1
|
Li M, Zhou X, Wang Y, Lu J, Zhu Y, Jiang P, Hu K, Wang X. Whole-course power evolution in childhood absence epilepsy: A multi-frequency magnetoencephalography study. Seizure 2025; 124:9-17. [PMID: 39603048 DOI: 10.1016/j.seizure.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE This study explores the whole-course neuromagnetic activity changes in childhood absence epilepsy (CAE) using multifrequency magnetoencephalogram (MEG) analysis. We aim to uncover the underlying neurophysiological mechanisms and identify functional signal targets with potential clinical applications. METHODS We recruited 37 drug-naive children with CAE and collected magnetoencephalography (MEG) data from 62 seizures and interictal periods using a CTF-275 channel MEG system. The seizure course was segmented with temporal unification and subjected to dynamic frequency band analysis. Minimum norm estimation combined with Welch's method was employed for spectral power calculation, followed by correlation analysis between power and seizure duration. RESULTS Whole-brain magnetic source power changes in 2-60 Hz largely paralleled the progression of spike and wave discharges (SWDs), while power in 60-90 Hz was suppressed during seizures. Alpha band (8-12 Hz) activity showed a prompt loss of occipital dominance at seizure onset, with concurrent elevation in frontal alpha activity. This frontal alpha dominance persisted throughout the ictal period and reverted to occipital dominance at termination. Beta and gamma1 band (15-59 Hz) activity characteristically declined before SWDs cessation. The power of SWDs during ictal period was negatively correlated with seizure duration. CONCLUSION Spectral power analysis of neuromagnetic signals throughout CAE process identifies specific frequency-dependent characteristic changes, among which, the distribution of alpha band (8-12 Hz) activity is closely related to absence manifestations, beta band (15-29 Hz) power decline induces seizure termination. Additionally, ictal SWDs power can serve as a neuroimaging indicator of epilepsy severity.
Collapse
Affiliation(s)
- Minghao Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Xinyi Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Yingfan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Jing Lu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Yinjie Zhu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Peilin Jiang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Ke Hu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China.
| |
Collapse
|
2
|
Song S, Dai Y, Yao Y, Liu J, Yao D, Cao Y, Lin B, Zheng Y, Xu R, Cui Y, Guo D. The high frequency oscillations in the amygdala, hippocampus, and temporal cortex during mesial temporal lobe epilepsy. Cogn Neurodyn 2024; 18:1627-1639. [PMID: 39104697 PMCID: PMC11297867 DOI: 10.1007/s11571-023-10059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 12/18/2023] [Indexed: 08/07/2024] Open
Abstract
The mesial temporal lobe epilepsy (MTLE) seizures are believed to originate from medial temporal structures, including the amygdala, hippocampus, and temporal cortex. Thus, the seizures onset zones (SOZs) of MTLE locate in these regions. However, whether the neural features of SOZs are specific to different medial temporal structures are still unclear and need more investigation. To address this question, the present study tracked the features of two different high frequency oscillations (HFOs) in the SOZs of these regions during MTLE seizures from 10 drug-resistant MTLE patients, who received the stereo electroencephalography (SEEG) electrodes implantation surgery in the medial temporal structures. Remarkable difference of HFOs features, including the proportions of HFOs contacts, percentages of HFOs contacts with significant coupling and firing rates of HFOs, could be observed in the SOZs among three medial temporal structures during seizures. Specifically, we found that the amygdala might contribute to the generation of MTLE seizures, while the hippocampus plays a critical role for the propagation of MTLE seizures. In addition, the HFOs firing rates in SOZ regions were significantly larger than those in NonSOZ regions, suggesting the potential biomarkers of HFOs for MTLE seizure. Moreover, there existed higher percentages of SOZs contacts in the HFOs contacts than in all SEEG contacts, especially those with significant coupling to slow oscillations, implying that specific HFOs features would help identify the SOZ regions. Taken together, our results displayed the features of HFOs in different medial temporal structures during MTLE seizures, and could deepen our understanding concerning the neural mechanism of MTLE.
Collapse
Affiliation(s)
- Shiwei Song
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Yihai Dai
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Yutong Yao
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Jie Liu
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| | - Dezhong Yao
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Yifei Cao
- Fujian Medical University, Fuzhou, 350004 Fujian China
| | - Bingling Lin
- Fujian Medical University, Fuzhou, 350004 Fujian China
| | - Yuetong Zheng
- Fujian Medical University, Fuzhou, 350004 Fujian China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Yan Cui
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Daqing Guo
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 China
| |
Collapse
|
3
|
Wachsmuth L, Hebbelmann L, Prade J, Kohnert LC, Lambers H, Lüttjohann A, Budde T, Hess A, Faber C. Epilepsy-related functional brain network alterations are already present at an early age in the GAERS rat model of genetic absence epilepsy. Front Neurol 2024; 15:1355862. [PMID: 38529038 PMCID: PMC10961455 DOI: 10.3389/fneur.2024.1355862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Genetic Absence Epilepsy Rats from Strasbourg (GAERS) represent a model of genetic generalized epilepsy. The present longitudinal study in GAERS and age-matched non-epileptic controls (NEC) aimed to characterize the epileptic brain network using two functional measures, resting state-functional magnetic resonance imaging (rs-fMRI) and manganese-enhanced MRI (MEMRI) combined with morphometry, and to investigate potential brain network alterations, following long-term seizure activity. Methods Repeated rs-fMRI measurements at 9.4 T between 3 and 8 months of age were combined with MEMRI at the final time point of the study. We used graph theory analysis to infer community structure and global and local network parameters from rs-fMRI data and compared them to brain region-wise manganese accumulation patterns and deformation-based morphometry (DBM). Results Functional connectivity (FC) was generally higher in GAERS when compared to NEC. Global network parameters and community structure were similar in NEC and GAERS, suggesting efficiently functioning networks in both strains. No progressive FC changes were observed in epileptic animals. Network-based statistics (NBS) revealed stronger FC within the cortical community, including regions of association and sensorimotor cortex, and with basal ganglia and limbic regions in GAERS, irrespective of age. Higher manganese accumulation in GAERS than in NEC was observed at 8 months of age, consistent with higher overall rs-FC, particularly in sensorimotor cortex and association cortex regions. Functional measures showed less similarity in subcortical regions. Whole brain volumes of 8 months-old GAERS were higher when compared to age-matched NEC, and DBM revealed increased volumes of several association and sensorimotor cortex regions and of the thalamus. Discussion rs-fMRI, MEMRI, and volumetric data collectively suggest the significance of cortical networks in GAERS, which correlates with an increased fronto-central connectivity in childhood absence epilepsy (CAE). Our findings also verify involvement of basal ganglia and limbic regions. Epilepsy-related network alterations are already present in juvenile animals. Consequently, this early condition seems to play a greater role in dynamic brain function than chronic absence seizures.
Collapse
Affiliation(s)
- Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Leo Hebbelmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Jutta Prade
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Laura C. Kohnert
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Thomas Budde
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Andreas Hess
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- FAU NeW – Research Center for New Bioactive Compounds, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Wang Y, Li Y, Sun F, Xu Y, Xu F, Wang S, Wang X. Altered neuromagnetic activity in default mode network in childhood absence epilepsy. Front Neurosci 2023; 17:1133064. [PMID: 37008207 PMCID: PMC10060817 DOI: 10.3389/fnins.2023.1133064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
PurposeThe electrophysiological characterization of resting state oscillatory functional connectivity within the default mode network (DMN) during interictal periods in childhood absence epilepsy (CAE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in CAE.MethodsUsing a cross-sectional design, we analyzed MEG data from 33 children newly diagnosed with CAE and 26 controls matched for age and sex. The spectral power and functional connectivity of the DMN were estimated using minimum norm estimation combined with the Welch technique and corrected amplitude envelope correlation.ResultsDefault mode network showed stronger activation in the delta band during the ictal period, however, the relative spectral power in other bands was significantly lower than that in the interictal period (pcorrected < 0.05 for DMN regions, except bilateral medial frontal cortex, left medial temporal lobe, left posterior cingulate cortex in the theta band, and the bilateral precuneus in the alpha band). It should be noted that the significant power peak in the alpha band was lost compared with the interictal data. Compared with controls, the interictal relative spectral power of DMN regions (except bilateral precuneus) in CAE patients was significantly increased in the delta band (pcorrected < 0.01), whereas the values of all DMN regions in the beta-gamma 2 band were significantly decreased (pcorrected < 0.01). In the higher frequency band (alpha-gamma1), especially in the beta and gamma1 band, the ictal node strength of DMN regions except the left precuneus was significantly higher than that in the interictal periods (pcorrected < 0.01), and the node strength of the right inferior parietal lobe increased most significantly in the beta band (Ictal: 3.8712 vs. Interictal: 0.7503, pcorrected < 0.01). Compared with the controls, the interictal node strength of DMN increased in all frequency bands, especially the right medial frontal cortex in the beta band (Controls: 0.1510 vs. Interictal: 3.527, pcorrected < 0.01). Comparing relative node strength between groups, the right precuneus in CAE children decreased significantly (β: Controls: 0.1009 vs. Interictal: 0.0475; γ 1: Controls:0.1149 vs. Interictal:0.0587, pcorrected < 0.01) such that it was no longer the central hub.ConclusionThese findings indicated DMN abnormalities in CAE patients, even in interictal periods without interictal epileptic discharges. Abnormal functional connectivity in CAE may reflect abnormal anatomo-functional architectural integration in DMN, as a result of cognitive mental impairment and unconsciousness during absence seizure. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction, and prognosis in CAE patients.
Collapse
|
5
|
Li Y, Li Y, Sun J, Niu K, Wang P, Xu Y, Wang Y, Chen Q, Zhang K, Wang X. Relationship between brain activity, cognitive function, and sleep spiking activation in new-onset self-limited epilepsy with centrotemporal spikes. Front Neurol 2022; 13:956838. [PMID: 36438972 PMCID: PMC9682286 DOI: 10.3389/fneur.2022.956838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/07/2022] [Indexed: 09/12/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the relationship between cognitive function sleep spiking activation and brain activity in self-limited epilepsy with centrotemporal spikes (SeLECTS). METHODS We used spike-wave index (SWI), which means the percentage of the spike and slow wave duration to the total non-REM (NREM) sleep time, as the grouping standard. A total of 14 children with SeLECTS (SWI ≥ 50%), 21 children with SeLECTS (SWI < 50%), and 20 healthy control children were recruited for this study. Cognitive function was evaluated using the Wechsler Intelligence Scale for Children, Fourth Edition (Chinese version) (WISC-IV). Magnetic source activity was assessed using magnetoencephalography calculated for each frequency band using the accumulated source imaging (ASI) technique. RESULTS Children with SeLECTS (SWI ≥ 50%) had the lowest cognitive function scores, followed by those with SeLECTS (SWI < 50%) and then healthy controls. There were significant differences in the localization of magnetic source activity between the three groups: in the alpha (8-12 Hz) frequency band, children with SeLECTS (SWI ≥ 50%) showed deactivation of the medial frontal cortex (MFC) region; in the beta (12-30 Hz) frequency band, children with SeLECTS (SWI ≥ 50%) showed deactivation of the posterior cingulate cortex (PCC) segment; and in the gamma (30-80 Hz) frequency band, children in the healthy group showed activation of the PCC region. CONCLUSION This study revealed significant decreases in cognitive function in children with SeLECTS (SWI ≥ 50%) compared to children with SeLECTS (SWI < 50%) and healthy children, as well as significant differences in magnetic source activity between the three groups. The findings suggest that deactivation of magnetic source activity in the PCC and MFC regions is the main cause of cognitive function decline in SeLECTS patients with some frequency dependence.
Collapse
Affiliation(s)
- Yanzhang Li
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Niu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Pengfei Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Xu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yingfan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, Nanjing Brain Hospital, Nanjing, China
| | - Ke Zhang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Aung T, Tenney JR, Bagić AI. Contributions of Magnetoencephalography to Understanding Mechanisms of Generalized Epilepsies: Blurring the Boundary Between Focal and Generalized Epilepsies? Front Neurol 2022; 13:831546. [PMID: 35572923 PMCID: PMC9092024 DOI: 10.3389/fneur.2022.831546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
According to the latest operational 2017 ILAE classification of epileptic seizures, the generalized epileptic seizure is still conceptualized as "originating at some point within and rapidly engaging, bilaterally distributed networks." In contrast, the focal epileptic seizure is defined as "originating within networks limited to one hemisphere." Hence, one of the main concepts of "generalized" and "focal" epilepsy comes from EEG descriptions before the era of source localization, and a presumed simultaneous bilateral onset and bi-synchrony of epileptiform discharges remains a hallmark for generalized seizures. Current literature on the pathophysiology of generalized epilepsy supports the concept of a cortical epileptogenic focus triggering rapidly generalized epileptic discharges involving intact corticothalamic and corticocortical networks, known as the cortical focus theory. Likewise, focal epilepsy with rich connectivity can give rise to generalized spike and wave discharges resulting from widespread bilateral synchronization. Therefore, making this key distinction between generalized and focal epilepsy may be challenging in some cases, and for the first time, a combined generalized and focal epilepsy is categorized in the 2017 ILAE classification. Nevertheless, treatment options, such as the choice of antiseizure medications or surgical treatment, are the reason behind the importance of accurate epilepsy classification. Over the past several decades, plentiful scientific research on the pathophysiology of generalized epilepsy has been conducted using non-invasive neuroimaging and postprocessing of the electromagnetic neural signal by measuring the spatiotemporal and interhemispheric latency of bi-synchronous or generalized epileptiform discharges as well as network analysis to identify diagnostic and prognostic biomarkers for accurate diagnosis of the two major types of epilepsy. Among all the advanced techniques, magnetoencephalography (MEG) and multiple other methods provide excellent temporal and spatial resolution, inherently suited to analyzing and visualizing the propagation of generalized EEG activities. This article aims to provide a comprehensive literature review of recent innovations in MEG methodology using source localization and network analysis techniques that contributed to the literature of idiopathic generalized epilepsy in terms of pathophysiology and clinical prognosis, thus further blurring the boundary between focal and generalized epilepsy.
Collapse
Affiliation(s)
- Thandar Aung
- Department of Neurology, University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Jeffrey R. Tenney
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Anto I. Bagić
- Department of Neurology, University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
7
|
Jiang W, Sun J, Xiang J, Sun Y, Tang L, Zhang K, Chen Q, Wang X. Altered Neuromagnetic Activity in Persistent Postural-Perceptual Dizziness: A Multifrequency Magnetoencephalography Study. Front Hum Neurosci 2022; 16:759103. [PMID: 35350444 PMCID: PMC8957837 DOI: 10.3389/fnhum.2022.759103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Objective The aim of our study was to investigate abnormal changes in brain activity in patients with persistent postural-perceptual dizziness (PPPD) using magnetoencephalography (MEG). Methods Magnetoencephalography recordings from 18 PPPD patients and 18 healthy controls were analyzed to determine the source of brain activity in seven frequency ranges using accumulated source imaging (ASI). Results Our study showed that significant changes in the patterns of localization in the temporal-parietal junction (TPJ) were observed at 1–4, 4–8, and 12–30 Hz in PPPD patients compared with healthy controls, and changes in the frontal cortex were found at 1–4, 80–250, and 250–500 Hz in PPPD patients compared with controls. The neuromagnetic activity in TPJ was observed increased significantly in 1–4 and 4–8 Hz, while the neuromagnetic activity in frontal cortex was found increased significantly in 1–4 Hz. In addition, the localized source strength in TPJ in 1–4 Hz was positively correlated with DHI score (r = 0.7085, p < 0.05), while the localized source strength in frontal cortex in 1–4 Hz was positively correlated with HAMA score (r = 0.5542, p < 0.05). Conclusion Our results demonstrated that alterations in the TPJ and frontal cortex may play a critical role in the pathophysiological mechanism of PPPD. The neuromagnetic activity in TPJ may be related to dizziness symptom of PPPD patients, while the neuromagnetic activity in frontal lobe may be related to emotional symptoms of PPPD patients. In addition, frequency-dependent changes in neuromagnetic activity, especially neuromagnetic activity in low frequency bands, were involved in the pathophysiology of PPPD.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lu Tang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ke Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiaoshan Wang,
| |
Collapse
|
8
|
Ren J, Yao Q, Tian M, Li F, Chen Y, Chen Q, Xiang J, Shi J. Altered effective connectivity in migraine patients during emotional stimuli: a multi-frequency magnetoencephalography study. J Headache Pain 2022; 23:6. [PMID: 35032999 PMCID: PMC8903691 DOI: 10.1186/s10194-021-01379-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine is a common and disabling primary headache, which is associated with a wide range of psychiatric comorbidities. However, the mechanisms of emotion processing in migraine are not fully understood yet. The present study aimed to investigate the neural network during neutral, positive, and negative emotional stimuli in the migraine patients. METHODS A total of 24 migraine patients and 24 age- and sex-matching healthy controls were enrolled in this study. Neuromagnetic brain activity was recorded using a whole-head magnetoencephalography (MEG) system upon exposure to human facial expression stimuli. MEG data were analyzed in multi-frequency ranges from 1 to 100 Hz. RESULTS The migraine patients exhibited a significant enhancement in the effective connectivity from the prefrontal lobe to the temporal cortex during the negative emotional stimuli in the gamma frequency (30-90 Hz). Graph theory analysis revealed that the migraine patients had an increased degree and clustering coefficient of connectivity in the delta frequency range (1-4 Hz) upon exposure to positive emotional stimuli and an increased degree of connectivity in the delta frequency range (1-4 Hz) upon exposure to negative emotional stimuli. Clinical correlation analysis showed that the history, attack frequency, duration, and neuropsychological scales of the migraine patients had a negative correlation with the network parameters in certain frequency ranges. CONCLUSIONS The results suggested that the individuals with migraine showed deviant effective connectivity in viewing the human facial expressions in multi-frequencies. The prefrontal-temporal pathway might be related to the altered negative emotional modulation in migraine. These findings suggested that migraine might be characterized by more universal altered cerebral processing of negative stimuli. Since the significant result in this study was frequency-specific, more independent replicative studies are needed to confirm these results, and to elucidate the neurocircuitry underlying the association between migraine and emotional conditions.
Collapse
Affiliation(s)
- Jing Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qun Yao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Minjie Tian
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Feng Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yueqiu Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45220, USA
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
9
|
Different circuitry dysfunction in drug-naive patients with juvenile myoclonic epilepsy and juvenile absence epilepsy. Epilepsy Behav 2021; 125:108443. [PMID: 34837842 DOI: 10.1016/j.yebeh.2021.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
RATIONALE Juvenile myoclonic epilepsy (JME) and juvenile absence epilepsy (JAE) are generalized epileptic syndromes presenting in the same age range. To explore whether uneven network dysfunctions may underlie the two different phenotypes, we examined drug-naive patients with JME and JAE at the time of their earliest presentation. METHODS Patients were recruited based on typical JME (n = 23) or JAE (n = 18) presentation and compared with 16 age-matched healthy subjects (HS). We analyzed their awake EEG signals by Partial Directed Coherence and graph indexes. RESULTS Out-density and betweenness centrality values were different between groups. With respect to both JAE and HS, JME showed unbalanced out-density and out-strength in alpha and beta bands on central regions and reduced alpha out-strength from fronto-polar to occipital regions, correlating with photosensitivity. With respect to HS, JAE showed enhanced alpha out-density and out-strength on fronto-polar regions. In gamma band, JAE showed reduced Global/Local Efficiency and Clustering Coefficient with respect to HS, while JME showed more scattered values. CONCLUSIONS Our data suggest that regional network changes in alpha and beta bands underlie the different presentation distinguishing JME and JAE resulting in motor vs non-motor seizures characterizing these two syndromes. Conversely, impaired gamma-activity within the network seems to be a non-local marker of defective inhibition.
Collapse
|
10
|
Sun J, Li Y, Zhang K, Sun Y, Wang Y, Miao A, Xiang J, Wang X. Frequency-Dependent Dynamics of Functional Connectivity Networks During Seizure Termination in Childhood Absence Epilepsy: A Magnetoencephalography Study. Front Neurol 2021; 12:744749. [PMID: 34759883 PMCID: PMC8573389 DOI: 10.3389/fneur.2021.744749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Objective: Our aim was to investigate the dynamics of functional connectivity (FC) networks during seizure termination in patients with childhood absence epilepsy (CAE) using magnetoencephalography (MEG) and graph theory (GT) analysis. Methods: MEG data were recorded from 22 drug-naïve patients diagnosed with CAE. FC analysis was performed to evaluate the FC networks in seven frequency bands of the MEG data. GT analysis was used to assess the topological properties of FC networks in different frequency bands. Results: The patterns of FC networks involving the frontal cortex were altered significantly during seizure termination compared with those during the ictal period. Changes in the topological parameters of FC networks were observed in specific frequency bands during seizure termination compared with those in the ictal period. In addition, the connectivity strength at 250–500 Hz during the ictal period was negatively correlated with seizure frequency. Conclusions: FC networks associated with the frontal cortex were involved in the termination of absence seizures. The topological properties of FC networks in different frequency bands could be used as new biomarkers to characterize the dynamics of FC networks related to seizure termination.
Collapse
Affiliation(s)
- Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ke Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yingfan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Niu K, Li Y, Zhang T, Sun J, Sun Y, Shu M, Wang P, Zhang K, Chen Q, Wang X. Impact of Antiepileptic Drugs on Cognition and Neuromagnetic Activity in Childhood Epilepsy With Centrotemporal Spikes: A Magnetoencephalography Study. Front Hum Neurosci 2021; 15:720596. [PMID: 34566605 PMCID: PMC8461317 DOI: 10.3389/fnhum.2021.720596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: Childhood epilepsy with centrotemporal spikes (CECTS), the most common childhood epilepsy, still lacks longitudinal imaging studies involving antiepileptic drugs (AEDs). In order to examine the effect of AEDs on cognition and brain activity. We investigated the neuromagnetic activities and cognitive profile in children with CECTS before and after 1 year of treatment. Methods: Fifteen children with CECTS aged 6–12 years underwent high-sampling magnetoencephalography (MEG) recordings before treatment and at 1 year after treatment, and 12 completed the cognitive assessment (The Wechsler Intelligence Scale for Children). Next, magnetic source location and functional connectivity (FC) were investigated in order to characterize interictal neuromagnetic activity in the seven frequency sub-bands, including: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–80 Hz), ripple (80–250 Hz), and fast ripple (250–500 Hz). Results: After 1 year of treatment, children with CECTS had increased scores on full-scale intelligence quotient, verbal comprehension index (VCI) and perceptual reasoning index (PRI). Alterations of neural activity occurred in specific frequency bands. Source location, in the 30–80 Hz frequency band, was significantly increased in the posterior cingulate cortex (PCC) after treatment. Moreover, FC analysis demonstrated that after treatment, the connectivity between the PCC and the medial frontal cortex (MFC) was enhanced in the 8–12 Hz frequency band. Additionally, the whole-brain network distribution was more dispersed in the 80–250 Hz frequency band. Conclusion: Intrinsic neural activity has frequency-dependent characteristic. AEDs have impact on regional activity and FC of the default mode network (DMN). Normalization of aberrant DMN in children with CECTS after treatment is likely the reason for improvement of cognitive function.
Collapse
Affiliation(s)
- Kai Niu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Mingzhu Shu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Tenney JR, Williamson BJ, Kadis DS. Cross-Frequency Coupling in Childhood Absence Epilepsy. Brain Connect 2021; 12:489-496. [PMID: 34405685 DOI: 10.1089/brain.2021.0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Absence seizures are the prototypic primarily generalized seizures, but there is incomplete understanding regarding their generation and maintenance. A core network for absence seizures has been defined, including focal cortical and thalamic regions that have frequency-dependent interactions. The purpose of this study was to investigate within-frequency coupling and cross-frequency coupling (CFC) during human absence seizures, to identify key regions (hubs) within the absence network that contribute to propagation and maintenance. Methods: Thirteen children with new-onset and untreated childhood absence epilepsy had over 60 typical absence seizures during both electroencephalography-functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) recordings. The spatial map of the ictal network was defined using fMRI and used as prior information for MEG connectivity. A multilayer network approach was used to investigate within-frequency coupling and CFC for canonical frequency bands. A rigorous null-modeling approach was used to determine connections outside the noise floor. Results: Strong coupling between beta and gamma frequencies, within the left frontal cortex, and between the left frontal and right parietal regions was observed. There was also strong connectivity between left frontal and right parietal nodes within the gamma band. Multilayer versatility analysis identified a cluster of network hubs in the left frontal region. Interpretation: Cortical regions commonly identified as being critical for absence seizure generation (frontal cortex, precuneus) have strong CFC and within-frequency coupling between beta and gamma bands. As nonpharmacologic treatments, such as neuromodulation, become available for generalized epilepsies, detailed mechanistic understanding of how "diffuse" seizures are generated and maintained will be necessary to provide optimal outcomes.
Collapse
Affiliation(s)
- Jeffrey R Tenney
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brady J Williamson
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Darren S Kadis
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Wang P, Li Y, Sun Y, Sun J, Niu K, Zhang K, Xiang J, Chen Q, Hu Z, Wang X. Altered functional connectivity in newly diagnosed benign epilepsy with unilateral or bilateral centrotemporal spikes: A multi-frequency MEG study. Epilepsy Behav 2021; 124:108276. [PMID: 34547687 DOI: 10.1016/j.yebeh.2021.108276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Rolandic epilepsy (RE) is one of the most common forms of epilepsy syndromes in children. The condition is usually accompanied with either unilateral or bilateral centrotemporal epileptic discharge. Despite the term "benign", many studies have reported that children with benign epilepsy with centrotemporal spikes (BECTS) display a range of pervasive cognitive difficulties. In addition, existing research suggests that unilateral and bilateral centrotemporal spikes may affect cognition through different mechanisms. Consequently, the present study aimed to investigate cognitive impairment and the resting-state network topology of children with benign epilepsy with unilateral centrotemporal spikes (U-BECTS) and with bilateral centrotemporal spikes (B-BECTS). METHODS This study recruited 14 children with U-BECTS and 14 with B-BECTS. Thereafter, cognition was assessed in 28 children with BECTS and 14 healthy controls, using the fourth edition of the Wechsler Intelligence Scale (WISC-IV). Additionally, the functional network of the brain was constructed through magnetoencephalography (MEG) to record the resting-state brain magnetic signals of the brain and by computing virtual sensor waveforms at the source level. Moreover, graph theory (GT) analysis was used to assess the properties of the brain network. RESULTS Children in the B-BECTS group had an earlier onset of epilepsy compared to those in the U-BECTS category. In addition, both the B-BECTS and U-BECTS groups had lower Full Scale Intelligence Quotient (FSIQ), Verbal Comprehension Index (VCI), and Working Memory Index (WMI) scores, compared to the healthy controls although only children in the B-BECTS category had lower Perceptual Reasoning Index (PRI) scores. The results also showed that both BECTS groups had increased frontal cortex connectivity in specific frequency bands. Notably, children with B-BECTS showed a more disorderly and randomized network in the 1-4-Hz and 80-250-Hz frequency bands. Moreover, GT analysis showed that children with B-BECTS had lower clustering coefficient and characteristic path length in the 80-250-Hz frequency bands and higher connection strength in the 4-8-Hz frequency bands. On the other hand, the U-BECTS group had a higher clustering coefficient in the 8-12-Hz frequency bands, compared to the healthy controls. Correlation analysis revealed that there were negative correlations between network parameters, clinical characteristics, and neuropsychological data in the U-BECTS category. CONCLUSION The findings revealed that children with BECTS display a diffuse early cognitive deficit. In addition, resting-state suboptimal network topology may be the mechanism of cognitive impairment in children with BECTS. The study also showed that and children with B-BECTS may be at a higher risk of cognitive impairment.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yihan Li
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yulei Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jingtao Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kai Niu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ke Zhang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45220, United States
| | - Qiqi Chen
- MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, Jiangsu 210029, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
14
|
Zhang K, Sun J, Sun Y, Niu K, Wang P, Wu C, Chen Q, Wang X. Pretreatment Source Location and Functional Connectivity Network Correlated With Therapy Response in Childhood Absence Epilepsy: A Magnetoencephalography Study. Front Neurol 2021; 12:692126. [PMID: 34413824 PMCID: PMC8368437 DOI: 10.3389/fneur.2021.692126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: This study aims to investigate the differences between antiepileptic drug (AED) responders and nonresponders among patients with childhood absence epilepsy (CAE) using magnetoencephalography (MEG) and to additionally evaluate whether the neuromagnetic signals of the brain neurons were correlated with the response to therapy. Methods: Twenty-four drug-naïve patients were subjected to MEG under six frequency bandwidths during ictal periods. The source location and functional connectivity were analyzed using accumulated source imaging and correlation analysis, respectively. All patients were treated with appropriate AED, at least 1 year after their MEG recordings, their outcome was assessed, and they were consequently divided into responders and nonresponders. Results: The source location of the nonresponders was mainly in the frontal cortex at a frequency range of 8–12 and 30–80 Hz, especially 8–12 Hz, while the source location of the nonresponders was mostly in the medial frontal cortex, which was chosen as the region of interest. The nonresponders showed strong positive local frontal connections and deficient anterior and posterior connections at 80–250 Hz. Conclusion: The frontal cortex and especially the medial frontal cortex at α band might be relevant to AED-nonresponsive CAE patients. The local frontal positive epileptic network at 80–250 Hz in our study might further reveal underlying cerebral abnormalities even before treatment in CAE patients, which could cause them to be nonresponsive to AED. One single mechanism cannot explain AED resistance; the nonresponders may represent a subgroup of CAE who is refractory to several antiepileptic drugs.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Kai Niu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Pengfei Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Fan Y, Dong L, Liu X, Wang H, Liu Y. Recent advances in the noninvasive detection of high-frequency oscillations in the human brain. Rev Neurosci 2020; 32:305-321. [PMID: 33661582 DOI: 10.1515/revneuro-2020-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 01/10/2023]
Abstract
In recent decades, a significant body of evidence based on invasive clinical research has showed that high-frequency oscillations (HFOs) are a promising biomarker for localization of the seizure onset zone (SOZ), and therefore, have the potential to improve postsurgical outcomes in patients with epilepsy. Emerging clinical literature has demonstrated that HFOs can be recorded noninvasively using methods such as scalp electroencephalography (EEG) and magnetoencephalography (MEG). Not only are HFOs considered to be a useful biomarker of the SOZ, they also have the potential to gauge disease severity, monitor treatment, and evaluate prognostic outcomes. In this article, we review recent clinical research on noninvasively detected HFOs in the human brain, with a focus on epilepsy. Noninvasively detected scalp HFOs have been investigated in various types of epilepsy. HFOs have also been studied noninvasively in other pathologic brain disorders, such as migraine and autism. Herein, we discuss the challenges reported in noninvasive HFO studies, including the scarcity of MEG and high-density EEG equipment in clinical settings, low signal-to-noise ratio, lack of clinically approved automated detection methods, and the difficulty in differentiating between physiologic and pathologic HFOs. Additional studies on noninvasive recording methods for HFOs are needed, especially prospective multicenter studies. Further research is fundamental, and extensive work is needed before HFOs can routinely be assessed in clinical settings; however, the future appears promising.
Collapse
Affiliation(s)
- Yuying Fan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liping Dong
- Library of China Medical University, Shenyang, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Li Y, Sun Y, Zhang T, Shi Q, Sun J, Xiang J, Chen Q, Hu Z, Wang X. The relationship between epilepsy and cognitive function in benign childhood epilepsy with centrotemporal spikes. Brain Behav 2020; 10:e01854. [PMID: 32959999 PMCID: PMC7749571 DOI: 10.1002/brb3.1854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION This study was aimed to explore the relationship between neural network changes in newly diagnosed children with Benign Childhood Epilepsy with Centrotemporal Spikes (BECTS) and cognitive impairment. METHODS Children's cognition was evaluated using the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). Magnetoencephalographic (MEG) data of 18 healthy children and 22 BECTS patients were recorded in order to construct a functional connectivity (FC) network, which was quantified by graph theory (GT). RESULTS The mean age of the control group was 7.94 ± 1.89 years, and the mean age of BECTS patients was 8.14 ± 1.73 years. Our results show that the WISC-IV index scores in the BECTS group were significantly lower than those in the control group. Besides, the FC network pattern of BECTS patients changed significantly in the 12-30, 30-80, and 250-500 Hz frequency band. The local functional connections between posterior cingulate cortex (PCC) and frontal lobe varied significantly in 12-30, 80-250, and 250-500 Hz. Our GT analysis shows that the connection strength of BECTS patients increases significantly in the 12-30 Hz frequency band, the path length decreases significantly in the 12-30 Hz and 30-80 Hz frequency bands, with the clustering coefficient decreasing significantly in the 12-30 Hz, 30-80 Hz, and 250-500 Hz frequency bands. Correlation analysis showed that the full-scale IQ (FSIQ) was positively correlated with the 12-30 Hz clustering coefficient, verbal comprehension index (VCI) was positively correlated with the 250-500 Hz clustering coefficient, perceptual reasoning index (PRI) was positively correlated with the 12-30 Hz clustering coefficient, and perceptual reasoning index (PSI) was negatively correlated with the 12-30 Hz path length. CONCLUSION There is a trend of cognitive impairment in patients with early BECTS. This trend of cognitive impairment in early BECTS children may be related to the changes in the FC network pattern.
Collapse
Affiliation(s)
- Yihan Li
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Shi
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qiqi Chen
- MEG Center, Nanjing Brain Hospital, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Sun Y, Li Y, Shi Q, Wu C, Sun J, Chen Q, Hu Z, Xiang J, Wang X. Changes of Ictal-Onset Epileptic Network Synchronicity in Childhood Absence Epilepsy: A Magnetoencephalography Study. Front Neurol 2020; 11:583267. [PMID: 33304308 PMCID: PMC7693636 DOI: 10.3389/fneur.2020.583267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: To further understand the mechanisms underlying epileptic network and the characteristics of individual specific network, we conducted a study on brain network by magnetoencephalography (MEG) focusing on patients with childhood absence epilepsy (CAE). Methods: The network connectivity of 22 patients was investigated with MEG at the source level. Network connectivity of spikes and slow waves was computed with accumulated source imaging (ASI) and correlation analysis. Time-frequency analysis was used to characterize the network changes during the ictal-onset period of each patient and the potential factors. Results: We found that spectral power increased at around 1 s and distributed at 2-4 Hz in all patients. Ictal spikes simultaneously showed elevation of network connectivity, predominantly excitatory connections, when generalized firing activity spread to the overall brain. High-frequency oscillations (HFOs) were prone to detect overexcited neuronal firing in certain focal areas. Conclusions: Personal network changes during ictal onset had unique features in the time range and parallel seizure rhythm uniformly in every patient. There was an important time point for generalized discharges of the epileptic network. Ictal spiking activity played an important role in the epileptic network synchronicity of childhood absence epilepsy. Frequency oscillations provided references for locating abnormal changes in neuromagnetic signals.
Collapse
Affiliation(s)
- Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qi Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Li Y, Sun Y, Niu K, Wang P, Xiang J, Chen Q, Hu Z, Wang X. The relationship between neuromagnetic activity and cognitive function in benign childhood epilepsy with centrotemporal spikes. Epilepsy Behav 2020; 112:107363. [PMID: 32858366 DOI: 10.1016/j.yebeh.2020.107363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Our aim was to explore the pathophysiological mechanism of cognitive function changes in early untreated children with benign childhood epilepsy with centrotemporal spikes (BECTS). METHODS Magnetoencephalography (MEG) was performed in 33 children with BECTS and 18 healthy children. Wechsler Intelligence Scale for Children, fourth edition (WISC-IV) was used to divide children with BECTS into two groups. Normal cognitive function was defined as a full-scale intelligence quotient (FSIQ) of >80, while decreased cognitive function was defined as a FSIQ of <80. Accumulated source imaging was used to evaluate the neuromagnetic source activity in multifrequency bands. RESULTS Of the 33 patients with early untreated BECTS, a total of 17 had a FSIQ of <80 and 16 had FSIQ of >80. The course of epilepsy and number of seizures in the FSIQ <80 group were higher than that in the FSIQ >80 group. Our MEG results showed that in the 4-8 Hz frequency band, both patient groups had inactivation of the posterior cingulate cortex (PCC) region compared with the healthy control group. In the 30-80 Hz frequency band, the FSIQ <80 group showed inactivation of the PCC region compared with both the healthy control group and the FSIQ >80 group. In the 80-250 Hz frequency band, the FSIQ <80 group had inactivated of the medial frontal cortex (MFC) region compared with the healthy control group. In the 30-80 Hz frequency band, the strength of neuromagnetic source in patients with BECTS with FSIQ <80 was higher than that in the FSIQ >80 group and the healthy control group. CONCLUSIONS The magnetic source inactivation of the MFC and PCC regions during the interictal time may be the reason for cognitive decline in early untreated children with BECTS. Children with BECTS with cognitive decline had a longer course of epilepsy and more seizures. The magnetic source localization in the 4-8 Hz frequency band may be a new imaging marker for the diagnosis of new BECTS.
Collapse
Affiliation(s)
- Yihan Li
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yulei Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kai Niu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Pengfei Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45220, USA
| | - Qiqi Chen
- MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, Jiangsu 210029, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
19
|
Zhang T, Shi Q, Li Y, Gao Y, Sun J, Miao A, Wu C, Chen Q, Hu Z, Guo H, Wang X. Frequency-Dependent Interictal Neuromagnetic Activities in Children With Benign Epilepsy With Centrotemporal Spikes: A Magnetoencephalography (MEG) Study. Front Hum Neurosci 2020; 14:264. [PMID: 32742261 PMCID: PMC7365040 DOI: 10.3389/fnhum.2020.00264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/12/2020] [Indexed: 01/02/2023] Open
Abstract
Objective: This study aimed to investigate interictal neuromagnetic activities in the low- to high-frequency ranges in patients with benign epilepsy with centrotemporal spikes (BECTS), especially those without interictal epileptiform discharges (IEDs). Methods: We studied 21 clinically-diagnosed BECTS patients and 11 age-matched healthy controls (HC) using high-sampling magnetoencephalography (MEG). Neuromagnetic sources were assessed with accumulated source imaging (ASI). The MEG data were analyzed in seven frequency bands. The MEG recordings distinguished BECTS without IEDs (n = 10) from those with IEDs (n = 11) and HC (n = 11). Results: At 1–4 Hz, the neuromagnetic activities in healthy subjects tended to locate at the precuneus/posterior cingulate, while those of the BECTS patients without IEDs tended to locate at the medial frontal cortex (MFC) compared to BECTS patients with IEDs. The MEG source imaging at 30–80 Hz revealed that BECTS patients without IEDs had higher occurrences of interictal brain activity in the medial temporal lobe (MTL) compared to controls and the brain activity strength seemed to be weaker. There was a significant correlation between the source strength of the interictal gamma oscillations of BECTS patients without IEDs and the duration of epilepsy. Conclusions: IEDs might disrupt the default mode network (DMN). Aberrant brain activities in BECTS patients without IEDs were associated with cognitive areas of the brain. The strength of gamma oscillations in the chronic epilepsy state reflected the duration of BECTS. Significance: MEG could reveal the aberrant neural activities in BECTS patients during the interictal period, and such abnormality is frequency-dependent. Gamma oscillations could be used to identify BECTS patients without IEDs.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Shi
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Gao
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ailiang Miao
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, Nanjing Brain Hospital, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Hu Guo
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Sun J, Gao Y, Miao A, Yu C, Tang L, Huang S, Wu C, Shi Q, Zhang T, Li Y, Sun Y, Wang X. Multifrequency Dynamics of Cortical Neuromagnetic Activity Underlying Seizure Termination in Absence Epilepsy. Front Hum Neurosci 2020; 14:221. [PMID: 32670039 PMCID: PMC7332835 DOI: 10.3389/fnhum.2020.00221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose This study aimed to investigate the spectral and spatial signatures of neuromagnetic activity underlying the termination of absence seizures. Methods Magnetoencephalography (MEG) data were recorded from 18 drug-naive patients with childhood absence epilepsy (CAE). Accumulated source imaging (ASI) was used to analyze MEG data at the source level in seven frequency ranges: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–80 Hz), ripple (80–250 Hz), and fast ripple (250–500 Hz). Result In the 1–4, 4–8, and 8–12 Hz ranges, the magnetic source during seizure termination appeared to be consistent over the ictal period and was mainly localized in the frontal cortex (FC) and parieto-occipito-temporal junction (POT). In the 12–30 and 30–80 Hz ranges, a significant reduction in source activity was observed in the frontal lobe during seizure termination as well as a decrease in peak source strength. The ictal peak source strength in the 1–4 Hz range was negatively correlated with the ictal duration of the seizure, whereas in the 30–80 Hz range, it was positively correlated with the course of epilepsy. Conclusion The termination of absence seizures is associated with a dynamic neuromagnetic process. Frequency-dependent changes in the FC were observed during seizure termination, which may be involved in the process of neural network interaction. Neuromagnetic activity in different frequency bands may play different roles in the pathophysiological mechanism during absence seizures.
Collapse
Affiliation(s)
- Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuan Gao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chuanyong Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lu Tang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Shuyang Huang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qi Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Qi L, Fan X, Tao X, Chai Q, Zhang K, Meng F, Hu W, Sang L, Yang X, Qiao H. Identifying the Epileptogenic Zone With the Relative Strength of High-Frequency Oscillation: A Stereoelectroencephalography Study. Front Hum Neurosci 2020; 14:186. [PMID: 32581741 PMCID: PMC7296092 DOI: 10.3389/fnhum.2020.00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
Background High-frequency oscillation (HFO) represents a promising biomarker of epileptogenicity. However, the significant interindividual differences among patients limit its application in clinical practice. Here, we applied and evaluated an individualized, frequency-based approach of HFO analysis in stereoelectroencephalography (SEEG) data for localizing the epileptogenic zones (EZs). Methods Clinical and SEEG data of 19 patients with drug-resistant focal epilepsy were retrospectively analyzed. The individualized spectral power of all signals recorded by electrode array, i.e., the relative strength of HFO, was computed with a wavelet method for each patient. Subsequently, the clinical value of the relative strength of HFO for identifying the EZ was evaluated. Results Focal increase in the relative strength of HFO in SEEG recordings were identified in all 19 patients. HFOs identified inside the clinically identified seizure onset zone had more spectral power than those identified outside (p < 0.001), and HFOs in 250–500 Hz band (fast ripples) seemed to be more specific identifying the EZ than in those in 80–250 Hz band (ripples) (p < 0.01). The resection of brain regions generating HFOs resulted in a favorable seizure outcome in 17 patients (17/19; 89.5%), while in the cases of other patients with poor outcomes, the brain regions generating HFOs were not removed completely. Conclusion The relative strength of HFO, especially fast ripples, is a promising effective biomarker for identifying the EZ and can lead to a favorable seizure outcome if used to guide epilepsy surgery.
Collapse
Affiliation(s)
- Lei Qi
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Fengtai Hospital, Beijing, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaorong Tao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Chai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenhan Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lin Sang
- Beijing Fengtai Hospital, Beijing, China
| | | | - Hui Qiao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Leng X, Xiang J, Yang Y, Yu T, Qi X, Zhang X, Wu S, Wang Y. Frequency-specific changes in the default mode network in patients with cingulate gyrus epilepsy. Hum Brain Mapp 2020; 41:2447-2459. [PMID: 32096905 PMCID: PMC7268086 DOI: 10.1002/hbm.24956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/25/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
To identify abnormal functional connectivity of the default mode network in cingulate gyrus epilepsy, which may yield new information about the default mode network and suggest a new cingulate gyrus epilepsy biomarker. Fifteen patients with cingulate gyrus epilepsy (mean age = 21 years) and 15 healthy controls (mean age = 24 years) were studied in the resting state using magnetoencephalography. Twelve brain areas of interest in the default mode network were extracted and investigated with multifrequency signals that included alpha (α, 8–13 Hz), beta (β, 14–30 Hz), and gamma (γ, 31–80 Hz) band oscillations. Patients with cingulate gyrus epilepsy had significantly greater connectivity in all three frequency bands (α, β, γ). A frequency‐specific elevation of functional connectivity was found in patients compared to controls. The greater functional connectivity in the γ band was significantly more prominent than that of the α and β bands. Patients with cingulate gyrus epilepsy and controls differed significantly in functional connectivity between the left angular gyrus and left posterior cingulate cortex in the α, β, and γ bands. The results of the node degree analysis were similar to those of the functional connectivity analysis. Our findings reveal for the first time that brain activity in the γ band may play a key role in the default mode network in cingulate gyrus epilepsy. Altered functional connectivity of the left angular gyrus and left posterior cingulate cortex may be a new biomarker for cingulate gyrus epilepsy.
Collapse
Affiliation(s)
- Xuerong Leng
- Department of Pediatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yingxue Yang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Qi
- Department of Pediatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xiating Zhang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Siqi Wu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Shi Q, Zhang T, Miao A, Sun J, Sun Y, Chen Q, Hu Z, Xiang J, Wang X. Differences Between Interictal and Ictal Generalized Spike-Wave Discharges in Childhood Absence Epilepsy: A MEG Study. Front Neurol 2020; 10:1359. [PMID: 32038453 PMCID: PMC6992575 DOI: 10.3389/fneur.2019.01359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/09/2019] [Indexed: 12/05/2022] Open
Abstract
Purpose: To investigate the differences between interictal and ictal generalized spike-wave discharges (GSWDs) for insights on how epileptic activity propagates and the physiopathological mechanisms underlying childhood absence epilepsy (CAE). Methods: Twenty-five patients with CAE were studied using magnetoencephalography (MEG). MEG data were digitized at 6,000 Hz during the interictal and ictal GSWDs. GSWDs were analyzed at both neural magnetic source levels and functional connectivity (FC) in multifrequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–80 Hz), ripple (80–250 Hz), and fast ripple (250–500 Hz). Brain FC was studied with the posterior cingulate cortex/precuneus (PCC/pC) as the seed region. Results: The magnetic source of interictal GSWDs mainly locates in the PCC/pC region at 4–8 and 8–12 Hz, while that of ictal GSWDs mainly locates in the medial frontal cortex (MFC) at 80–250 Hz. There were statistically significant differences between interictal and ictal GSWDs (p < 0.05). The FC network involving the PCC/pC showed strong connections in the anterior-posterior pathways (mainly with the frontal cortex) at 80–250 Hz during ictal GSWDs, while the interictal GSWDs FC were mostly limited to the posterior cortex region. There was no significant difference in the magnetic source strength among interictal and ictal GSWDs at all bandwidths. Conclusions: There are significant disparities in the source localization and FC between interictal and ictal GSWDs. Low-frequency activation in the PCC/pC during inhibition of seizures possibly relates to the maintenance of consciousness during interictal GSWDs. High-frequency oscillations (HFOs) of the MFC during CAE may associate with the inducing or occurrence of GSWDs. Weakened network connections may be in favor of preventing overexcitability and relates to the termination of GSWDs.
Collapse
Affiliation(s)
- Qi Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Canafoglia L, Dettori MS, Duran D, Ragona F, Freri E, Casellato S, Granata T, Franceschetti S, Panzica F. Early clinical and EEG findings associated with the outcome in childhood absence epilepsy. Epilepsy Behav 2019; 98:273-278. [PMID: 31419648 DOI: 10.1016/j.yebeh.2019.06.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The objective of this study was to investigate several clinical electroencephalogram (EEG) findings possibly predicting the early response to antiepileptic drugs (AEDs) and the late outcome in children with clinical EEG features fitting the syndromic diagnosis of childhood absence epilepsy (CAE). METHODS In 117 untreated patients with typical absences, we analyzed clinical EEG features, and resting EEG activity using partial directed coherence to calculate out- and inflow of cortical oscillations in different regions of interest. RESULTS Absences began before 4 years in 12.0%, at 4-9.5 years in 71.8%, and at 10-13 years in 16.2% of the cases. Valproate was started in 91 patients and ethosuximide in 27. With one of AEDs, 77.8% reached seizure control, while the remaining patients needed to switch to the alternative AED. Only 5.9% patients remained drug-resistant. Absences with simple automatisms were the only feature associated with a lack of response to the first AED. Connectivity analysis of resting EEGs showed increased frontal outflow in patients compared with controls, which was significantly greater in the nonresponders to the first AED than in responders. Among the 91 patients followed for 61.2 ± 31.7 months, 14.2% relapsed after a seizure-free period, without differences between the responders to the first or second AED. CONCLUSIONS The assessment of electroclinical features provided only minimal prognostic indices. The enhanced outflow of frontal oscillations suggests a circuitry dysfunction significantly greater in the nonresponder to the early treatment. Seizure relapses were rare and comparable in patients who reached seizure freedom with first or second AED, indicating that the resistance to one AED does not influence the outcome.
Collapse
Affiliation(s)
- Laura Canafoglia
- Neurofisiopatologia ed Epilettologia Diagnostica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Sabina Dettori
- Centro per la Diagnosi e Cura dell'epilessia in età evolutiva, UOC Neuropsichiatria Infantile, AOU Sassari, Italy
| | - Dunja Duran
- Neurofisiopatologia ed Epilettologia Diagnostica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Ragona
- Neuropsichiatria Infantile, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Neuropsichiatria Infantile, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Susanna Casellato
- Centro per la Diagnosi e Cura dell'epilessia in età evolutiva, UOC Neuropsichiatria Infantile, AOU Sassari, Italy
| | - Tiziana Granata
- Neuropsichiatria Infantile, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvana Franceschetti
- Neurofisiopatologia ed Epilettologia Diagnostica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Ferruccio Panzica
- Neurofisiopatologia ed Epilettologia Diagnostica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
25
|
Jiang W, Wu C, Xiang J, Miao A, Qiu W, Tang L, Huang S, Chen Q, Hu Z, Wang X. Dynamic Neuromagnetic Network Changes of Seizure Termination in Absence Epilepsy: A Magnetoencephalography Study. Front Neurol 2019; 10:703. [PMID: 31338058 PMCID: PMC6626921 DOI: 10.3389/fneur.2019.00703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022] Open
Abstract
Objective: With increasing efforts devoted to investigating the generation and propagation mechanisms of spontaneous spike and wave discharges (SWDs), little attention has been paid to network mechanisms associated with termination patterns of SWDs to date. In the current study, we aimed to identify the frequency-dependent neural network dynamics during the offset of absence seizures. Methods: Fifteen drug-naïve patients with childhood absence epilepsy (CAE) were assessed with a 275-Channel Magnetoencephalography (MEG) system. MEG data were recorded during and between seizures at a sampling rate of 6,000 Hz and analyzed in seven frequency bands. Source localization was performed with accumulated source imaging. Granger causality analysis was used to evaluate effective connectivity networks of the entire brain at the source level. Results: At the low-frequency (1–80 Hz) bands, activities were predominantly distributed in the frontal cortical and parieto–occipito–temporal junction at the offset transition periods. The high-frequency oscillations (HFOs, 80–500 Hz) analysis indicated significant source localization in the medial frontal cortex and deep brain areas (mainly thalamus) during both the termination transition and interictal periods. Furthermore, an enhanced positive cortico–thalamic effective connectivity was observed around the discharge offset at all of the seven analyzed bands, the direction of which was primarily from various cortical regions to the thalamus. Conclusions: Seizure termination is a gradual process that involves both the cortices and the thalamus in CAE. Cortico–thalamic coupling is observed at the termination transition periods, and the cerebral cortex acts as the driving force.
Collapse
Affiliation(s)
- Wenwen Jiang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Wenchao Qiu
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Lu Tang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Shuyang Huang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Meng L. A Magnetoencephalography Study of Pediatric Interictal Neuromagnetic Activity Changes and Brain Network Alterations Caused by Epilepsy in the High Frequency (80-1000 Hz). IEEE Trans Neural Syst Rehabil Eng 2019; 27:389-399. [PMID: 30762563 DOI: 10.1109/tnsre.2019.2898683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
More and more studies propose that high frequency brain signals are promising biomarkers of epileptogenic zone. In this paper, our aim is to investigate the neuromagnetic changes and brain network topological alterations during an interictal period at high frequency ranges (80-1000 Hz) between healthy controls and epileptic patients with Magnetoencephalography. We analyzed neuromagnetic activities with accumulated source imaging, and constructed brain network based on graph theory. Neuromagnetic activity changes and brain network alterations between two groups were analyzed in three frequency bands: ripple (80-250 Hz), fast ripples (FRs, 250-500 Hz), and very high frequency oscillations (VHFO, 500-1000 Hz). We found that epileptic patients showed significantly altered patterns of neuromagnetic source localization and altered brain network patterns. And, we also found that mean functional connectivity and the number of modules from epileptic patients significantly increased in the ripple and FRs bands, and mean clustering coefficient from epileptic patients significantly decreased in the ripple and FRs bands. We also found that the mean functional connectivity was positively correlated with duration of epilepsy in the ripple and VHFO bands, and the number of modules was positively correlated with the duration of epilepsy in the ripple, FRs, and VHFO bands. Our results indicate that epilepsy can alter patients' neuromagnetic activities and brain networks in the high-frequency ranges, and these alterations become more pathological as the duration of epilepsy grows longer.
Collapse
|
27
|
Thomschewski A, Hincapié AS, Frauscher B. Localization of the Epileptogenic Zone Using High Frequency Oscillations. Front Neurol 2019; 10:94. [PMID: 30804887 PMCID: PMC6378911 DOI: 10.3389/fneur.2019.00094] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 01/22/2023] Open
Abstract
For patients with drug-resistant focal epilepsy, surgery is the therapy of choice in order to achieve seizure freedom. Epilepsy surgery foremost requires the identification of the epileptogenic zone (EZ), defined as the brain area indispensable for seizure generation. The current gold standard for identification of the EZ is the seizure-onset zone (SOZ). The fact, however that surgical outcomes are unfavorable in 40-50% of well-selected patients, suggests that the SOZ is a suboptimal biomarker of the EZ, and that new biomarkers resulting in better postsurgical outcomes are needed. Research of recent years suggested that high-frequency oscillations (HFOs) are a promising biomarker of the EZ, with a potential to improve surgical success in patients with drug-resistant epilepsy without the need to record seizures. Nonetheless, in order to establish HFOs as a clinical biomarker, the following issues need to be addressed. First, evidence on HFOs as a clinically relevant biomarker stems predominantly from retrospective assessments with visual marking, leading to problems of reproducibility and reliability. Prospective assessments of the use of HFOs for surgery planning using automatic detection of HFOs are needed in order to determine their clinical value. Second, disentangling physiologic from pathologic HFOs is still an unsolved issue. Considering the appearance and the topographic location of presumed physiologic HFOs could be immanent for the interpretation of HFO findings in a clinical context. Third, recording HFOs non-invasively via scalp electroencephalography (EEG) and magnetoencephalography (MEG) is highly desirable, as it would provide us with the possibility to translate the use of HFOs to the scalp in a large number of patients. This article reviews the literature regarding these three issues. The first part of the article focuses on the clinical value of invasively recorded HFOs in localizing the EZ, the detection of HFOs, as well as their separation from physiologic HFOs. The second part of the article focuses on the current state of the literature regarding non-invasively recorded HFOs with emphasis on findings and technical considerations regarding their localization.
Collapse
Affiliation(s)
- Aljoscha Thomschewski
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
- Department of Psychology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Ana-Sofía Hincapié
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Ren J, Xiang J, Chen Y, Li F, Wu T, Shi J. Abnormal functional connectivity under somatosensory stimulation in migraine: a multi-frequency magnetoencephalography study. J Headache Pain 2019; 20:3. [PMID: 30626318 PMCID: PMC6734310 DOI: 10.1186/s10194-019-0958-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Although altered neural networks have been demonstrated in recent MEG (magnetoencephalography) research in migraine patients during resting state, it is unknown whether this alteration can be detected in task-related networks. The present study aimed to investigate the abnormalities of the frequency-specific somatosensory-related network in migraine patients by using MEG. METHODS Twenty-two migraineurs in the interictal phase and twenty-two sex- and age-matched healthy volunteers were studied using a whole-head magnetoencephalography (MEG) system. Electrical stimuli were delivered alternately to the median nerve on the right wrists of all subjects. MEG data were analyzed in a frequency range of 1-1000 Hz in multiple bands. RESULTS The brain network patterns revealed that the patients with migraine exhibited remarkably increased functional connectivity in the high-frequency (250-1000 Hz) band between the sensory cortex and the frontal lobe. The results of quantitative analysis of graph theory showed that the patients had (1) an increased degree of connectivity in the theta (4-8 Hz), beta (13-30 Hz) and gamma (30-80 Hz) bands; (2) an increased connectivity strength in the beta (13-30 Hz) and gamma (30-80 Hz) bands; (3) an increased path length in the beta (13-30 Hz), gamma (30-80 Hz) and ripple (80-250 Hz) bands; and (4) an increased clustering coefficient in the theta (4-8 Hz), beta (13-30 Hz) and gamma (30-80 Hz) bands. CONCLUSIONS The results indicate that migraine is associated with aberrant connections from the somatosensory cortex to the frontal lobe. The frequency-specific increases in connectivity in terms of strength, path length and clustering coefficients support the notion that migraineurs have elevated cortical networks. This alteration in functional connectivity may be involved in somatosensory processing in migraine patients and may contribute to understanding migraine pathophysiology and to providing convincing evidence for a spatially targeted migraine therapy.
Collapse
Affiliation(s)
- Jing Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45220, USA
| | - Yueqiu Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Feng Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ting Wu
- MEG Center, Nanjing Brain Hospital, Nanjing, 210029, Jiangsu, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
29
|
Miao A, Wang Y, Xiang J, Liu Q, Chen Q, Qiu W, Liu H, Tang L, Gao Y, Wu C, Yu Y, Sun J, Jiang W, Shi Q, Zhang T, Hu Z, Wang X. Ictal Source Locations and Cortico-Thalamic Connectivity in Childhood Absence Epilepsy: Associations with Treatment Response. Brain Topogr 2019; 32:178-191. [PMID: 30291582 DOI: 10.1007/s10548-018-0680-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
Childhood absence epilepsy (CAE), the most common pediatric epilepsy syndrome, is usually treated with valproic acid (VPA) and lamotrigine (LTG) in China. This study aimed to investigate the ictal source locations and functional connectivity (FC) networks between the cortices and thalamus that are related to treatment response. Magnetoencephalography (MEG) data from 25 patients with CAE were recorded at 300 Hz and analyzed in 1-30 Hz frequency bands. Neuromagnetic sources were volumetrically scanned with accumulated source imaging. The FC networks between the cortices and thalamus were evaluated at the source level through a connectivity analysis. Treatment outcome was assessed after 36-66 months following MEG recording. The children with CAE were divided into LTG responder, LTG non-responder, VPA responder and VPA non-responder groups. The ictal source locations and cortico-thalamic FC networks were compared to the treatment response. The ictal source locations in the post-dorsal medial frontal cortex (post-DMFC, including the medial primary motor cortex and the supplementary sensorimotor area) were observed in all LTG non-responders but in all LTG responders. At 1-7 Hz, patients with fronto-thalamo-parietal/occipital (F-T-P/O) networks were older than those with fronto-thalamic (F-T) networks or other cortico-thalamic networks (p = 0.000). The duration of seizures in patients with F-T-P/O networks at 1-7 Hz was longer than that in patients with F-T networks or other cortico-thalamic networks (p = 0.001). The ictal post-DMFC source localizations suggest that children with CAE might experience initial LTG monotherapy failure. Moreover, the cortico-thalamo-cortical network is associated with age. Finally, the cortico-thalamo-cortical network consists of anterior and posterior cortices and might contribute to the maintenance of discharges.
Collapse
Affiliation(s)
- Ailiang Miao
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China
| | - Yingxin Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45220, USA
| | - Qianqian Liu
- Department of Pediatrics, Nanjing Jiangning Hospital, Nanjing, 210029, Jiangsu, China
| | - Qiqi Chen
- MEG Center, Nanjing Brain Hospital, Nanjing, 210029, Jiangsu, China
| | - Wenchao Qiu
- Department of Neurology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an, China
| | - Hongxing Liu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China
| | - Lu Tang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China
| | - Yuan Gao
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China
| | - Caiyun Wu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China
| | - Yuanwen Yu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China
| | - Jintao Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China
| | - Wenwen Jiang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China
| | - Qi Shi
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China
| | - Tingting Zhang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, 210029, Jiangsu, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
30
|
Maheshwari A, Akbar A, Wang M, Marks RL, Yu K, Park S, Foster BL, Noebels JL. Persistent aberrant cortical phase-amplitude coupling following seizure treatment in absence epilepsy models. J Physiol 2017; 595:7249-7260. [PMID: 28901011 DOI: 10.1113/jp274696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In two monogenic models of absence epilepsy, interictal beta/gamma power is augmented in homozygous stargazer (stg/stg) but not homozygous tottering (tg/tg) mice. There are distinct gene-linked patterns of aberrant phase-amplitude coupling in the interictal EEG of both stg/stg and tg/tg mice, compared to +/+ and stg/+ mice. Treatment with ethosuximide significantly blocks seizures in both genotypes, but the abnormal phase-amplitude coupling remains. Seizure-free stg/+ mice have normal power and phase-amplitude coupling, but beta/gamma power is significantly reduced with NMDA receptor blockade, revealing a latent cortical network phenotype that is separable from, and therefore not a result of, seizures. Altogether, these findings reveal gene-linked quantitative electrographic biomarkers free from epileptiform activity, and provide a potential network correlate for persistent cognitive deficits in absence epilepsy despite effective treatment. ABSTRACT In childhood absence epilepsy, cortical seizures are brief and intermittent; however there are extended periods without behavioural or electrographic ictal events. This genetic disorder is associated with variable degrees of cognitive dysfunction, but no consistent functional biomarkers that might provide insight into interictal cortical function have been described. Previous work in monogenic mouse models of absence epilepsy have shown that the interictal EEG displays augmented beta/gamma power in homozygous stargazer (stg/stg) mice bearing a presynaptic AMPA receptor defect, but not homozygous tottering (tg/tg) mice with a P/Q type calcium channel mutation. To further evaluate the interictal EEG, we quantified phase-amplitude coupling (PAC) in stg/stg, stg/+, tg/tg and wild-type (+/+) mice. We found distinct gene-linked patterns of aberrant PAC in stg/stg and tg/tg mice compared to +/+ and stg/+ mice. Treatment with ethosuximide significantly blocks seizures in both stg/stg and tg/tg, but the abnormal PAC remains. Stg/+ mice are seizure free with normal baseline beta/gamma power and normal theta-gamma PAC, but like stg/stg mice, beta/gamma power is significantly reduced by NMDA receptor blockade, a treatment that paradoxically enhances seizures in stg/stg mice. Stg/+ mice, therefore, have a latent cortical network phenotype that is veiled by NMDA-mediated neurotransmission. Altogether, these findings reveal gene-linked quantitative electrographic biomarkers in the absence of epileptiform activity and provide a potential network correlate for persistent cognitive deficits in absence epilepsy despite effective treatment.
Collapse
Affiliation(s)
- Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Abraham Akbar
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Mai Wang
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Rice University, Houston, TX, USA
| | - Rachel L Marks
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Yu
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Rice University, Houston, TX, USA
| | - Suhyeorn Park
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Brett L Foster
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
31
|
Wu C, Xiang J, Sun J, Huang S, Tang L, Miao A, Zhou Y, Chen Q, Hu Z, Wang X. Quantify neuromagnetic network changes from pre-ictal to ictal activities in absence seizures. Neuroscience 2017; 357:134-144. [PMID: 28576731 DOI: 10.1016/j.neuroscience.2017.05.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The cortico-thalamo-cortical network plays a key role in childhood absence epilepsy (CAE). However, the exact interaction between the cortex and the thalamus remains incompletely understood. This study aimed to investigate the dynamic changes of frequency-dependent neural networks during the initialization of absence seizures. METHODS Magnetoencephalography data from 14 patients with CAE were recorded during and between seizures at a sampling rate of 6000Hz and analyzed in seven frequency bands. Neuromagnetic sources were volumetrically scanned with accumulated source imaging. Effective connectivity networks of the entire brain, including the cortico-thalamo-cortical network, were evaluated at the source level through Granger causality analysis. RESULTS The low-frequency (1-80Hz) activities showed significant frontal cortical and parieto-occipito-temporal junction source localization around seizures. The high-frequency (80-250Hz) oscillations showed predominant activities consistently localized in deep brain areas and medial frontal cortex. The increased cortico-thalamic effective connectivity was observed around seizures in both low- and high-frequency ranges. The direction was predominantly from the cortex to the thalamus at the early time, although the cortex that drove connectivity varied among subjects. CONCLUSIONS The cerebral cortex plays a key role in driving the cortico-thalamic connections at the early portion of the initialization of absence seizures. The oscillatory activities in the thalamus could be triggered by networks from various regions in the cortex. SIGNIFICANCE The dynamic changes of neural network provide evidences that absence seizures are probably resulted from cortical initialized cortico-thalamic network.
Collapse
Affiliation(s)
- Caiyun Wu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45220, USA
| | - Jintao Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuyang Huang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lu Tang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ailiang Miao
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuchen Zhou
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qiqi Chen
- MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, Jiangsu 210029, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
32
|
Pitkänen A, Löscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, Gröhn O, Bankstahl JP, Friedman A, Aronica E, Gorter JA, Ravizza T, Sisodiya SM, Kokaia M, Beck H. Advances in the development of biomarkers for epilepsy. Lancet Neurol 2017; 15:843-856. [PMID: 27302363 DOI: 10.1016/s1474-4422(16)00112-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
Over 50 million people worldwide have epilepsy. In nearly 30% of these cases, epilepsy remains unsatisfactorily controlled despite the availability of over 20 antiepileptic drugs. Moreover, no treatments exist to prevent the development of epilepsy in those at risk, despite an increasing understanding of the underlying molecular and cellular pathways. One of the major factors that have impeded rapid progress in these areas is the complex and multifactorial nature of epilepsy, and its heterogeneity. Therefore, the vision of developing targeted treatments for epilepsy relies upon the development of biomarkers that allow individually tailored treatment. Biomarkers for epilepsy typically fall into two broad categories: diagnostic biomarkers, which provide information on the clinical status of, and potentially the sensitivity to, specific treatments, and prognostic biomarkers, which allow prediction of future clinical features, such as the speed of progression, severity of epilepsy, development of comorbidities, or prediction of remission or cure. Prognostic biomarkers are of particular importance because they could be used to identify which patients will develop epilepsy and which might benefit from preventive treatments. Biomarker research faces several challenges; however, biomarkers could substantially improve the management of people with epilepsy and could lead to prevention in the right person at the right time, rather than just symptomatic treatment.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Annamaria Vezzani
- Department of Neuroscience, Experimental Neurology, IRCCS-Istituto di Recerche Farmacologiche "Mario Negri", Milan, Italy
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, University of Bonn, Bonn, Germany
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy; Unit of Gene Therapy of Neurodegenerative Diseases, Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olli Gröhn
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jens P Bankstahl
- Preclinical Molecular Imaging, Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel; Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Teresa Ravizza
- Department of Neuroscience, Experimental Neurology, IRCCS-Istituto di Recerche Farmacologiche "Mario Negri", Milan, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK; Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Merab Kokaia
- Epilepsy Center, Experimental Epilepsy Group, Division of Neurology, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Heinz Beck
- Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
33
|
Altered Effective Connectivity Network in Childhood Absence Epilepsy: A Multi-frequency MEG Study. Brain Topogr 2017; 30:673-684. [PMID: 28286918 DOI: 10.1007/s10548-017-0555-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022]
Abstract
Using multi-frequency magnetoencephalography (MEG) data, we investigated whether the effective connectivity (EC) network of patients with childhood absence epilepsy (CAE) is altered during the inter-ictal period in comparison with healthy controls. MEG data from 13 untreated CAE patients and 10 healthy controls were recorded. Correlation analysis and Granger causality analysis were used to construct an EC network at the source level in eight frequency bands. Alterations in the spatial pattern and topology of the network in CAE were investigated by comparing the patients with the controls. The network pattern was altered mainly in 1-4 Hz, showing strong connections within the frontal cortex and weak connections in the anterior-posterior pathways. The EC involving the precuneus/posterior cingulate cortex (PC/PCC) significantly decreased in low-frequency bands. In addition, the parameters of graph theory were significantly altered in several low- and high-frequency bands. CAE patients display frequency-specific abnormalities in the network pattern even during the inter-ictal period, and the frontal cortex and PC/PCC might play crucial roles in the pathophysiology of CAE. The EC network of CAE patients was over-connective and random during the inter-ictal period. This study is the first to reveal the frequency-specific alteration in the EC network during the inter-ictal period in CAE patients. Multiple-frequency MEG data are useful in investigating the pathophysiology of CAE, which can serve as new biomarkers of this disorder.
Collapse
|
34
|
Tamilia E, Madsen JR, Grant PE, Pearl PL, Papadelis C. Current and Emerging Potential of Magnetoencephalography in the Detection and Localization of High-Frequency Oscillations in Epilepsy. Front Neurol 2017; 8:14. [PMID: 28194133 PMCID: PMC5276819 DOI: 10.3389/fneur.2017.00014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/11/2017] [Indexed: 01/19/2023] Open
Abstract
Up to one-third of patients with epilepsy are medically intractable and need resective surgery. To be successful, epilepsy surgery requires a comprehensive preoperative evaluation to define the epileptogenic zone (EZ), the brain area that should be resected to achieve seizure freedom. Due to lack of tools and methods that measure the EZ directly, this area is defined indirectly based on concordant data from a multitude of presurgical non-invasive tests and intracranial recordings. However, the results of these tests are often insufficiently concordant or inconclusive. Thus, the presurgical evaluation of surgical candidates is frequently challenging or unsuccessful. To improve the efficacy of the surgical treatment, there is an overriding need for reliable biomarkers that can delineate the EZ. High-frequency oscillations (HFOs) have emerged over the last decade as new potential biomarkers for the delineation of the EZ. Multiple studies have shown that HFOs are spatially associated with the EZ. Despite the encouraging findings, there are still significant challenges for the translation of HFOs as epileptogenic biomarkers to the clinical practice. One of the major barriers is the difficulty to detect and localize them with non-invasive techniques, such as magnetoencephalography (MEG) or scalp electroencephalography (EEG). Although most literature has studied HFOs using invasive recordings, recent studies have reported the detection and localization of HFOs using MEG or scalp EEG. MEG seems to be particularly advantageous compared to scalp EEG due to its inherent advantages of being less affected by skull conductivity and less susceptible to contamination from muscular activity. The detection and localization of HFOs with MEG would largely expand the clinical utility of these new promising biomarkers to an earlier stage in the diagnostic process and to a wider range of patients with epilepsy. Here, we conduct a thorough critical review of the recent MEG literature that investigates HFOs in patients with epilepsy, summarizing the different methodological approaches and the main findings. Our goal is to highlight the emerging potential of MEG in the non-invasive detection and localization of HFOs for the presurgical evaluation of patients with medically refractory epilepsy (MRE).
Collapse
Affiliation(s)
- Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R. Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Meng L, Xiang J. Frequency specific patterns of resting-state networks development from childhood to adolescence: A magnetoencephalography study. Brain Dev 2016; 38:893-902. [PMID: 27287665 DOI: 10.1016/j.braindev.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The present study investigated frequency dependent developmental patterns of the brain resting-state networks from childhood to adolescence. METHOD Magnetoencephalography (MEG) data were recorded from 20 healthy subjects at resting-state with eyes-open. The resting-state networks (RSNs) was analyzed at source-level. Brain network organization was characterized by mean clustering coefficient and average path length. The correlations between brain network measures and subjects' age during development from childhood to adolescence were statistically analyzed in delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), and beta (12-30Hz) frequency bands. RESULTS A significant positive correlation between functional connectivity with age was found in alpha and beta frequency bands. A significant negative correlation between average path lengths with age was found in beta frequency band. CONCLUSIONS The results suggest that there are significant developmental changes of resting-state networks from childhood to adolescence, which matures from a lattice network to a small-world network.
Collapse
Affiliation(s)
- Lu Meng
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110000, China; MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA.
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| |
Collapse
|
36
|
Li F, Xiang J, Wu T, Zhu D, Shi J. Abnormal resting-state brain activity in headache-free migraine patients: A magnetoencephalography study. Clin Neurophysiol 2016; 127:2855-2861. [PMID: 27417062 DOI: 10.1016/j.clinph.2016.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/19/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The aim of this study is to quantitatively assess the resting-state brain activity in migraine patients during the headache-free phase with magnetoencephalography (MEG). METHODS A total of 25 migraine patients during the headache-free phase and 25 gender- and age-matched control patients were studied with a whole-head MEG system at eyes-closed resting-state. MEG data were analyzed in multifrequency range of 4-200Hz. RESULTS In a regional cortex analysis, the spectral power of gamma oscillations in left frontal and left temporal regions was significantly increased in migraine patients as compared to controls (all p<0.001), but no significant difference was found between the two groups for the global channels. Analyses of source location showed that there were significant differences in the distribution of gamma oscillation between migraine subjects and controls (p<0.025). CONCLUSIONS Migraine patients in resting-state had altered brain activities in spectral power value and source distribution that can be detected and analyzed by MEG. SIGNIFICANCE Abnormal brain activities in the left frontal and temporal regions may be involved in pain modulation and processing of migraine. These findings provide new insights into the possible mechanisms of migraine attacks.
Collapse
Affiliation(s)
- Feng Li
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Jing Xiang
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ting Wu
- The MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Donglin Zhu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Jingping Shi
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, People's Republic of China; Department of Neurology, School of Medicine, Nanjing University, No. 22 Hankou Road, Nanjing 210093, People's Republic of China.
| |
Collapse
|
37
|
Maheshwari A, Marks RL, Yu KM, Noebels JL. Shift in interictal relative gamma power as a novel biomarker for drug response in two mouse models of absence epilepsy. Epilepsia 2015; 57:79-88. [PMID: 26663261 DOI: 10.1111/epi.13265] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Two monogenic mouse models of childhood absence epilepsy, stargazer and tottering, differ strikingly in their response to N-methyl-d-aspartate (NMDA) receptor blockade. We sought to evaluate the change in interictal relative gamma power as a reliable biomarker for this gene-linked antiepileptic drug (AED) response. METHODS The effects of AEDs on absolute and relative (to the total) power of frequencies between 2 and 300 Hz were analyzed within the interictal electroencephalogram (EEG) and correlated with antiseizure efficacy in awake behaving stargazer, tottering, and wild-type (WT) littermate control mice. RESULTS At baseline, we found a significant absolute as well as relative augmentation of 16-41 Hz power in stargazer compared to both tottering and WT mice. In stargazer, the NMDA receptor-antagonist MK-801 (0.5 mg/kg) paradoxically exacerbates absence seizures but normalizes the augmented beta/gamma band of power to WT levels, suggesting that the elevation in 16- to 41-Hz power is an NMDA receptor-mediated network property. In contrast, ethosuximide (200 mg/kg) and 4-aminopyridine (2.5 mg/kg) reduce seizure activity and increase relative power within the gamma range in both stargazer and tottering mice. Intraperitoneal saline injection had no significant effect on either seizure frequency or relative gamma power. Along with results using carbamazepine and flupirtine, there was a strong inverse relationship between relative change in seizure duration and change in peak relative gamma power (r(2) = 0.726). SIGNIFICANCE In these two models of absence epilepsy, drugs that reduce relative gamma power are associated with an increase in seizures, whereas drugs that augment relative gamma power reduce seizures. Therefore, drug-induced modulation of relative gamma power may serve as a biomarker for AED efficacy in absence epilepsy. Given the relationship between gamma power and fast-spiking interneurons, these results also suggest that a drug's effect may in part be determined by its impact on specific inhibitory networks.
Collapse
Affiliation(s)
- Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Rachel L Marks
- Department of Neurology, Baylor College of Medicine, Houston, Texas, U.S.A
| | | | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, Houston, Texas, U.S.A.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, U.S.A.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, U.S.A
| |
Collapse
|
38
|
Liu H, Ge H, Xiang J, Miao A, Tang L, Wu T, Chen Q, Yang L, Wang X. Resting state brain activity in patients with migraine: a magnetoencephalography study. J Headache Pain 2015; 16:525. [PMID: 25968099 PMCID: PMC4429423 DOI: 10.1186/s10194-015-0525-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/25/2015] [Indexed: 12/30/2022] Open
Abstract
Background Recent advances in migraine research have shown that the cerebral cortex serves a primary role in the pathogenesis of migraine. Since aberrant brain activity in migraine can be noninvasively detected with magnetoencephalography (MEG), The object of this study was to investigate the resting state cortical activity differences between migraineurs and controls and its related clinical characteristics. Methods Twenty-two subjects with an acute migraine and twenty-two age- and gender-matched controls were studied using MEG. MEG recordings were recorded 120 seconds during the headache attack. Analyze MEG signals from low (1–4 Hz) to high (200–1000 Hz)-frequency ranges. Results In comparison with the controls, brain activity in migraine subjects was significantly different from that of the controls both in two frequency ranges (55–90 Hz, p < 0.001) and (90–200 Hz, p < 0.004). But the power value showed no significantly differences between control and migraines in all frequency ranges (p > 0.05). All the clinical characteristics had no significant correlation with aberrant brain activity. Conclusions The results demonstrated that migraine subjects in resting state had significantly aberrant ictal brain activity that can be measured with neuromagnetic imaging techniques. The findings may facilitate the development of new therapeutic strategies in migraine treatment via alterations in cortical excitability with TMS and other medications in the future.
Collapse
Affiliation(s)
- Hongxing Liu
- The Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, Jiangsu, 210029, China,
| | | | | | | | | | | | | | | | | |
Collapse
|