly low in male OTC deficiency, and least frequently in GA1 and female OTC deficiency. For patients with MMA, propionic aciduria (PA) and OTC deficiency (male and female), hyperammonemia was more severe in metabolic crises during than after the newborn period, whereas metabolic acidosis tended to be more severe in MMA and PA patients with late onset of symptoms. Symptomatic patients without metabolic crises (n = 94) often presented with a movement disorder, mental retardation, epilepsy and psychiatric disorders (the latter in UCD only). CONCLUSIONS The initial presentation varies widely in OAD and UCD patients. This is a challenge for rapid diagnosis and early start of treatment. Patients with a sepsis-like neonatal crisis and those with late-onset of symptoms are both at risk of delayed or missed diagnosis.
Collapse
Affiliation(s)
- Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | | | - Vassili Valayannopoulos
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alberto B Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Azienda Ospedaliera di Padova, Padova, Italy
| | | | - Frits A Wijburg
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Elisa Leão Teles
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Jiri Zeman
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Carlo Dionisi-Vici
- U.O.C. Patologia Metabolica, Ospedale Pediatrico Bambino Gésu, Rome, Italy
| | - Ivo Barić
- School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Lise Aksglaede
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jean-Baptiste Arnoux
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Paula Avram
- Institute of Mother and Child Care "Alfred Rusescu", Bucharest, Romania
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | | | - Brigitte Chabrol
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Neurologie, Hôpital d'Enfants, CHU Timone, Marseilles, France
| | - Anupam Chakrapani
- Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Kimberly Chapman
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | | | - Maria L Couce
- Metabolic Unit, Department of Pediatrics, Hospital Clinico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dries Dobbelaere
- Centre de Référence des Maladies Héréditaires du Métabolisme de l'Enfant et de l'Adulte, Hôpital Jeanne de Flandre, Lille, France
| | - Veronika Dvorakova
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Francesca Furlan
- U.O.C. Malattie Metaboliche Ereditarie, Azienda Ospedaliera di Padova, Padova, Italy
| | - Florian Gleich
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Wanda Gradowska
- Department of Laboratory Diagnostics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Stephanie Grünewald
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Anil Jalan
- N.I.R.M.A.N., Om Rachna Society, Vashi, Navi Mumbai, Mumbai, India
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Gisela Haege
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Alexander Laemmle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Eveline Langereis
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Pascale de Lonlay
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Diego Martinelli
- U.O.C. Patologia Metabolica, Ospedale Pediatrico Bambino Gésu, Rome, Italy
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto City, Japan
| | - Chris Mühlhausen
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carlos Ortez
- Servicio de Neurologia and CIBERER, ISCIII, Hospital San Joan de Deu, Barcelona, Spain
| | - Luis Peña-Quintana
- Hospital Universitario Materno-Infantil de Canarias, Unit of Pediatric Gastroenterology, Hepatology and Nutrition, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Esmeralda Rodrigues
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Etienne Sokal
- Service Gastroentérologie and Hépatologie Pédiatrique, Cliniques Universitaires St Luc, Université Catholique de Louvain, Bruxelles, Belgium
| | - Christian Staufner
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marshall L Summar
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Nicholas Thompson
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Roshni Vara
- Evelina Children's Hospital, St Thomas' Hospital, London, UK
| | | | - John H Walter
- Manchester Academic Health Science Centre, Willink Biochemical Genetics Unit, Genetic Medicine, University of Manchester, Manchester, UK
| | - Monique Williams
- Erasmus MC-Sophia Kinderziekenhuis, Erasmus Universiteit Rotterdam, Rotterdam, Netherlands
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
23
|
Baumgartner MR, Hörster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, Huemer M, Hochuli M, Assoun M, Ballhausen D, Burlina A, Fowler B, Grünert SC, Grünewald S, Honzik T, Merinero B, Pérez-Cerdá C, Scholl-Bürgi S, Skovby F, Wijburg F, MacDonald A, Martinelli D, Sass JO, Valayannopoulos V, Chakrapani A. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis 2014; 9:130. [PMID: 25205257 PMCID: PMC4180313 DOI: 10.1186/s13023-014-0130-8] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022] Open
Abstract
Methylmalonic and propionic acidemia (MMA/PA) are inborn errors of metabolism characterized by accumulation of propionic acid and/or methylmalonic acid due to deficiency of methylmalonyl-CoA mutase (MUT) or propionyl-CoA carboxylase (PCC). MMA has an estimated incidence of ~ 1: 50,000 and PA of ~ 1:100’000 -150,000. Patients present either shortly after birth with acute deterioration, metabolic acidosis and hyperammonemia or later at any age with a more heterogeneous clinical picture, leading to early death or to severe neurological handicap in many survivors. Mental outcome tends to be worse in PA and late complications include chronic kidney disease almost exclusively in MMA and cardiomyopathy mainly in PA. Except for vitamin B12 responsive forms of MMA the outcome remains poor despite the existence of apparently effective therapy with a low protein diet and carnitine. This may be related to under recognition and delayed diagnosis due to nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity. These guidelines aim to provide a trans-European consensus to guide practitioners, set standards of care and to help to raise awareness. To achieve these goals, the guidelines were developed using the SIGN methodology by having professionals on MMA/PA across twelve European countries and the U.S. gather all the existing evidence, score it according to the SIGN evidence level system and make a series of conclusive statements supported by an associated level of evidence. Although the degree of evidence rarely exceeds level C (evidence from non-analytical studies like case reports and series), the guideline should provide a firm and critical basis to guide practice on both acute and chronic presentations, and to address diagnosis, management, monitoring, outcomes, and psychosocial and ethical issues. Furthermore, these guidelines highlight gaps in knowledge that must be filled by future research. We consider that these guidelines will help to harmonize practice, set common standards and spread good practices, with a positive impact on the outcomes of MMA/PA patients.
Collapse
|
24
|
de Sain-van der Velden MGM, van der Ham M, Verhoeven-Duif NM, Visser G, van Hasselt PM. Comment on Zwickler et al.: Usefulness of biochemical parameters in decision-making on the start of emergency treatment in patients with propionic acidemia. J Inherit Metab Dis 2014; 37:651-2. [PMID: 24696407 DOI: 10.1007/s10545-014-9706-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 01/11/2023]
Affiliation(s)
- M G M de Sain-van der Velden
- Department of Medical Genetics, University Medical Centre (UMC) Utrecht, KC 02.069.1, PO Box 85090, 3508AB, Utrecht, The Netherlands,
| | | | | | | | | |
Collapse
|