1
|
Kim S, Jang KI, Lee HS, Shim SH, Kim JS. Differentiation between suicide attempt and suicidal ideation in patients with major depressive disorder using cortical functional network. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110965. [PMID: 38354896 DOI: 10.1016/j.pnpbp.2024.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Studies exploring the neurophysiology of suicide are scarce and the neuropathology of related disorders is poorly understood. This study investigated source-level cortical functional networks using resting-state electroencephalography (EEG) in drug-naïve depressed patients with suicide attempt (SA) and suicidal ideation (SI). EEG was recorded in 55 patients with SA and in 54 patients with SI. Particularly, all patients with SA were evaluated using EEG immediately after their SA (within 7 days). Graph-theory-based source-level weighted functional networks were assessed using strength, clustering coefficient (CC), and path length (PL) in seven frequency bands. Finally, we applied machine learning to differentiate between the two groups using source-level network features. At the global level, patients with SA showed lower strength and CC and higher PL in the high alpha band than those with SI. At the nodal level, compared with patients with SI, patients with SA showed lower high alpha band nodal CCs in most brain regions. The best classification performances for SA and SI showed an accuracy of 73.39%, a sensitivity of 76.36%, and a specificity of 70.37% based on high alpha band network features. Our findings suggest that abnormal high alpha band functional network may reflect the pathophysiological characteristics of suicide and serve as a clinical biomarker for suicide.
Collapse
Affiliation(s)
- Sungkean Kim
- Department of Human-Computer Interaction, Hanyang University, Ansan, Republic of Korea
| | - Kuk-In Jang
- Cognitive Science Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Ho Sung Lee
- Department of Pulmonology and Allergy, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Se-Hoon Shim
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea.
| | - Ji Sun Kim
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea.
| |
Collapse
|
2
|
Simmatis L, Russo EE, Geraci J, Harmsen IE, Samuel N. Technical and clinical considerations for electroencephalography-based biomarkers for major depressive disorder. NPJ MENTAL HEALTH RESEARCH 2023; 2:18. [PMID: 38609518 PMCID: PMC10955915 DOI: 10.1038/s44184-023-00038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/21/2023] [Indexed: 04/14/2024]
Abstract
Major depressive disorder (MDD) is a prevalent and debilitating psychiatric disease that leads to substantial loss of quality of life. There has been little progress in developing new MDD therapeutics due to a poor understanding of disease heterogeneity and individuals' responses to treatments. Electroencephalography (EEG) is poised to improve this, owing to the ease of large-scale data collection and the advancement of computational methods to address artifacts. This review summarizes the viability of EEG for developing brain-based biomarkers in MDD. We examine the properties of well-established EEG preprocessing pipelines and consider factors leading to the discovery of sensitive and reliable biomarkers.
Collapse
Affiliation(s)
- Leif Simmatis
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Emma E Russo
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Joseph Geraci
- Cove Neurosciences Inc., Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Irene E Harmsen
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Nardin Samuel
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Cove Neurosciences Inc., Toronto, ON, Canada.
| |
Collapse
|
3
|
Antonacci Y, Barà C, Zaccaro A, Ferri F, Pernice R, Faes L. Time-varying information measures: an adaptive estimation of information storage with application to brain-heart interactions. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1242505. [PMID: 37920446 PMCID: PMC10619917 DOI: 10.3389/fnetp.2023.1242505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Network Physiology is a rapidly growing field of study that aims to understand how physiological systems interact to maintain health. Within the information theory framework the information storage (IS) allows to measure the regularity and predictability of a dynamic process under stationarity assumption. However, this assumption does not allow to track over time the transient pathways occurring in the dynamical activity of a physiological system. To address this limitation, we propose a time-varying approach based on the recursive least squares algorithm (RLS) for estimating IS at each time instant, in non-stationary conditions. We tested this approach in simulated time-varying dynamics and in the analysis of electroencephalographic (EEG) signals recorded from healthy volunteers and timed with the heartbeat to investigate brain-heart interactions. In simulations, we show that the proposed approach allows to track both abrupt and slow changes in the information stored in a physiological system. These changes are reflected in its evolution and variability over time. The analysis of brain-heart interactions reveals marked differences across the cardiac cycle phases of the variability of the time-varying IS. On the other hand, the average IS values exhibit a weak modulation over parieto-occiptal areas of the scalp. Our study highlights the importance of developing more advanced methods for measuring IS that account for non-stationarity in physiological systems. The proposed time-varying approach based on RLS represents a useful tool for identifying spatio-temporal dynamics within the neurocardiac system and can contribute to the understanding of brain-heart interactions.
Collapse
Affiliation(s)
- Yuri Antonacci
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Chiara Barà
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Andrea Zaccaro
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Pellegrini F, Delorme A, Nikulin V, Haufe S. Identifying good practices for detecting inter-regional linear functional connectivity from EEG. Neuroimage 2023; 277:120218. [PMID: 37307866 PMCID: PMC10374983 DOI: 10.1016/j.neuroimage.2023.120218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Aggregating voxel-level statistical dependencies between multivariate time series is an important intermediate step when characterising functional connectivity (FC) between larger brain regions. However, there are numerous ways in which voxel-level data can be aggregated into inter-regional FC, and the advantages of each of these approaches are currently unclear. In this study we generate ground-truth data and compare the performances of various pipelines that estimate directed and undirected linear phase-to-phase FC between regions. We test the ability of several existing and novel FC analysis pipelines to identify the true regions within which connectivity was simulated. We test various inverse modelling algorithms, strategies to aggregate time series within regions, and connectivity metrics. Furthermore, we investigate the influence of the number of interactions, the signal-to-noise ratio, the noise mix, the interaction time delay, and the number of active sources per region on the ability of detecting phase-to-phase FC. Throughout all simulated scenarios, lowest performance is obtained with pipelines involving the absolute value of coherency. Further, the combination of dynamic imaging of coherent sources (DICS) beamforming with directed FC metrics that aggregate information across multiple frequencies leads to unsatisfactory results. Pipelines that show promising results with our simulated pseudo-EEG data involve the following steps: (1) Source projection using the linearly-constrained minimum variance (LCMV) beamformer. (2) Principal component analysis (PCA) using the same fixed number of components within every region. (3) Calculation of the multivariate interaction measure (MIM) for every region pair to assess undirected phase-to-phase FC, or calculation of time-reversed Granger Causality (TRGC) to assess directed phase-to-phase FC. We formulate recommendations based on these results that may increase the validity of future experimental connectivity studies. We further introduce the free ROIconnect plugin for the EEGLAB toolbox that includes the recommended methods and pipelines that are presented here. We show an exemplary application of the best performing pipeline to the analysis of EEG data recorded during motor imagery.
Collapse
Affiliation(s)
- Franziska Pellegrini
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany; Bernstein Center for Computational Neuroscience, Philippstraße 13, Berlin, 10117, Germany.
| | - Arnaud Delorme
- Swartz Center for Computational Neuroscience, 9500 Gilman Dr., La Jolla, California, 92903-0559, United States
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Stephanstraße 1a, Leipzig, 04103, Germany
| | - Stefan Haufe
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany; Bernstein Center for Computational Neuroscience, Philippstraße 13, Berlin, 10117, Germany; Technische Universität Berlin, Straße des 17. Juni 135, Berlin, 10623, Germany; Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestraße 2-12, Berlin, 10587, Germany
| |
Collapse
|
5
|
Allouch S, Kabbara A, Duprez J, Khalil M, Modolo J, Hassan M. Effect of channel density, inverse solutions and connectivity measures on EEG resting-state networks reconstruction: A simulation study. Neuroimage 2023; 271:120006. [PMID: 36914106 DOI: 10.1016/j.neuroimage.2023.120006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
Along with the study of brain activity evoked by external stimuli, the past two decades witnessed an increased interest in characterizing the spontaneous brain activity occurring during resting conditions. The identification of connectivity patterns in this so-called "resting-state" has been the subject of a great number of electrophysiology-based studies, using the Electro/Magneto-Encephalography (EEG/MEG) source connectivity method. However, no consensus has been reached yet regarding a unified (if possible) analysis pipeline, and several involved parameters and methods require cautious tuning. This is particularly challenging when different analytical choices induce significant discrepancies in results and drawn conclusions, thereby hindering the reproducibility of neuroimaging research. Hence, our objective in this study was to shed light on the effect of analytical variability on outcome consistency by evaluating the implications of parameters involved in the EEG source connectivity analysis on the accuracy of resting-state networks (RSNs) reconstruction. We simulated, using neural mass models, EEG data corresponding to two RSNs, namely the default mode network (DMN) and dorsal attentional network (DAN). We investigated the impact of five channel densities (19, 32, 64, 128, 256), three inverse solutions (weighted minimum norm estimate (wMNE), exact low-resolution brain electromagnetic tomography (eLORETA), and linearly constrained minimum variance (LCMV) beamforming) and four functional connectivity measures (phase-locking value (PLV), phase-lag index (PLI), and amplitude envelope correlation (AEC) with and without source leakage correction), on the correspondence between reconstructed and reference networks. We showed that, with different analytical choices related to the number of electrodes, source reconstruction algorithm, and functional connectivity measure, high variability is present in the results. More specifically, our results show that a higher number of EEG channels significantly increased the accuracy of the reconstructed networks. Additionally, our results showed significant variability in the performance of the tested inverse solutions and connectivity measures. Such methodological variability and absence of analysis standardization represent a critical issue for neuroimaging studies that should be prioritized. We believe that this work could be useful for the field of electrophysiology connectomics, by increasing awareness regarding the challenge of variability in methodological approaches and its implications on reported results.
Collapse
Affiliation(s)
- Sahar Allouch
- Univ Rennes, INSERM, LTSI - UMR 1099, Rennes F-35000, France; Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon.
| | - Aya Kabbara
- MINDIG, Rennes F-35000, France; LASeR - Lebanese Association for Scientific Research, Tripoli, Lebanon
| | - Joan Duprez
- Univ Rennes, INSERM, LTSI - UMR 1099, Rennes F-35000, France
| | - Mohamad Khalil
- Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon; CRSI research center, Faculty of Engineering, Lebanese University, Beirut, Lebanon
| | - Julien Modolo
- Univ Rennes, INSERM, LTSI - UMR 1099, Rennes F-35000, France
| | - Mahmoud Hassan
- MINDIG, Rennes F-35000, France; School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
6
|
Abdalbari H, Durrani M, Pancholi S, Patel N, Nasuto SJ, Nicolaou N. Brain and brain-heart Granger causality during wakefulness and sleep. Front Neurosci 2022; 16:927111. [PMID: 36188466 PMCID: PMC9520578 DOI: 10.3389/fnins.2022.927111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
In this exploratory study we apply Granger Causality (GC) to investigate the brain-brain and brain-heart interactions during wakefulness and sleep. Our analysis includes electroencephalogram (EEG) and electrocardiogram (ECG) data during all-night polysomnographic recordings from volunteers with apnea, available from the Massachusetts General Hospital's Computational Clinical Neurophysiology Laboratory and the Clinical Data Animation Laboratory. The data is manually annotated by clinical staff at the MGH in 30 second contiguous intervals (wakefulness and sleep stages 1, 2, 3, and rapid eye movement (REM). We applied GC to 4-s non-overlapping segments of available EEG and ECG across all-night recordings of 50 randomly chosen patients. To identify differences in GC between the different sleep stages, the GC for each sleep stage was subtracted from the GC during wakefulness. Positive (negative) differences indicated that GC was greater (lower) during wakefulness compared to the specific sleep stage. The application of GC to study brain-brain and brain-heart bidirectional connections during wakefulness and sleep confirmed the importance of fronto-posterior connectivity during these two states, but has also revealed differences in ipsilateral and contralateral mechanisms of these connections. It has also confirmed the existence of bidirectional brain-heart connections that are more prominent in the direction from brain to heart. Our exploratory study has shown that GC can be successfully applied to sleep data analysis and captures the varying physiological mechanisms that are related to wakefulness and different sleep stages.
Collapse
Affiliation(s)
- Helmi Abdalbari
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Mohammad Durrani
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Shivam Pancholi
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Nikhil Patel
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Slawomir J. Nasuto
- Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Nicoletta Nicolaou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
7
|
Allouch S, Duprez J, Khalil M, Hassan M, Modolo J, Kabbara A. Methods Used to Estimate EEG Source-Space Networks: A Comparative Simulation-Based Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3590-3593. [PMID: 36086114 DOI: 10.1109/embc48229.2022.9871047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Along with the study of the brain activity evoked by external stimuli, an important advance in current neuroscience involves understanding the spontaneous brain activity that occurs during resting conditions. Interestingly, the identification of the connectivity patterns in "resting-state" has been the subject of a great number of electrophysiology-based studies. In this context, the Electroencephalography (EEG) source connectivity method enables estimating resting-state cortical networks from scalp-EEG recordings. However, there is still no consensus over a unified pipeline adapted in all cases (e.g., type of task, a priori on studied networks) and numerous methodological questions remain unanswered. In order to address this problem, we simulated, using neural mass models, EEG data corresponding to the default mode network (DMN), the most widely studied resting-state network, and tested the effect of different channel densities, two inverse solutions and two functional connectivity measures on the correspondence between the reconstructed networks and the reference networks. Results showed that increasing the number of electrodes enhances the accuracy of the network reconstruction, and that eLORETA/PLV led to better accuracy than other inverse solution/connectivity measure combinations in terms of the correlation between reconstructed and reference connectivity matrices. This work has a wide range of implications in the field of electrophysiology connectomics, and is a step towards a convergence and standardization of approaches in this emerging field.
Collapse
|
8
|
Manomaisaowapak P, Nartkulpat A, Songsiri J. Granger Causality Inference in EEG Source Connectivity Analysis: A State-Space Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3146-3156. [PMID: 34310324 DOI: 10.1109/tnnls.2021.3096642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article addresses the problem of estimating brain effective connectivity from electroencephalogram (EEG) signals using a Granger causality (GC) characterized on state-space models, extended from the conventional vector autoregressive (VAR) process. The scheme involves two main steps: model estimation and model inference to estimate brain connectivity. The model estimation performs a subspace identification and active source selection based on group-norm regularized least-squares. The model inference relies on the concept of state-space GC that requires solving a Riccati equation for the covariance of estimation error. We verify the performance on simulated datasets that represent realistic human brain activities under several conditions, including percentages and location of active sources, and the number of EEG electrodes. Our model's accuracy in estimating connectivity is compared with a two-stage approach using source reconstructions and a VAR-based Granger analysis. Our method achieved better performances than the two-stage approach under the assumptions that the true source dynamics are sparse and generated from state-space models. When the method was applied to a real EEG SSVEP dataset, the temporal lobe was found to be a mediating connection between the temporal and occipital areas, which agreed with findings in previous studies.
Collapse
|
9
|
Putzolu M, Samogin J, Cosentino C, Mezzarobba S, Bonassi G, Lagravinese G, Vato A, Mantini D, Avanzino L, Pelosin E. Neural oscillations during motor imagery of complex gait: an HdEEG study. Sci Rep 2022; 12:4314. [PMID: 35279682 PMCID: PMC8918338 DOI: 10.1038/s41598-022-07511-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/20/2022] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to investigate differences between usual and complex gait motor imagery (MI) task in healthy subjects using high-density electroencephalography (hdEEG) with a MI protocol. We characterized the spatial distribution of α- and β-bands oscillations extracted from hdEEG signals recorded during MI of usual walking (UW) and walking by avoiding an obstacle (Dual-Task, DT). We applied a source localization algorithm to brain regions selected from a large cortical-subcortical network, and then we analyzed α and β bands Event-Related Desynchronizations (ERDs). Nineteen healthy subjects visually imagined walking on a path with (DT) and without (UW) obstacles. Results showed in both gait MI tasks, α- and β-band ERDs in a large cortical-subcortical network encompassing mostly frontal and parietal regions. In most of the regions, we found α- and β-band ERDs in the DT compared with the UW condition. Finally, in the β band, significant correlations emerged between ERDs and scores in imagery ability tests. Overall we detected MI gait-related α- and β-band oscillations in cortical and subcortical areas and significant differences between UW and DT MI conditions. A better understanding of gait neural correlates may lead to a better knowledge of pathophysiology of gait disturbances in neurological diseases.
Collapse
Affiliation(s)
- Martina Putzolu
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Carola Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Susanna Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, ASL4, Azienda Sanitaria Locale Chiavarese, Chiavari, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Ospedale Policlinico San Martino, IRCCS, 16132, Genoa, Italy
| | - Alessandro Vato
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, USA
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Laura Avanzino
- Ospedale Policlinico San Martino, IRCCS, 16132, Genoa, Italy.
- Section of Human Physiology, Department of Experimental Medicine (DIMES), University of Genoa, 16132, Genoa, Italy.
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Ospedale Policlinico San Martino, IRCCS, 16132, Genoa, Italy
| |
Collapse
|
10
|
Neural Networks for Directed Connectivity Estimation in Source-Reconstructed EEG Data. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Directed connectivity between brain sources identified from scalp electroencephalography (EEG) can shed light on the brain’s information flows and provide a biomarker of neurological disorders. However, as volume conductance results in scalp activity being a mix of activities originating from multiple sources, the correct interpretation of their connectivity is a formidable challenge despite source localization being applied with some success. Traditional connectivity approaches rely on statistical assumptions that usually do not hold for EEG, calling for a model-free approach. We investigated several types of Artificial Neural Networks in estimating Directed Connectivity between Reconstructed EEG Sources and assessed their accuracy with respect to several ground truths. We show that a Long Short-Term Memory neural network with Non-Uniform Embedding yields the most promising results due to its relative robustness to differing dipole locations. We conclude that certain network architectures can compete with the already established methods for brain connectivity analysis.
Collapse
|
11
|
de Borman A, Vespa S, Absil PA, El Tahry R. Estimation of seizure onset zone from ictal scalp EEG using independent component analysis in extratemporal lobe epilepsy. J Neural Eng 2022; 19. [PMID: 35172295 DOI: 10.1088/1741-2552/ac55ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The purpose of this study is to localize the seizure onset zone of patients suffering from drug-resistant epilepsy. During the last two decades, multiple studies proposed the use of Independent Component Analysis (ICA) to analyze ictal electroencephalogram (EEG) recordings. This study aims at evaluating ICA potential with quantitative measurements. In particular, we address the challenging step where the components extracted by ICA of an ictal nature must be selected. APPROACH We considered a cohort of 10 patients suffering from extratemporal lobe epilepsy who were rendered seizure-free after surgery. Different sets of pre-processing parameters were compared and component features were explored to help distinguish ictal components from others. Quantitative measurements were implemented to determine whether some of the components returned by ICA were located within the resection zone and thus likely to be ictal. Finally, an assistance to the component selection was proposed based on the implemented features. MAIN RESULTS For every seizure, at least one component returned by ICA was localized within the resection zone, with the optimal pre-processing parameters. Three features were found to distinguish components localized within the resection zone: the dispersion of their active brain sources, the ictal rhythm power and the contribution to the EEG variance. Using the implemented component selection assistance based on the features, the probability that the first proposed component yields an accurate estimation reaches 51.43% (without assistance: 24.74%). The accuracy reaches 80% when considering the best result within the first five components. SIGNIFICANCE This study confirms the utility of ICA for ictal EEG analysis in extratemporal lobe epilepsy, and suggests relevant features to analyze the components returned by ICA. A component selection assistance is proposed to guide clinicians in their choice for ictal components.
Collapse
Affiliation(s)
- Aurélie de Borman
- ICTEAM, Université catholique de Louvain, Avenue Georges Lemaitre 4, Louvain-la-Neuve, 1348, BELGIUM
| | - Simone Vespa
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Avenue Mounier 53 bte B1.53.02, Louvain-la-Neuve, 1348, BELGIUM
| | - Pierre-Antoine Absil
- ICTEAM, Université catholique de Louvain, Avenue Georges Lemaître 4 bte L4.05.01, Louvain-la-Neuve, 1348, BELGIUM
| | - Riëm El Tahry
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Avenue Mounier 53 bte B1.53.02, Louvain-la-Neuve, 1348, BELGIUM
| |
Collapse
|
12
|
Optimizing EEG Source Reconstruction with Concurrent fMRI-Derived Spatial Priors. Brain Topogr 2022; 35:282-301. [PMID: 35142957 PMCID: PMC9098592 DOI: 10.1007/s10548-022-00891-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
Reconstructing EEG sources involves a complex pipeline, with the inverse problem being the most challenging. Multiple inversion algorithms are being continuously developed, aiming to tackle the non-uniqueness of this problem, which has been shown to be partially circumvented by including prior information in the inverse models. Despite a few efforts, there are still current and persistent controversies regarding the inversion algorithm of choice and the optimal set of spatial priors to be included in the inversion models. The use of simultaneous EEG-fMRI data is one approach to tackle this problem. The spatial resolution of fMRI makes fMRI derived spatial priors very convenient for EEG reconstruction, however, only task activation maps and resting-state networks (RSNs) have been explored so far, overlooking the recent, but already accepted, notion that brain networks exhibit dynamic functional connectivity fluctuations. The lack of a systematic comparison between different source reconstruction algorithms, considering potentially more brain-informative priors such as fMRI, motivates the search for better reconstruction models. Using simultaneous EEG-fMRI data, here we compared four different inversion algorithms (minimum norm, MN; low resolution electromagnetic tomography, LORETA; empirical Bayes beamformer, EBB; and multiple sparse priors, MSP) under a Bayesian framework (as implemented in SPM), each with three different sets of priors consisting of: (1) those specific to the algorithm; (2) those specific to the algorithm plus fMRI task activation maps and RSNs; and (3) those specific to the algorithm plus fMRI task activation maps and RSNs and network modules of task-related dFC states estimated from the dFC fluctuations. The quality of the reconstructed EEG sources was quantified in terms of model-based metrics, namely the expectation of the posterior probability P(model|data) and variance explained of the inversion models, and the overlap/proportion of brain regions known to be involved in the visual perception tasks that the participants were submitted to, and RSN templates, with/within EEG source components. Model-based metrics suggested that model parsimony is preferred, with the combination MSP and priors specific to this algorithm exhibiting the best performance. However, optimal overlap/proportion values were found using EBB and priors specific to this algorithm and fMRI task activation maps and RSNs or MSP and considering all the priors (algorithm priors, fMRI task activation maps and RSNs and dFC state modules), respectively, indicating that fMRI spatial priors, including dFC state modules, might contain useful information to recover EEG source components reflecting neuronal activity of interest. Our main results show that providing fMRI spatial derived priors that reflect the dynamics of the brain might be useful to map neuronal activity more accurately from EEG-fMRI. Furthermore, this work paves the way towards a more informative selection of the optimal EEG source reconstruction approach, which may be critical in future studies.
Collapse
|
13
|
Emotion discrimination using source connectivity analysis based on dynamic ROI identification. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Pascucci D, Rubega M, Rué-Queralt J, Tourbier S, Hagmann P, Plomp G. Structure supports function: Informing directed and dynamic functional connectivity with anatomical priors. Netw Neurosci 2022; 6:401-419. [PMID: 35733424 PMCID: PMC9205420 DOI: 10.1162/netn_a_00218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
The dynamic repertoire of functional brain networks is constrained by the underlying topology of structural connections. Despite this intrinsic relationship between structural connectivity (SC) and functional connectivity (FC), integrative and multimodal approaches to combine the two remain limited. Here, we propose a new adaptive filter for estimating dynamic and directed FC using structural connectivity information as priors. We tested the filter in rat epicranial recordings and human event-related EEG data, using SC priors from a meta-analysis of tracer studies and diffusion tensor imaging metrics, respectively. We show that, particularly under conditions of low signal-to-noise ratio, SC priors can help to refine estimates of directed FC, promoting sparse functional networks that combine information from structure and function. In addition, the proposed filter provides intrinsic protection against SC-related false negatives, as well as robustness against false positives, representing a valuable new tool for multimodal imaging in the context of dynamic and directed FC analysis.
Collapse
Affiliation(s)
- David Pascucci
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland
| | - Maria Rubega
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Joan Rué-Queralt
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-SUNIL), Lausanne, Switzerland
| | - Sebastien Tourbier
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-SUNIL), Lausanne, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-SUNIL), Lausanne, Switzerland
| | - Gijs Plomp
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
15
|
Pagnotta MF, Pascucci D, Plomp G. Selective attention involves a feature-specific sequential release from inhibitory gating. Neuroimage 2021; 246:118782. [PMID: 34879253 DOI: 10.1016/j.neuroimage.2021.118782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 11/18/2022] Open
Abstract
Selective attention is a fundamental cognitive mechanism that allows our brain to preferentially process relevant sensory information, while filtering out distracting information. Attention is thought to flexibly gate the communication of irrelevant information through top-down alpha-rhythmic (8-12 Hz) functional connections, which influence early visual processing. However, the dynamic effects of top-down influence on downstream visual processing remain unknown. Here, we used electroencephalography to investigate local and network effects of selective attention while subjects attended to distinct features of identical stimuli. We found that attention-related changes in the functional brain network organization emerge shortly after stimulus onset, accompanied by an overall decrease of functional connectivity. Signatures of attentional selection were evident from a sequential release from alpha-band parietal gating in feature-selective areas. The directed connectivity paths and temporal evolution of this release from gating were consistent with the sensory effect of each feature, providing a neural basis for how visual processing quickly prioritizes relevant information in functionally specialized areas.
Collapse
Affiliation(s)
- Mattia F Pagnotta
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland.
| | - David Pascucci
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland; Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gijs Plomp
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Faes A, de Borman A, Van Hulle MM. Source space reduction for eLORETA. J Neural Eng 2021; 18. [PMID: 34592724 DOI: 10.1088/1741-2552/ac2bb6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Objective.We introduce Sparse exact low resolution electromagnetic tomography (eLORETA), a novel method for estimating a nonparametric solution to the source localization problem. Its goal is to generate a sparser solution compared to other source localization methods including eLORETA while benefitting from the latter's superior source localization accuracy.Approach.Sparse eLORETA starts by reducing the source space of the Lead Field Matrix using structured sparse Bayesian learning from which a Reduced Lead Field Matrix is constructed, which is used as input to eLORETA.Main results.With Sparse eLORETA, source sparsity can be traded against signal fidelity; the proposed optimum is shown to yield a much sparser solution than eLORETA's with only a slight loss in signal fidelity.Significance.When pursuing a data-driven approach, for cases where it is difficult to choose specific regions of interest, or when subsequently a connectivity analysis is performed, source space reduction could prove beneficial.
Collapse
Affiliation(s)
- A Faes
- KU Leuven-University of Leuven, Department of Neurosciences, Laboratory for Neuro- & Psychophysiology, B-3000 Leuven, Belgium
| | - A de Borman
- KU Leuven-University of Leuven, Department of Neurosciences, Laboratory for Neuro- & Psychophysiology, B-3000 Leuven, Belgium
| | - M M Van Hulle
- KU Leuven-University of Leuven, Department of Neurosciences, Laboratory for Neuro- & Psychophysiology, B-3000 Leuven, Belgium
| |
Collapse
|
17
|
Tait L, Özkan A, Szul MJ, Zhang J. A systematic evaluation of source reconstruction of resting MEG of the human brain with a new high-resolution atlas: Performance, precision, and parcellation. Hum Brain Mapp 2021; 42:4685-4707. [PMID: 34219311 PMCID: PMC8410546 DOI: 10.1002/hbm.25578] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022] Open
Abstract
Noninvasive functional neuroimaging of the human brain can give crucial insight into the mechanisms that underpin healthy cognition and neurological disorders. Magnetoencephalography (MEG) measures extracranial magnetic fields originating from neuronal activity with high temporal resolution, but requires source reconstruction to make neuroanatomical inferences from these signals. Many source reconstruction algorithms are available, and have been widely evaluated in the context of localizing task-evoked activities. However, no consensus yet exists on the optimum algorithm for resting-state data. Here, we evaluated the performance of six commonly-used source reconstruction algorithms based on minimum-norm and beamforming estimates. Using human resting-state MEG, we compared the algorithms using quantitative metrics, including resolution properties of inverse solutions and explained variance in sensor-level data. Next, we proposed a data-driven approach to reduce the atlas from the Human Connectome Project's multi-modal parcellation of the human cortex based on metrics such as MEG signal-to-noise-ratio and resting-state functional connectivity gradients. This procedure produced a reduced cortical atlas with 230 regions, optimized to match the spatial resolution and the rank of MEG data from the current generation of MEG scanners. Our results show that there is no "one size fits all" algorithm, and make recommendations on the appropriate algorithms depending on the data and aimed analyses. Our comprehensive comparisons and recommendations can serve as a guide for choosing appropriate methodologies in future studies of resting-state MEG.
Collapse
Affiliation(s)
- Luke Tait
- Cardiff University Brain Research Imaging CentreCardiff UniversityCardiff
| | - Ayşegül Özkan
- Cardiff University Brain Research Imaging CentreCardiff UniversityCardiff
| | - Maciej J. Szul
- Cardiff University Brain Research Imaging CentreCardiff UniversityCardiff
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging CentreCardiff UniversityCardiff
| |
Collapse
|
18
|
Zhang C, Sun L, Cong F, Ristaniemi T. Spatiotemporal Dynamical Analysis of Brain Activity During Mental Fatigue Process. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.2976610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Ojeda A, Kreutz-Delgado K, Mishra J. Bridging M/EEG Source Imaging and Independent Component Analysis Frameworks Using Biologically Inspired Sparsity Priors. Neural Comput 2021; 33:2408-2438. [PMID: 34412115 DOI: 10.1162/neco_a_01415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/24/2021] [Indexed: 11/04/2022]
Abstract
Electromagnetic source imaging (ESI) and independent component analysis (ICA) are two popular and apparently dissimilar frameworks for M/EEG analysis. This letter shows that the two frameworks can be linked by choosing biologically inspired source sparsity priors. We demonstrate that ESI carried out by the sparse Bayesian learning (SBL) algorithm yields source configurations composed of a few active regions that are also maximally independent from one another. In addition, we extend the standard SBL approach to source imaging in two important directions. First, we augment the generative model of M/EEG to include artifactual sources. Second, we modify SBL to allow for efficient model inversion with sequential data. We refer to this new algorithm as recursive SBL (RSBL), a source estimation filter with potential for online and offline imaging applications. We use simulated data to verify that RSBL can accurately estimate and demix cortical and artifactual sources under different noise conditions. Finally, we show that on real error-related EEG data, RSBL can yield single-trial source estimates in agreement with the experimental literature. Overall, by demonstrating that ESI can produce maximally independent sources while simultaneously localizing them in cortical space, we bridge the gap between the ESI and ICA frameworks for M/EEG analysis.
Collapse
Affiliation(s)
- Alejandro Ojeda
- Neural Engineering and Translation Labs, Department of Psychiatry, and Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093 U.S.A. alejo.ojeda83@gmail dot com
| | - Kenneth Kreutz-Delgado
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093 U.S.A.
| | - Jyoti Mishra
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California San Diego, CA 92093, U.S.A.
| |
Collapse
|
20
|
Allouch S, Yochum M, Kabbara A, Duprez J, Khalil M, Wendling F, Hassan M, Modolo J. Mean-Field Modeling of Brain-Scale Dynamics for the Evaluation of EEG Source-Space Networks. Brain Topogr 2021; 35:54-65. [PMID: 34244910 DOI: 10.1007/s10548-021-00859-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Understanding the dynamics of brain-scale functional networks at rest and during cognitive tasks is the subject of intense research efforts to unveil fundamental principles of brain functions. To estimate these large-scale brain networks, the emergent method called "electroencephalography (EEG) source connectivity" has generated increasing interest in the network neuroscience community, due to its ability to identify cortical brain networks with satisfactory spatio-temporal resolution, while reducing mixing and volume conduction effects. However, no consensus has been reached yet regarding a unified EEG source connectivity pipeline, and several methodological issues have to be carefully accounted to avoid pitfalls. Thus, a validation toolbox that provides flexible "ground truth" models is needed for an objective methods/parameters evaluation and, thereby an optimization of the EEG source connectivity pipeline. In this paper, we show how a recently developed large-scale model of brain-scale activity, named COALIA, can provide to some extent such ground truth by providing realistic simulations of source-level and scalp-level activity. Using a bottom-up approach, the model bridges cortical micro-circuitry and large-scale network dynamics. Here, we provide an example of the potential use of COALIA to analyze, in the context of epileptiform activity, the effect of three key factors involved in the "EEG source connectivity" pipeline: (i) EEG sensors density, (ii) algorithm used to solve the inverse problem, and (iii) functional connectivity measure. Results showed that a high electrode density (at least 64 channels) is required to accurately estimate cortical networks. Regarding the inverse solution/connectivity measure combination, the best performance at high electrode density was obtained using the weighted minimum norm estimate (wMNE) combined with the weighted phase lag index (wPLI). Although those results are specific to the considered aforementioned context (epileptiform activity), we believe that this model-based approach can be successfully applied to other experimental questions/contexts. We aim at presenting a proof-of-concept of the interest of COALIA in the network neuroscience field, and its potential use in optimizing the EEG source-space network estimation pipeline.
Collapse
Affiliation(s)
- Sahar Allouch
- Univ Rennes, LTSI - INSERM U1099, 35000, Rennes, France. .,Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon.
| | - Maxime Yochum
- Univ Rennes, LTSI - INSERM U1099, 35000, Rennes, France
| | - Aya Kabbara
- Univ Rennes, LTSI - INSERM U1099, 35000, Rennes, France
| | - Joan Duprez
- Univ Rennes, LTSI - INSERM U1099, 35000, Rennes, France
| | - Mohamad Khalil
- Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon.,CRSI Research Center, Faculty of Engineering, Lebanese University, Beirut, Lebanon
| | | | | | - Julien Modolo
- Univ Rennes, LTSI - INSERM U1099, 35000, Rennes, France
| |
Collapse
|
21
|
Anzolin A, Toppi J, Petti M, Cincotti F, Astolfi L. SEED-G: Simulated EEG Data Generator for Testing Connectivity Algorithms. SENSORS (BASEL, SWITZERLAND) 2021; 21:3632. [PMID: 34071124 PMCID: PMC8197139 DOI: 10.3390/s21113632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
EEG signals are widely used to estimate brain circuits associated with specific tasks and cognitive processes. The testing of connectivity estimators is still an open issue because of the lack of a ground-truth in real data. Existing solutions such as the generation of simulated data based on a manually imposed connectivity pattern or mass oscillators can model only a few real cases with limited number of signals and spectral properties that do not reflect those of real brain activity. Furthermore, the generation of time series reproducing non-ideal and non-stationary ground-truth models is still missing. In this work, we present the SEED-G toolbox for the generation of pseudo-EEG data with imposed connectivity patterns, overcoming the existing limitations and enabling control of several parameters for data simulation according to the user's needs. We first described the toolbox including guidelines for its correct use and then we tested its performances showing how, in a wide range of conditions, datasets composed by up to 60 time series were successfully generated in less than 5 s and with spectral features similar to real data. Then, SEED-G is employed for studying the effect of inter-trial variability Partial Directed Coherence (PDC) estimates, confirming its robustness.
Collapse
Affiliation(s)
- Alessandra Anzolin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy; (J.T.); (M.P.); (F.C.); (L.A.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy; (J.T.); (M.P.); (F.C.); (L.A.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Manuela Petti
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy; (J.T.); (M.P.); (F.C.); (L.A.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Febo Cincotti
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy; (J.T.); (M.P.); (F.C.); (L.A.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy; (J.T.); (M.P.); (F.C.); (L.A.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
22
|
Abstract
The study of functional connectivity from magnetoecenphalographic (MEG) data consists of quantifying the statistical dependencies among time series describing the activity of different neural sources from the magnetic field recorded outside the scalp. This problem can be addressed by utilizing connectivity measures whose computation in the frequency domain often relies on the evaluation of the cross-power spectrum of the neural time series estimated by solving the MEG inverse problem. Recent studies have focused on the optimal determination of the cross-power spectrum in the framework of regularization theory for ill-posed inverse problems, providing indications that, rather surprisingly, the regularization process that leads to the optimal estimate of the neural activity does not lead to the optimal estimate of the corresponding functional connectivity. Along these lines, the present paper utilizes synthetic time series simulating the neural activity recorded by an MEG device to show that the regularization of the cross-power spectrum is significantly correlated with the signal-to-noise ratio of the measurements and that, as a consequence, this regularization correspondingly depends on the spectral complexity of the neural activity.
Collapse
|
23
|
Ghosh P, Roy D, Banerjee A. Organization of directed functional connectivity among nodes of ventral attention network reveals the common network mechanisms underlying saliency processing across distinct spatial and spatio-temporal scales. Neuroimage 2021; 231:117869. [PMID: 33607279 DOI: 10.1016/j.neuroimage.2021.117869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
Previous neuroimaging studies have extensively evaluated the structural and functional connectivity of the Ventral Attention Network (VAN) and its role in reorienting attention in the presence of a salient (pop-out) stimulus. However, a detailed understanding of the "directed" functional connectivity within the VAN during the process of reorientation remains elusive. Functional magnetic resonance imaging (fMRI) studies have not adequately addressed this issue due to a lack of appropriate temporal resolution required to capture this dynamic process. The present study investigates the neural changes associated with processing salient distractors operating at a slow and a fast time scale using custom-designed experiment involving visual search on static images and dynamic motion tracking, respectively. We recorded high-density scalp electroencephalography (EEG) from healthy human volunteers, obtained saliency-specific behavioral and spectral changes during the tasks, localized the sources underlying the spectral power modulations with individual-specific structural MRI scans, reconstructed the waveforms of the sources and finally, investigated the causal relationships between the sources using spectral Granger-Geweke Causality (GGC). We found that salient stimuli processing, across tasks with varying spatio-temporal complexities, involves a characteristic modulation in the alpha frequency band which is executed primarily by the nodes of the VAN constituting the temporo-parietal junction (TPJ), the insula and the lateral prefrontal cortex (lPFC). The directed functional connectivity results further revealed the presence of bidirectional interactions among prominent nodes of right-lateralized VAN, corresponding only to the trials with saliency. Thus, our study elucidates the invariant network mechanisms for processing saliency in visual attention tasks across diverse time-scales.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, NH-8, Gurgaon, Haryana 122052, India.
| | - Dipanjan Roy
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, NH-8, Gurgaon, Haryana 122052, India
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, NH-8, Gurgaon, Haryana 122052, India
| |
Collapse
|
24
|
Koutlis C, Kimiskidis VK, Kugiumtzis D. Comparison of Causality Network Estimation in the Sensor and Source Space: Simulation and Application on EEG. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:706487. [PMID: 36925583 PMCID: PMC10013050 DOI: 10.3389/fnetp.2021.706487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022]
Abstract
The usage of methods for the estimation of the true underlying connectivity among the observed variables of a system is increasing, especially in the domain of neuroscience. Granger causality and similar concepts are employed for the estimation of the brain network from electroencephalogram (EEG) data. Also source localization techniques, such as the standardized low resolution electromagnetic tomography (sLORETA), are widely used for obtaining more reliable data in the source space. In this work, connectivity structures are estimated in the sensor and in the source space making use of the sLORETA transformation for simulated and for EEG data with episodes of spontaneous epileptiform discharges (ED). From the comparative simulation study on high-dimensional coupled stochastic and deterministic systems originating in the sensor space, we conclude that the structure of the estimated causality networks differs in the sensor space and in the source space. Moreover, different network types, such as random, small-world and scale-free, can be better discriminated on the basis of the data in the original sensor space than on the transformed data in the source space. Similarly, in EEG epochs containing epileptiform discharges, the discriminative ability of network topological indices was significantly better in the sensor compared to the source level. In conclusion, causality networks constructed at the sensor and source level, for both simulated and empirical data, exhibit significant structural differences. These observations indicate that further studies are warranted in order to clarify the exact relationship between data registered in the sensor and source space.
Collapse
Affiliation(s)
- Christos Koutlis
- Information Technologies Institute, Centre of Research and Technology Hellas, Thessaloniki, Greece
| | - Vasilios K Kimiskidis
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitris Kugiumtzis
- Division of Electronics and Computing, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
25
|
On the Variability of Functional Connectivity and Network Measures in Source-Reconstructed EEG Time-Series. ENTROPY 2020; 23:e23010005. [PMID: 33375007 PMCID: PMC7822028 DOI: 10.3390/e23010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
The idea of estimating the statistical interdependence among (interacting) brain regions has motivated numerous researchers to investigate how the resulting connectivity patterns and networks may organize themselves under any conceivable scenario. Even though this idea has developed beyond its initial stages, its practical application is still far away from being widespread. One concurrent cause may be related to the proliferation of different approaches that aim to catch the underlying statistical interdependence among the (interacting) units. This issue has probably contributed to hindering comparisons among different studies. Not only do all these approaches go under the same name (functional connectivity), but they have often been tested and validated using different methods, therefore, making it difficult to understand to what extent they are similar or not. In this study, we aim to compare a set of different approaches commonly used to estimate the functional connectivity on a public EEG dataset representing a possible realistic scenario. As expected, our results show that source-level EEG connectivity estimates and the derived network measures, even though pointing to the same direction, may display substantial dependency on the (often arbitrary) choice of the selected connectivity metric and thresholding approach. In our opinion, the observed variability reflects the ambiguity and concern that should always be discussed when reporting findings based on any connectivity metric.
Collapse
|
26
|
Nested oscillations and brain connectivity during sequential stages of feature-based attention. Neuroimage 2020; 223:117354. [PMID: 32916284 DOI: 10.1016/j.neuroimage.2020.117354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/10/2020] [Accepted: 09/05/2020] [Indexed: 12/25/2022] Open
Abstract
Brain mechanisms of visual selective attention involve both local and network-level activity changes at specific oscillatory rhythms, but their interplay remains poorly explored. Here, we investigate anticipatory and reactive effects of feature-based attention using separate fMRI and EEG recordings, while participants attended to one of two spatially overlapping visual features (motion and orientation). We focused on EEG source analysis of local neuronal rhythms and nested oscillations and on graph analysis of connectivity changes in a network of fMRI-defined regions of interest, and characterized a cascade of attentional effects at multiple spatial scales. We discuss how the results may reconcile several theories of selective attention, by showing how β rhythms support anticipatory information routing through increased network efficiency, while reactive α-band desynchronization patterns and increased α-γ coupling in task-specific sensory areas mediate stimulus-evoked processing of task-relevant signals.
Collapse
|
27
|
Nentwich M, Ai L, Madsen J, Telesford QK, Haufe S, Milham MP, Parra LC. Functional connectivity of EEG is subject-specific, associated with phenotype, and different from fMRI. Neuroimage 2020; 218:117001. [PMID: 32492509 PMCID: PMC7457369 DOI: 10.1016/j.neuroimage.2020.117001] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
A variety of psychiatric, behavioral and cognitive phenotypes have been linked to brain ''functional connectivity'' -- the pattern of correlation observed between different brain regions. Most commonly assessed using functional magnetic resonance imaging (fMRI), here, we investigate the connectivity-phenotype associations with functional connectivity measured with electroencephalography (EEG), using phase-coupling. We analyzed data from the publicly available Healthy Brain Network Biobank. This database compiles a growing sample of children and adolescents, currently encompassing 1657 individuals. Among a variety of assessment instruments we focus on ten phenotypic and additional demographic measures that capture most of the variance in this sample. The largest effect sizes are found for age and sex for both fMRI and EEG. We replicate previous findings of an association of Intelligence Quotient (IQ) and Attention Deficit Hyperactivity Disorder (ADHD) with the pattern of fMRI functional connectivity. We also find an association with socioeconomic status, anxiety and the Child Behavior Checklist Score. For EEG we find a significant connectivity-phenotype relationship with IQ. The actual spatial patterns of functional connectivity are quite different between fMRI and source-space EEG. However, within EEG we observe clusters of functional connectivity that are consistent across frequency bands. Additionally we analyzed reproducibility of functional connectivity. We compare connectivity obtained with different tasks, including resting state, a video and a visual flicker task. For both EEG and fMRI the variation between tasks was smaller than the variability observed between subjects. We also found an increase of reliability with increasing frequency of the EEG, and increased sampling duration. We conclude that, while the patterns of functional connectivity are distinct between fMRI and phase-coupling of EEG, they are nonetheless similar in their robustness to the task, and similar in that idiosyncratic patterns of connectivity predict individual phenotypes.
Collapse
Affiliation(s)
- Maximilian Nentwich
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Lei Ai
- Center for the Developing Brain, The Child Mind Institute, New York, NY, USA
| | - Jens Madsen
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Qawi K Telesford
- Center for Biomedical Imaging and Neuromodulation, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Stefan Haufe
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Michael P Milham
- Center for the Developing Brain, The Child Mind Institute, New York, NY, USA; Center for Biomedical Imaging and Neuromodulation, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
28
|
Samogin J, Marino M, Porcaro C, Wenderoth N, Dupont P, Swinnen SP, Mantini D. Frequency-dependent functional connectivity in resting state networks. Hum Brain Mapp 2020; 41:5187-5198. [PMID: 32840936 PMCID: PMC7670639 DOI: 10.1002/hbm.25184] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022] Open
Abstract
Functional magnetic resonance imaging studies have documented the resting human brain to be functionally organized in multiple large‐scale networks, called resting‐state networks (RSNs). Other brain imaging techniques, such as electroencephalography (EEG) and magnetoencephalography (MEG), have been used for investigating the electrophysiological basis of RSNs. To date, it is largely unclear how neural oscillations measured with EEG and MEG are related to functional connectivity in the resting state. In addition, it remains to be elucidated whether and how the observed neural oscillations are related to the spatial distribution of the network nodes over the cortex. To address these questions, we examined frequency‐dependent functional connectivity between the main nodes of several RSNs, spanning large part of the cortex. We estimated connectivity using band‐limited power correlations from high‐density EEG data collected in healthy participants. We observed that functional interactions within RSNs are characterized by a specific combination of neuronal oscillations in the alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–80 Hz) bands, which highly depend on the position of the network nodes. This finding may contribute to a better understanding of the mechanisms through which neural oscillations support functional connectivity in the brain.
Collapse
Affiliation(s)
- Jessica Samogin
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium
| | - Marco Marino
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Camillo Porcaro
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK.,Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy.,Research in Advanced Neurorehabilitation, S. Anna Istitute, Crotone, Italy
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Patrick Dupont
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
29
|
Pascucci D, Rubega M, Plomp G. Modeling time-varying brain networks with a self-tuning optimized Kalman filter. PLoS Comput Biol 2020; 16:e1007566. [PMID: 32804971 PMCID: PMC7451990 DOI: 10.1371/journal.pcbi.1007566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/27/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Brain networks are complex dynamical systems in which directed interactions between different areas evolve at the sub-second scale of sensory, cognitive and motor processes. Due to the highly non-stationary nature of neural signals and their unknown noise components, however, modeling dynamic brain networks has remained one of the major challenges in contemporary neuroscience. Here, we present a new algorithm based on an innovative formulation of the Kalman filter that is optimized for tracking rapidly evolving patterns of directed functional connectivity under unknown noise conditions. The Self-Tuning Optimized Kalman filter (STOK) is a novel adaptive filter that embeds a self-tuning memory decay and a recursive regularization to guarantee high network tracking accuracy, temporal precision and robustness to noise. To validate the proposed algorithm, we performed an extensive comparison against the classical Kalman filter, in both realistic surrogate networks and real electroencephalography (EEG) data. In both simulations and real data, we show that the STOK filter estimates time-frequency patterns of directed connectivity with significantly superior performance. The advantages of the STOK filter were even clearer in real EEG data, where the algorithm recovered latent structures of dynamic connectivity from epicranial EEG recordings in rats and human visual evoked potentials, in excellent agreement with known physiology. These results establish the STOK filter as a powerful tool for modeling dynamic network structures in biological systems, with the potential to yield new insights into the rapid evolution of network states from which brain functions emerge. During normal behavior, brains transition between functional network states several times per second. This allows humans to quickly read a sentence, and a frog to catch a fly. Understanding these fast network dynamics is fundamental to understanding how brains work, but up to now it has proven very difficult to model fast brain dynamics for various methodological reasons. To overcome these difficulties, we designed a new Kalman filter (STOK) by innovating on previous solutions from control theory and state-space modelling. We show that STOK accurately models fast network changes in simulations and real neural data, making it an essential new tool for modelling fast brain networks in the time and frequency domain.
Collapse
Affiliation(s)
- D Pascucci
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland.,Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - M Rubega
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland.,Department of Neurosciences, University of Padova, Padova, Italy
| | - G Plomp
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
30
|
Demuru M, La Cava SM, Pani SM, Fraschini M. A comparison between power spectral density and network metrics: An EEG study. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
van Mierlo P, Höller Y, Focke NK, Vulliemoz S. Network Perspectives on Epilepsy Using EEG/MEG Source Connectivity. Front Neurol 2019; 10:721. [PMID: 31379703 PMCID: PMC6651209 DOI: 10.3389/fneur.2019.00721] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
The evolution of EEG/MEG source connectivity is both, a promising, and controversial advance in the characterization of epileptic brain activity. In this narrative review we elucidate the potential of this technology to provide an intuitive view of the epileptic network at its origin, the different brain regions involved in the epilepsy, without the limitation of electrodes at the scalp level. Several studies have confirmed the added value of using source connectivity to localize the seizure onset zone and irritative zone or to quantify the propagation of epileptic activity over time. It has been shown in pilot studies that source connectivity has the potential to obtain prognostic correlates, to assist in the diagnosis of the epilepsy type even in the absence of visually noticeable epileptic activity in the EEG/MEG, and to predict treatment outcome. Nevertheless, prospective validation studies in large and heterogeneous patient cohorts are still lacking and are needed to bring these techniques into clinical use. Moreover, the methodological approach is challenging, with several poorly examined parameters that most likely impact the resulting network patterns. These fundamental challenges affect all potential applications of EEG/MEG source connectivity analysis, be it in a resting, spiking, or ictal state, and also its application to cognitive activation of the eloquent area in presurgical evaluation. However, such method can allow unique insights into physiological and pathological brain functions and have great potential in (clinical) neuroscience.
Collapse
Affiliation(s)
- Pieter van Mierlo
- Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| | - Niels K Focke
- Clinical Neurophysiology, University Medicine Göttingen, Göttingen, Germany
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
A Parsimonious Granger Causality Formulation for Capturing Arbitrarily Long Multivariate Associations. ENTROPY 2019; 21:e21070629. [PMID: 33267342 PMCID: PMC7515122 DOI: 10.3390/e21070629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 01/19/2023]
Abstract
High-frequency neuroelectric signals like electroencephalography (EEG) or magnetoencephalography (MEG) provide a unique opportunity to infer causal relationships between local activity of brain areas. While causal inference is commonly performed through classical Granger causality (GC) based on multivariate autoregressive models, this method may encounter important limitations (e.g., data paucity) in the case of high dimensional data from densely connected systems like the brain. Additionally, physiological signals often present long-range dependencies which commonly require high autoregressive model orders/number of parameters. We present a generalization of autoregressive models for GC estimation based on Wiener–Volterra decompositions with Laguerre polynomials as basis functions. In this basis, the introduction of only one additional global parameter allows to capture arbitrary long dependencies without increasing model order, hence retaining model simplicity, linearity and ease of parameters estimation. We validate our method in synthetic data generated from families of complex, densely connected networks and demonstrate superior performance as compared to classical GC. Additionally, we apply our framework to studying the directed human brain connectome through MEG data from 89 subjects drawn from the Human Connectome Project (HCP) database, showing that it is able to reproduce current knowledge as well as to uncover previously unknown directed influences between cortical and limbic brain regions.
Collapse
|
33
|
Marinazzo D, Riera JJ, Marzetti L, Astolfi L, Yao D, Valdés Sosa PA. Controversies in EEG Source Imaging and Connectivity: Modeling, Validation, Benchmarking. Brain Topogr 2019; 32:527-529. [DOI: 10.1007/s10548-019-00709-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 11/30/2022]
|