1
|
Ali RAA, Jadah RHSH. McArdle Disease: Insights Into a Rare Metabolic Myopathy in a Young Boy With Recurrent Exercise-Induced Muscle Weakness. Cureus 2025; 17:e78490. [PMID: 40051944 PMCID: PMC11884419 DOI: 10.7759/cureus.78490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
McArdle disease, or glycogen storage disease type V, is a rare metabolic myopathy caused by a deficiency of myophosphorylase, leading to impaired glycogen breakdown in skeletal muscle. This results in exercise intolerance, muscle cramps, and episodic weakness. Due to its rarity and variable presentation, diagnosis is often delayed or misattributed to other neuromuscular disorders. We report the case of a nine-year-old boy who presented to the emergency department with acute difficulty in walking associated with left hip pain. He had a prior episode at the age of five with similar complaints, during which routine hematological and biochemical investigations, including creatine kinase (CK) levels, were unremarkable. He was initially diagnosed with viral myositis and managed conservatively. In the current episode, a physical examination revealed proximal muscle weakness with tenderness over the left hip. Laboratory investigations showed a markedly elevated CK level of 1390 IU/L, suggesting muscle pathology. Imaging studies, including hip ultrasonography and lumbosacral spine MRI, were normal. Given his clinical history and episodic muscle weakness, whole-exome sequencing was performed, which confirmed pathogenic variants in the PYGM gene, establishing the diagnosis of McArdle disease. The patient was referred to a dietitian and placed on a structured nutritional and exercise regimen, leading to significant symptomatic improvement. This case highlights the importance of considering McArdle disease in children presenting with recurrent exertional muscle weakness and myalgias, particularly in the setting of elevated CK levels. Early recognition and genetic confirmation are crucial to prevent complications and guide appropriate dietary and exercise-based interventions. Increased awareness among clinicians can facilitate timely diagnosis and improve long-term outcomes in affected individuals.
Collapse
Affiliation(s)
- Reem Abdulla A Ali
- General Practice, Bahrain Defence Force Royal Medical Services, Riffa, BHR
| | | |
Collapse
|
2
|
Santos-Lozano A, Boraita A, Valenzuela PL, Santalla A, Villarreal-Salazar M, Bustos A, Alejo LB, Barranco-Gil D, Millán-Parlanti D, López-Ortiz S, Peñín-Grandes SA, Orellana JOSN, Fiuza-Luces C, GáLVEZ BG, García-FERNáNDEZ MÁ, Pinós T, Lucia A. Exercise Intolerance in McArdle Disease: A Role for Cardiac Impairment? A Preliminary Study in Humans and Mice. Med Sci Sports Exerc 2024; 56:2241-2255. [PMID: 39160758 DOI: 10.1249/mss.0000000000003529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Whether cardiac impairment can be fully discarded in McArdle disease-the paradigm of "exercise intolerance," caused by inherited deficiency of the skeletal muscle-specific glycogen phosphorylase isoform ("myophosphorylase")-remains to be determined. METHODS Eight patients with McArdle disease and seven age/sex-matched controls performed a 15-min moderate, constant-load cycle-ergometer exercise bout followed by a maximal ramp test. Electrocardiographic and two-dimensional transthoracic (for cardiac dimension's assessment) and speckle tracking (for left ventricular global longitudinal strain (GLS) assessments) echocardiographic evaluations were performed at baseline. Electrocardiographic and GLS assessments were also performed during constant-load exercise and immediately upon maximal exertion. Four human heart biopsies were obtained in individuals without McArdle disease, and in-depth histological/molecular analyses were performed in McArdle and wild-type mouse hearts. RESULTS Exercise intolerance was confirmed in patients ("second wind" during constant-load exercise, -55% peak power output vs controls). As opposed to controls, patients showed a decrease in GLS during constant-load exercise, especially upon second wind occurrence, but with no other between-group difference in cardiac structure/function. Human cardiac biopsies showed that all three glycogen phosphorylase-myophosphorylase, but also liver and especially brain-isoforms are expressed in the normal adult heart, thereby theoretically compensating for eventual myophosphorylase deficiency. No overall histological (including glycogen depots), cytoskeleton, metabolic, or mitochondrial (morphology/network/distribution) differences were found between McArdle and wild-type mouse hearts, except for lower levels of pyruvate kinase M2 and translocase of outer-membrane 20-kDa subunit in the former. CONCLUSIONS This study provides preliminary evidence that cardiac structure and function seem to be preserved in patients with McArdle disease. However, the role for an impaired cardiac contractility associated with the second wind phenomenon should be further explored.
Collapse
Affiliation(s)
| | | | | | | | | | - Asunción Bustos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, SPAIN
| | | | | | | | | | | | - JOSé Naranjo Orellana
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, SPAIN
| | - Carmen Fiuza-Luces
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid, SPAIN
| | | | | | | | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, SPAIN
| |
Collapse
|
3
|
Hoxhaj D, Vadi G, Bianchi L, Fontanelli L, Torri F, Siciliano G, Ricci G. Cardiac comorbidities in McArdle disease: case report and systematic review. Neurol Sci 2024; 45:4757-4765. [PMID: 38802689 PMCID: PMC11422453 DOI: 10.1007/s10072-024-07600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION AND METHODS Myophosphorylase deficiency, also known as McArdle disease or Glycogen Storage Disease type V (GSD-V), is an autosomal recessive metabolic myopathy that results in impaired glycogen breakdown in skeletal muscle. Despite being labelled as a "pure myopathy," cardiac involvement has been reported in some cases, including various cardiac abnormalities such as electrocardiographic changes, coronary artery disease, and cardiomyopathy. Here, we present a unique case of a 72-year-old man with GSD-V and both mitral valvulopathy and coronary artery disease, prompting a systematic review to explore the existing literature on cardiac comorbidities in McArdle disease. RESULTS Our systematic literature revision identified 7 case reports and 1 retrospective cohort study. The case reports described 7 GSD-V patients, averaging 54.3 years in age, mostly male (85.7%). Coronary artery disease was noted in 57.1% of cases, hypertrophic cardiomyopathy in 28.5%, severe aortic stenosis in 14.3%, and genetic dilated cardiomyopathy in one. In the retrospective cohort study, five out of 14 subjects (36%) had coronary artery disease. DISCUSSION AND CONCLUSION Despite McArdle disease primarily affecting skeletal muscle, cardiac involvement has been observed, especially coronary artery disease, the frequency of which was moreover found to be higher in McArdle patients than in the background population in a previous study from a European registry. Exaggerated cardiovascular responses during exercise and impaired glycolytic metabolism have been speculated as potential contributors. A comprehensive cardiological screening might be recommended for McArdle disease patients to detect and manage cardiac comorbidities. A multidisciplinary approach is crucial to effectively manage both neurological and cardiac aspects of the disease and improve patient outcomes. Further research is required to establish clearer pathophysiological links between McArdle disease and cardiac manifestations in order to clarify the existing findings.
Collapse
Affiliation(s)
- Domeniko Hoxhaj
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Via Roma 67, 56100, Pisa, Italy
| | - Gabriele Vadi
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Via Roma 67, 56100, Pisa, Italy.
| | - Lorenzo Bianchi
- Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Lorenzo Fontanelli
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Via Roma 67, 56100, Pisa, Italy
| | - Francesca Torri
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Via Roma 67, 56100, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Via Roma 67, 56100, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Via Roma 67, 56100, Pisa, Italy
| |
Collapse
|
4
|
García-Consuegra I, Asensio-Peña S, Garrido-Moraga R, Pinós T, Domínguez-González C, Santalla A, Nogales-Gadea G, Serrano-Lorenzo P, Andreu AL, Arenas J, Zugaza JL, Lucia A, Martín MA. Identification of Potential Muscle Biomarkers in McArdle Disease: Insights from Muscle Proteome Analysis. Int J Mol Sci 2022; 23:4650. [PMID: 35563042 PMCID: PMC9100117 DOI: 10.3390/ijms23094650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Glycogen storage disease type V (GSDV, McArdle disease) is a rare genetic myopathy caused by deficiency of the muscle isoform of glycogen phosphorylase (PYGM). This results in a block in the use of muscle glycogen as an energetic substrate, with subsequent exercise intolerance. The pathobiology of GSDV is still not fully understood, especially with regard to some features such as persistent muscle damage (i.e., even without prior exercise). We aimed at identifying potential muscle protein biomarkers of GSDV by analyzing the muscle proteome and the molecular networks associated with muscle dysfunction in these patients. Muscle biopsies from eight patients and eight healthy controls showing none of the features of McArdle disease, such as frequent contractures and persistent muscle damage, were studied by quantitative protein expression using isobaric tags for relative and absolute quantitation (iTRAQ) followed by artificial neuronal networks (ANNs) and topology analysis. Protein candidate validation was performed by Western blot. Several proteins predominantly involved in the process of muscle contraction and/or calcium homeostasis, such as myosin, sarcoplasmic/endoplasmic reticulum calcium ATPase 1, tropomyosin alpha-1 chain, troponin isoforms, and alpha-actinin-3, showed significantly lower expression levels in the muscle of GSDV patients. These proteins could be potential biomarkers of the persistent muscle damage in the absence of prior exertion reported in GSDV patients. Further studies are needed to elucidate the molecular mechanisms by which PYGM controls the expression of these proteins.
Collapse
Affiliation(s)
- Inés García-Consuegra
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Sara Asensio-Peña
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
| | - Rocío Garrido-Moraga
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
| | - Tomàs Pinós
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Cristina Domínguez-González
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Alfredo Santalla
- Department of Computer and Sport Sciences, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Gisela Nogales-Gadea
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Barcelona, Spain;
| | - Pablo Serrano-Lorenzo
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1019 Amsterdam, The Netherlands;
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - José L. Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, and Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain;
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Alejandro Lucia
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Miguel A. Martín
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| |
Collapse
|
5
|
Dantas GHM, Oliveira ALBD, Marcos-Pardo PJ, Coutinho VFF, Sá Freire FCD, Castro JBPD, Souza Vale RGD. Rhabdomyolysis Episode in an Individual with McArdle's Disease after Low Aerobic Exercise. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2022; 33:S91-S99. [PMID: 37102530 DOI: 10.4103/1319-2442.374387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
McArdle's disease, known as blockage of muscle glycogen metabolism, is characterized by glycogen accumulation of chains in skeletal striated muscles. One of the typical symptoms of the disease is the feeling of intolerance to exercise. Severe muscle cram and contracture, which often cause stiffness, occur due to a lack of muscle energy substrate during the exercise. These factors can lead to muscle damage, myoglobinuria, and, in severe cases, renal failure and rhabdomyolysis. Rhabdomyolysis is a syndrome that presents injury and necrosis of muscle cells leading to the release of intracellular material to the circulatory system. The present study aimed to report rhabdomyolysis in an individual with McArdle's disease after exercise of walking with low intensity. Patient, aged 33 years, was treated in the emergency room of a hospital located in the State of Rio de Janeiro, Brazil. After performing a full lap on the block of home (~500 m in ~4 min 37 s), walking at a moderate speed (~6.5 km/h), the individual felt sick and was rescued, later being hospitalized. The examinations collected presented hematocrit (HCT) compatible with chronic disease anemia and myoglobinuria. The patient was discharged from the intensive care center on the 3rd day, after a 45% drop in creatine kinase. The patient described in the present study achieved full recovery. Attention to symptoms, early diagnosis, and immediate treatment made it possible to interrupt the development of complications caused by rhabdomyolysis, not allowing progression to acute renal failure.
Collapse
Affiliation(s)
- Guilherme Henrique Mattos Dantas
- Department of Physical Activity Sciences (DCAF), Laboratory of Exercise and Sport (LABEES); Postgraduate Program in Exercise and Sport Sciences, Institute of Physical Education and Sports, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Pablo Jorge Marcos-Pardo
- CERNEP, Research Centre, SPORT Research Group (CTS-1024), University of Almería, 04120 Almería, Spain; CERNEP, Research Centre, SPORT Research Group (CTS-1024), University of Almería, 04120 Almería, Spain; Active Aging, Exercise and Health/HEALTHY-AGE Network, Consejo Superior de Deportes (CSD), Ministry of Culture and Sport of Spain, 28040 Madrid, Spain,, Spain
| | | | | | - Juliana Brandão Pinto de Castro
- Department of Physical Activity Sciences (DCAF), Laboratory of Exercise and Sport (LABEES); Postgraduate Program in Exercise and Sport Sciences, Institute of Physical Education and Sports, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Rodrigo Gomes de Souza Vale
- Department of Physical Activity Sciences (DCAF), Laboratory of Exercise and Sport (LABEES); Postgraduate Program in Exercise and Sport Sciences, Institute of Physical Education and Sports, Rio de Janeiro State University; Laboratory of Exercise Physiology, Estácio de SáUniversity, Cabo Frio, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Preclinical Research in McArdle Disease: A Review of Research Models and Therapeutic Strategies. Genes (Basel) 2021; 13:genes13010074. [PMID: 35052414 PMCID: PMC8774685 DOI: 10.3390/genes13010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
McArdle disease is an autosomal recessive disorder of muscle glycogen metabolism caused by pathogenic mutations in the PYGM gene, which encodes the skeletal muscle-specific isoform of glycogen phosphorylase. Clinical symptoms are mainly characterized by transient acute “crises” of early fatigue, myalgia and contractures, which can be accompanied by rhabdomyolysis. Owing to the difficulty of performing mechanistic studies in patients that often rely on invasive techniques, preclinical models have been used for decades, thereby contributing to gain insight into the pathophysiology and pathobiology of human diseases. In the present work, we describe the existing in vitro and in vivo preclinical models for McArdle disease and review the insights these models have provided. In addition, despite presenting some differences with the typical patient’s phenotype, these models allow for a deep study of the different features of the disease while representing a necessary preclinical step to assess the efficacy and safety of possible treatments before they are tested in patients.
Collapse
|
7
|
Leyens J, Bender TTA, Mücke M, Stieber C, Kravchenko D, Dernbach C, Seidel MF. The combined prevalence of classified rare rheumatic diseases is almost double that of ankylosing spondylitis. Orphanet J Rare Dis 2021; 16:326. [PMID: 34294115 PMCID: PMC8296612 DOI: 10.1186/s13023-021-01945-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rare diseases (RDs) affect less than 5/10,000 people in Europe and fewer than 200,000 individuals in the United States. In rheumatology, RDs are heterogeneous and lack systemic classification. Clinical courses involve a variety of diverse symptoms, and patients may be misdiagnosed and not receive appropriate treatment. The objective of this study was to identify and classify some of the most important RDs in rheumatology. We also attempted to determine their combined prevalence to more precisely define this area of rheumatology and increase awareness of RDs in healthcare systems. We conducted a comprehensive literature search and analyzed each disease for the specified criteria, such as clinical symptoms, treatment regimens, prognoses, and point prevalences. If no epidemiological data were available, we estimated the prevalence as 1/1,000,000. The total point prevalence for all RDs in rheumatology was estimated as the sum of the individually determined prevalences. RESULTS A total of 76 syndromes and diseases were identified, including vasculitis/vasculopathy (n = 15), arthritis/arthropathy (n = 11), autoinflammatory syndromes (n = 11), myositis (n = 9), bone disorders (n = 11), connective tissue diseases (n = 8), overgrowth syndromes (n = 3), and others (n = 8). Out of the 76 diseases, 61 (80%) are classified as chronic, with a remitting-relapsing course in 27 cases (35%) upon adequate treatment. Another 34 (45%) diseases were predominantly progressive and difficult to control. Corticosteroids are a therapeutic option in 49 (64%) syndromes. Mortality is variable and could not be determined precisely. Epidemiological studies and prevalence data were available for 33 syndromes and diseases. For an additional eight diseases, only incidence data were accessible. The summed prevalence of all RDs was 28.8/10,000. CONCLUSIONS RDs in rheumatology are frequently chronic, progressive, and present variable symptoms. Treatment options are often restricted to corticosteroids, presumably because of the scarcity of randomized controlled trials. The estimated combined prevalence is significant and almost double that of ankylosing spondylitis (18/10,000). Thus, healthcare systems should assign RDs similar importance as any other common disease in rheumatology.
Collapse
Affiliation(s)
- Judith Leyens
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Department of Neonatology and Pediatric Care, Children's University Hospital, Bonn, Germany
| | - Tim Th A Bender
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Institute of Human Genetics, University Hospital, Bonn, Germany
| | - Martin Mücke
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
| | - Christiane Stieber
- Institute of General Practice and Family Medicine, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Dmitrij Kravchenko
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Department of Radiology, University Hospital, Bonn, Germany
| | - Christian Dernbach
- Division of Medical Psychology and Department of Psychiatry, University Hospital, Bonn, Germany
| | - Matthias F Seidel
- Department of Rheumatology, Spitalzentrum-Centre hospitalier, Biel-Bienne, Switzerland.
| |
Collapse
|
8
|
Kang JH, Park JH, Park JS, Lee SK, Lee S, Baik HW. Molecular diagnosis of McArdle disease using whole-exome sequencing. Exp Ther Med 2021; 22:1029. [PMID: 34373715 PMCID: PMC8343624 DOI: 10.3892/etm.2021.10461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Whole-exome sequencing (WES) analysis has been used recently as a diagnostic tool for finding molecular defects. In the present study, researchers attempted to analyze molecular defects through WES in a 13-year-old female patient who had not been diagnosed through a conventional genetic approach. DNA was extracted and subjected to WES analysis to identify the genetic defect. A total of 106,728 exons and splicing variants were selected, and synonymous single nucleotide variants (SNVs) and general single nucleotide polymorphisms (SNPs) were filtered out. Finally, nonsynonymous SNVs (c.C415T and c.C389T) of the PYGM gene were identified in nine compound heterozygous mutations. PYGM encodes myophosphorylase and degrades glycogen in the muscle to supply energy to muscle cells. The present study revealed that the patient's father had a c.C389T mutation and the mother had a c.C415T mutation, resulting in A130V and R139W missense mutations, respectively. To the best of our knowledge, the A130V variant in PYGM has not been reported in the common variant databases. All variations of the patient's family detected using WES were verified by Sanger sequencing. Because the patient had compound heterozygous mutations in the PYGM gene, the patient was presumed to exhibit markedly decreased muscle phosphorylase activity. To assess the function of myophosphorylase, an ischemic forearm exercise test was performed. The blood ammonia level sharply increased and the lactate level maintained a flat curve shape similar to the typical pattern of McArdle disease. Therefore, the diagnosis of the patient was confirmed to be McArdle disease, a glycogen storage disease. Through WES analysis, accurate and early diagnosis could be made in the present study. This report describes a novel compound heterozygous mutation of the PYGM gene in a Korean patient.
Collapse
Affiliation(s)
- Ju-Hyung Kang
- Department of Pediatrics, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Jun-Hyung Park
- Department of Biochemistry and Molecular Biology, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Jin-Soon Park
- Department of Biochemistry and Molecular Biology, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Seong-Kyu Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Sunghoon Lee
- Department of Research and Development Eone-Diagnomics Genome Center, Incheon 22014, Republic of Korea
| | - Haing-Woon Baik
- Department of Biochemistry and Molecular Biology, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| |
Collapse
|
9
|
Migocka-Patrzałek M, Elias M. Muscle Glycogen Phosphorylase and Its Functional Partners in Health and Disease. Cells 2021; 10:cells10040883. [PMID: 33924466 PMCID: PMC8070155 DOI: 10.3390/cells10040883] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glycogen phosphorylase (PG) is a key enzyme taking part in the first step of glycogenolysis. Muscle glycogen phosphorylase (PYGM) differs from other PG isoforms in expression pattern and biochemical properties. The main role of PYGM is providing sufficient energy for muscle contraction. However, it is expressed in tissues other than muscle, such as the brain, lymphoid tissues, and blood. PYGM is important not only in glycogen metabolism, but also in such diverse processes as the insulin and glucagon signaling pathway, insulin resistance, necroptosis, immune response, and phototransduction. PYGM is implicated in several pathological states, such as muscle glycogen phosphorylase deficiency (McArdle disease), schizophrenia, and cancer. Here we attempt to analyze the available data regarding the protein partners of PYGM to shed light on its possible interactions and functions. We also underline the potential for zebrafish to become a convenient and applicable model to study PYGM functions, especially because of its unique features that can complement data obtained from other approaches.
Collapse
|
10
|
Almodóvar-Payá A, Villarreal-Salazar M, de Luna N, Nogales-Gadea G, Real-Martínez A, Andreu AL, Martín MA, Arenas J, Lucia A, Vissing J, Krag T, Pinós T. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. Int J Mol Sci 2020; 21:ijms21249621. [PMID: 33348688 PMCID: PMC7766110 DOI: 10.3390/ijms21249621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
GSD are a group of disorders characterized by a defect in gene expression of specific enzymes involved in glycogen breakdown or synthesis, commonly resulting in the accumulation of glycogen in various tissues (primarily the liver and skeletal muscle). Several different GSD animal models have been found to naturally present spontaneous mutations and others have been developed and characterized in order to further understand the physiopathology of these diseases and as a useful tool to evaluate potential therapeutic strategies. In the present work we have reviewed a total of 42 different animal models of GSD, including 26 genetically modified mouse models, 15 naturally occurring models (encompassing quails, cats, dogs, sheep, cattle and horses), and one genetically modified zebrafish model. To our knowledge, this is the most complete list of GSD animal models ever reviewed. Importantly, when all these animal models are analyzed together, we can observe some common traits, as well as model specific differences, that would be overlooked if each model was only studied in the context of a given GSD.
Collapse
Affiliation(s)
- Aitana Almodóvar-Payá
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Noemí de Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Gisela Nogales-Gadea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands;
| | - Miguel Angel Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Joaquin Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University, 28670 Madrid, Spain;
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Correspondence: ; Tel.: +34-934894057
| |
Collapse
|
11
|
Godbe K, Malaty G, Wenzel A, Nazeer S, Grider DJ, Kinsey A. McArdle Disease vs. Stiff-Person Syndrome: A Case Report Highlighting the Similarities Between Two Rare and Distinct Disorders. Front Neurol 2020; 11:529985. [PMID: 33240189 PMCID: PMC7683573 DOI: 10.3389/fneur.2020.529985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022] Open
Abstract
McArdle disease is a rare autosomal recessive disorder of muscle glycogen metabolism that presents with pain and fatigue during exercise. Stiff-Person Syndrome is an autoimmune-related neurologic process characterized by fluctuating muscle rigidity and spasm. Reported is a 41-year-old male who presented to the emergency department due to sudden-onset weakness and chest pain while moving his refrigerator at home. Cardiac workup was non-contributory, but a creatine kinase level > 6,000 warranted a muscle biopsy. The biopsy pathology report was misinterpreted to be diagnostic for McArdle disease given the clinical presentation. After 4 years of treatment without symptomatic improvement, a gradual transition of symptoms from pain alone to pain with stiffness was noted. A positive glutamic acid decarboxylase antibody test resulted in a change of diagnosis to Stiff-Person Syndrome. This is the first known case that highlights the similarities between these two rare and distinct disease processes, highlighting the necessity for thorough history taking, maintenance of a broad differential diagnosis, and knowledge of how best to interpret complex pathology reports.
Collapse
Affiliation(s)
- Kerilyn Godbe
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Giovanni Malaty
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Alyssa Wenzel
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Sahana Nazeer
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Douglas J Grider
- Department of Basic Science, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Adrienne Kinsey
- Department of Family Medicine, Carilion Clinic, Roanoke, VA, United States
| |
Collapse
|
12
|
Xie RR, Yang YB, Jin P. Identification of a novel PYGM mutation in a McArdle disease patient misdiagnosed as hypokalemic periodic paralysis. J Endocrinol Invest 2020; 43:697-698. [PMID: 32100198 DOI: 10.1007/s40618-020-01202-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Affiliation(s)
- R R Xie
- Department of Endocrinology, The Third Xiangya Hospital Central South University, Tongzipo Road, Hunan Province, 410007, Changsha, People's Republic of China
| | - Y B Yang
- Department of Endocrinology, The Third Xiangya Hospital Central South University, Tongzipo Road, Hunan Province, 410007, Changsha, People's Republic of China
| | - P Jin
- Department of Endocrinology, The Third Xiangya Hospital Central South University, Tongzipo Road, Hunan Province, 410007, Changsha, People's Republic of China.
| |
Collapse
|
13
|
The effect of muscle glycogen phosphorylase (Pygm) knockdown on zebrafish morphology. Int J Biochem Cell Biol 2019; 118:105658. [PMID: 31747538 DOI: 10.1016/j.biocel.2019.105658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022]
Abstract
Muscle glycogen phosphorylase (PYGM) is a key enzyme in the first step of glycogenolysis. Mutation in the PYGM gene leads to autosomal recessive McArdle disease. Patients suffer from exercise intolerance with premature fatigue, muscle cramps and myalgia due to lack of available glucose in muscles. So far, no efficient treatment has been found. The zebrafish has many experimental advantages, and was successfully implemented as an animal model of human myopathies. Since zebrafish skeletal muscles share high similarity with human skeletal muscles, it is our animal of choice to investigate the impact of Pygm knockdown on skeletal muscle tissue. The two forms of the zebrafish enzyme, Pygma and Pygmb, share more than 80% amino acid sequence identity with human PYGM. We show that the Pygm level varies at both the mRNA and protein level in distinct stages of zebrafish development, which is correlated with glycogen level. The Pygm distribution in muscles varies from dispersed to highly organized at 72 hpf. The pygma and pygmb morpholino knockdown resulted in a reduced Pygm level in zebrafish morphants, which exhibited altered, disintegrated muscle structure and accumulation of glycogen granules in the subsarcolemmal region. Thus, lowering the Pygm level in zebrafish larvae leads to an elevated glycogen level and to morphological muscle changes mimicking the symptoms of human McArdle disease. The zebrafish model of this human disease might contribute to further understanding of its molecular mechanisms and to the development of appropriate treatment.
Collapse
|
14
|
Ellingwood SS, Cheng A. Biochemical and clinical aspects of glycogen storage diseases. J Endocrinol 2018; 238:R131-R141. [PMID: 29875163 PMCID: PMC6050127 DOI: 10.1530/joe-18-0120] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022]
Abstract
The synthesis of glycogen represents a key pathway for the disposal of excess glucose while its degradation is crucial for providing energy during exercise and times of need. The importance of glycogen metabolism is also highlighted by human genetic disorders that are caused by mutations in the enzymes involved. In this review, we provide a basic summary on glycogen metabolism and some of the clinical aspects of the classical glycogen storage diseases. Disruptions in glycogen metabolism usually result in some level of dysfunction in the liver, muscle, heart, kidney and/or brain. Furthermore, the spectrum of symptoms observed is very broad, depending on the affected enzyme. Finally, we briefly discuss an aspect of glycogen metabolism related to the maintenance of its structure that seems to be gaining more recent attention. For example, in Lafora progressive myoclonus epilepsy, patients exhibit an accumulation of inclusion bodies in several tissues, containing glycogen with increased phosphorylation, longer chain lengths and irregular branch points. This abnormal structure is thought to make glycogen insoluble and resistant to degradation. Consequently, its accumulation becomes toxic to neurons, leading to cell death. Although the genes responsible have been identified, studies in the past two decades are only beginning to shed light into their molecular functions.
Collapse
Affiliation(s)
- Sara S Ellingwood
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Alan Cheng
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
15
|
García-Consuegra I, Asensio-Peña S, Ballester-Lopez A, Francisco-Velilla R, Pinos T, Pintos-Morell G, Coll-Cantí J, González-Quintana A, Andreu AL, Arenas J, Lucia A, Nogales-Gadea G, Martín MA. Missense mutations have unexpected consequences: The McArdle disease paradigm. Hum Mutat 2018; 39:1338-1343. [PMID: 30011114 DOI: 10.1002/humu.23591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/25/2018] [Accepted: 07/08/2018] [Indexed: 01/14/2023]
Abstract
McArdle disease is a disorder of muscle glycogen metabolism caused by mutations in the PYGM gene, encoding for the muscle-specific isoform of glycogen phosphorylase (M-GP). The activity of this enzyme is completely lost in patients' muscle biopsies, when measured with a standard biochemical test which, does not allow to determine M-GP protein levels. We aimed to determine M-GP protein levels in the muscle of McArdle patients, by studying biopsies of 40 patients harboring a broad spectrum of PYGM mutations and 22 controls. Lack of M-GP protein was found in muscle in the vast majority (95%) of patients, irrespective of the PYGM genotype, including those carrying missense mutations, with few exceptions. M-GP protein biosynthesis is not being produced by PYGM mutations inducing premature termination codons (PTC), neither by most PYGM missense mutations. These findings explain the lack of PYGM genotype-phenotype correlation and have important implications for the design of molecular-based therapeutic approaches.
Collapse
Affiliation(s)
- Inés García-Consuegra
- Grupo de Investigación de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Asensio-Peña
- Grupo de Investigación de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alfonsina Ballester-Lopez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Tomás Pinos
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Guillem Pintos-Morell
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Division of Rare Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Jaume Coll-Cantí
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Servicio de Neurología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Adrián González-Quintana
- Grupo de Investigación de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Antoni L Andreu
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Joaquín Arenas
- Grupo de Investigación de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Lucia
- Universidad Europea, Faculty of Sport Sciences & Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Gisela Nogales-Gadea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Miguel A Martín
- Grupo de Investigación de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Abstract
We present a case of a 51-year-old man who went to the emergency department after an almost-drowning episode, presenting with muscular weakness, myalgia and dark urine. Laboratory data showed a severe rhabdomyolysis (creatine kinase 497 510 U/L). Despite aggressive fluid therapy, an oliguric acute kidney injury was established with temporary need of haemodialysis. The patient had a longtime history of exercise intolerance and family history of a metabolic myopathy, namely a sister with McArdle's disease. The genetic test was positive. McArdle's disease is an autosomal recessive disorder caused by mutations in the muscle glycogen phosphorylase gene that encodes the myophosphorylase. The main symptom consists in exercise intolerance and the most severe complication is rhabdomyolysis with acute renal failure. Metabolic myopathies, such as McArdle's disease, should be considered in patients with acute renal failure due to unexplained severe rhabdomyolysis, especially if there are chronic complaints of exercise intolerance and positive family history.
Collapse
Affiliation(s)
- Helena Pinto
- Department of Nephrology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Catarina Teixeira
- Department of Nephrology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Nuno Oliveira
- Department of Nephrology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rui Alves
- Department of Nephrology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Clínica Universitária de Nefrologia, Universidade de Coimbra Faculdade de Medicina, Coimbra, Portugal
| |
Collapse
|
17
|
Taking advantage of an old concept, "illegitimate transcription", for a proposed novel method of genetic diagnosis of McArdle disease. Genet Med 2016; 18:1128-1135. [PMID: 26913921 DOI: 10.1038/gim.2015.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
PURPOSE McArdle disease is a metabolic disorder caused by pathogenic mutations in the PYGM gene. Timely diagnosis can sometimes be difficult with direct genomic analysis, which requires additional studies of cDNA from muscle transcripts. Although the "nonsense-mediated mRNA decay" (NMD) eliminates tissue-specific aberrant transcripts, there is some residual transcription of tissue-specific genes in virtually all cells, such as peripheral blood mononuclear cells (PBMCs). METHODS We studied a subset of the main types of PYGM mutations (deletions, missense, nonsense, silent, or splicing mutations) in cDNA from easily accessible cells (PBMCs) in 12 McArdle patients. RESULTS Analysis of cDNA from PBMCs allowed detection of all mutations. Importantly, the effects of mutations with unknown pathogenicity (silent and splicing mutations) were characterized in PBMCs. Because the NMD mechanism does not seem to operate in nonspecific cells, PBMCs were more suitable than muscle biopsies for detecting the pathogenicity of some PYGM mutations, notably the silent mutation c.645G>A (p.K215=), whose effect in the splicing of intron 6 was unnoticed in previous muscle transcriptomic studies. CONCLUSION We propose considering the use of PBMCs for detecting mutations that are thought to cause McArdle disease, particularly for studying their actual pathogenicity.Genet Med 18 11, 1128-1135.
Collapse
|
18
|
NOGALES-GADEA GISELA, SANTALLA ALFREDO, BALLESTER-LOPEZ ALFONSINA, ARENAS JOAQUÍN, MARTÍN MIGUELANGEL, GODFREY RICHARD, PINÍS TOMÀS, PINTOS-MORELL GUILLEM, COLL-CANTÍ JAUME, LUCIA ALEJANDRO. Exercise and Preexercise Nutrition as Treatment for McArdle Disease. Med Sci Sports Exerc 2016; 48:673-9. [DOI: 10.1249/mss.0000000000000812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Nogales-Gadea G, Godfrey R, Santalla A, Coll-Cantí J, Pintos-Morell G, Pinós T, Arenas J, Martín MA, Lucia A. Genes and exercise intolerance: insights from McArdle disease. Physiol Genomics 2016; 48:93-100. [DOI: 10.1152/physiolgenomics.00076.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
McArdle disease (glycogen storage disease type V) is caused by inherited deficiency of a key enzyme in muscle metabolism, the skeletal muscle-specific isoform of glycogen phosphorylase, “myophosphorylase,” which is encoded by the PYGM gene. Here we review the main pathophysiological, genotypic, and phenotypic features of McArdle disease and their interactions. To date, moderate-intensity exercise (together with pre-exercise carbohydrate ingestion) is the only treatment option that has proven useful for these patients. Furthermore, regular physical activity attenuates the clinical severity of McArdle disease. This is quite remarkable for a monogenic disorder that consistently leads to the same metabolic defect at the muscle tissue level, that is, complete inability to use muscle glycogen stores. Further knowledge of this disorder would help patients and enhance understanding of exercise metabolism as well as exercise genomics. Indeed, McArdle disease is a paradigm of human exercise intolerance and PYGM genotyping should be included in the genetic analyses that might be applied in the coming personalized exercise medicine as well as in future research on genetics and exercise-related phenotypes.
Collapse
Affiliation(s)
- Gisela Nogales-Gadea
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Richard Godfrey
- Centre for Sports Medicine and Human Performance, Brunel University, London, United Kingdom
| | - Alfredo Santalla
- Universidad Pablo de Olavide, Seville, Spain
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
| | - Jaume Coll-Cantí
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
- Servicio de Neurología, Unidad Neuromuscular, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Guillem Pintos-Morell
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
- Servicio de Pediatría, Unidad de Enfermedades Minoritarias, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Tomàs Pinós
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
| | - Miguel Angel Martín
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
| | - Alejandro Lucia
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
- Universidad Europea, Madrid, Spain
| |
Collapse
|
20
|
Garton FC, North KN, Koch LG, Britton SL, Nogales-Gadea G, Lucia A. Rodent models for resolving extremes of exercise and health. Physiol Genomics 2015; 48:82-92. [PMID: 26395598 DOI: 10.1152/physiolgenomics.00077.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.
Collapse
Affiliation(s)
- Fleur C Garton
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia;
| | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gisela Nogales-Gadea
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and
| | - Alejandro Lucia
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and Instituto de Investigación Hospital 12 de Octubre (i+12) and Universidad Europea, Madrid, Spain
| |
Collapse
|
21
|
Broman M, Islander G, Müller CR. Malignant hyperthermia, a Scandinavian update. Acta Anaesthesiol Scand 2015; 59:951-61. [PMID: 25989378 DOI: 10.1111/aas.12541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Malignant Hyperthermia (MH) is a rare pharmacogenetic disorder, triggered by halogenated anesthetics and/or succinylcholine. In susceptible individuals, these drugs can activate an explosive life threatening clinical reaction. Leading symptoms are hypercarbia, muscle rigidity, and metabolic acidosis. MH is inherited in an autosomal-dominant manner and linked to mutations in the large ryanodine 1 gene (RYR1) gene in the majority of cases. Very few MH patients have been found to carry mutations in the CACNA1S gene. METHODS For this review a large litterature search was carried out and the Swedish MH database consisting of 436 probands who have undergone in vitro muscle contraction test (IVCT) during 1984-2014 was analyzed. RESULTS Twelve different MH causative mutations have been found in Swedish patients so far. These mutations lead to a disturbed calcium balance in striated muscle tissue. A muscle biopsy for the IVCT or finding of an approved causative mutation are required for the diagnosis. CONCLUSION A Malignant Hyperthermia susceptible (MHS) patient should be anesthetized with trigger-free anesthesia. There are a few reports of MH-like reactions in patients unrelated to anesthesia. The outcome is dependent on early recognizing of the reaction and fast disconnection of the trigger agents and administration of dantrolene.
Collapse
Affiliation(s)
- M. Broman
- Perioperative and Intensive Care; Skåne University Hospital; Lund Sweden
| | - G. Islander
- Perioperative and Intensive Care; Skåne University Hospital; Lund Sweden
| | - C. R. Müller
- Biocentre; Institute for Human Genetics; Würzburg University; Würzburg Germany
| |
Collapse
|
22
|
Nogales-Gadea G, Brull A, Santalla A, Andreu AL, Arenas J, Martín MA, Lucia A, de Luna N, Pinós T. McArdle Disease: Update of Reported Mutations and Polymorphisms in the PYGM Gene. Hum Mutat 2015; 36:669-78. [PMID: 25914343 DOI: 10.1002/humu.22806] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/15/2015] [Indexed: 01/01/2023]
Abstract
McArdle disease is an autosomal-recessive disorder caused by inherited deficiency of the muscle isoform of glycogen phosphorylase (or "myophosphorylase"), which catalyzes the first step of glycogen catabolism, releasing glucose-1-phosphate from glycogen deposits. As a result, muscle metabolism is impaired, leading to different degrees of exercise intolerance. Patients range from asymptomatic to severely affected, including in some cases, limitations in activities of daily living. The PYGM gene codifies myophosphoylase and to date 147 pathogenic mutations and 39 polymorphisms have been reported. Exon 1 and 17 are mutational hot-spots in PYGM and 50% of the described mutations are missense. However, c.148C>T (commonly known as p.R50X) is the most frequent mutation in the majority of the studied populations. No genotype-phenotype correlation has been reported and no mutations have been described in the myophosphorylase domains affecting the phosphorylated Ser-15, the 280's loop, the pyridoxal 5'-phosphate, and the nucleoside inhibitor binding sites. A newly generated knock-in mouse model is now available, which renders the main clinical and molecular features of the disease. Well-established methods for diagnosing patients in laboratories around the world will shorten the frequent ∼20-year period stretching from first symptoms appearance to the genetic diagnosis.
Collapse
Affiliation(s)
- Gisela Nogales-Gadea
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol I Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Astrid Brull
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfredo Santalla
- Universidad Pablo de Olavide, Sevilla, Spain.,Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
| | - Antoni L Andreu
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquin Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miguel A Martín
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alejandro Lucia
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Universidad Europea, Madrid, Spain
| | - Noemi de Luna
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Tomàs Pinós
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|