1
|
Meunier M, Yammine A, Bettaieb A, Plenchette S. Nitroglycerin: a comprehensive review in cancer therapy. Cell Death Dis 2023; 14:323. [PMID: 37173331 PMCID: PMC10182021 DOI: 10.1038/s41419-023-05838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Nitroglycerin (NTG) is a prodrug that has long been used in clinical practice for the treatment of angina pectoris. The biotransformation of NTG and subsequent release of nitric oxide (NO) is responsible for its vasodilatating property. Because of the remarkable ambivalence of NO in cancer disease, either protumorigenic or antitumorigenic (partly dependent on low or high concentrations), harnessing the therapeutic potential of NTG has gain interest to improve standard therapies in oncology. Cancer therapeutic resistance remains the greatest challenge to overcome in order to improve the management of cancer patients. As a NO releasing agent, NTG has been the subject of several preclinical and clinical studies used in combinatorial anticancer therapy. Here, we provide an overview of the use of NTG in cancer therapy in order to foresee new potential therapeutic avenues.
Collapse
Affiliation(s)
- Mélina Meunier
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université de Bourgogne, Dijon, France
- LIIC, EPHE, PSL Research University, Paris, France
| | - Aline Yammine
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université de Bourgogne, Dijon, France
- LIIC, EPHE, PSL Research University, Paris, France
| | - Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université de Bourgogne, Dijon, France
- LIIC, EPHE, PSL Research University, Paris, France
| | - Stéphanie Plenchette
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université de Bourgogne, Dijon, France.
- LIIC, EPHE, PSL Research University, Paris, France.
| |
Collapse
|
2
|
Gu G, Chen C, Zhang S, Yin B, Wang J. Self-Assembly Dual-Responsive NO Donor Nanoparticles for Effective Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50682-50694. [PMID: 34668695 DOI: 10.1021/acsami.1c12646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug resistance and the serious side effects caused by classical chemotherapy drugs necessitate the development of novel targeted drug delivery systems. The high lipophilicity and short half-life of nitric oxide (NO), a gas with strong antitumor activity, make it difficult to reach the tumor site and result in a poor therapeutic effect in vivo. In order to overcome the deficiencies of the existing NO donors and NO delivery vehicles, a novel strategy was proposed to deliver NO for cancer chemotherapy by the prodrug dimer self-assembly nanoparticles of NO donors. Specifically, phenylsulfonylfuroxan (FZ) was chosen as the NO donor to synthesize the prodrug dimer precursor (FZ-SS-FZ) by disulfide linkages and ester bonds. The insertion of disulfide linkages promotes the self-assembly of FZ-SS-FZ in water. After this, the dual-responsive and tumor-targeting NO delivery system (FZ-SS-FZ@FA NPs) will finally be fabricated by further introducing folic acid on the surface of nanoparticles. FZ-SS-FZ can self-assemble to form uniform nanoparticles in water, which can effectively deliver NO to the tumor site and be uptaken by tumor cells, thus resulting in specific NO release in tumor cells and inducing tumor cell apoptosis. FZ-SS-FZ@FA NPs significantly improve the drug loading and delivery efficiencies of NO for chemotherapy, while enhancing its efficacy, providing a novel strategy for the tumor-targeted delivery of NO and at the same time laying a theoretical basis for the clinical translation of NO-based gas chemotherapy, opening up a new approach for cancer chemotherapy.
Collapse
Affiliation(s)
- Guolong Gu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Chen Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China
| | - Shichao Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China
- Institutes of Integrative Medicine, Fudan University, Shanghai 201203, People's Republic of China
| |
Collapse
|
3
|
Roberge CL, Kingsley DM, Faulkner DE, Sloat CJ, Wang L, Barroso M, Intes X, Corr DT. Non-Destructive Tumor Aggregate Morphology and Viability Quantification at Cellular Resolution, During Development and in Response to Drug. Acta Biomater 2020; 117:322-334. [PMID: 33007490 DOI: 10.1016/j.actbio.2020.09.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) tissue-engineered in vitro models, particularly multicellular spheroids and organoids, have become important tools to explore disease progression and guide the development of novel therapeutic strategies. These avascular constructs are particularly powerful in oncological research due to their ability to mimic several key aspects of in vivo tumors, such as 3D structure and pathophysiologic gradients. Advancement of spheroid models requires characterization of critical features (i.e., size, shape, cellular density, and viability) during model development, and in response to treatment. However, evaluation of these characteristics longitudinally, quantitatively and non-invasively remains a challenge. Herein, Optical Coherence Tomography (OCT) is used as a label-free tool to assess 3D morphologies and cellular densities of tumor spheroids generated via the liquid overlay technique. We utilize this quantitative tool to assess Matrigel's influence on spheroid morphologic development, finding that the absence of Matrigel produces flattened, disk-like aggregates rather than 3D spheroids with physiologically-relevant features. Furthermore, this technology is adapted to quantify cell number within tumor spheroids, and to discern between live and dead cells, to non-destructively provide valuable information on tissue/construct viability, as well as a proof-of-concept for longitudinal drug efficacy studies. Together, these findings demonstrate OCT as a promising noninvasive, quantitative, label-free, longitudinal and cell-based method that can assess development and drug response in 3D cellular aggregates at a mesoscopic scale.
Collapse
Affiliation(s)
- Cassandra L Roberge
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - David M Kingsley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - Denzel E Faulkner
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - Charles J Sloat
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - Ling Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| |
Collapse
|
4
|
Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, Tsakovska I, Zidar N, Fruttero R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat 2020; 50:100682. [PMID: 32087558 DOI: 10.1016/j.drup.2020.100682] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of biomedical research attracts great interest in the scientific community. The current review explores promising recent approaches that have been developed with the aim of circumventing or overcoming MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of its expression have proven to be the main mechanisms by which MDR can be surmounted. The use of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is currently being explored as a means to circumvent drug resistance. This strategy is based on the design of hybrid compounds that are obtained either by merging the structural features of separate drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can be achieved over the independent administration of the two individual components. However, it should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are described in this review, including the pharmaco-modulation of acridine, which is a well-known scaffold in the development of bioactive compounds, the use of natural compounds as means to reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell components. Finally, the outstanding potential of in silico structure-based methods as a means to evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this review. Structure-based design methods, which utilize 3D structural data of proteins and their complexes with ligands, are the most effective of the in silico methods available, as they provide a prediction regarding the interaction between transport proteins and their substrates and inhibitors. The recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed compounds, providing insight into their binding mode and directing possible rational modifications to prevent them from becoming P-gp drug substrates. In summary, although major efforts were invested in the search for new tools to combat drug resistant tumors, they all require further implementation and methodological development. Further investigation and progress in the abovementioned strategies will provide significant advances in the rational combat against cancer MDR.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Elena Gazzano
- Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Turin, Italy
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, C8 Building, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ilza Pajeva
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Ivanka Tsakovska
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
5
|
Gaseous signaling molecules and their application in resistant cancer treatment: from invisible to visible. Future Med Chem 2019; 11:323-336. [PMID: 30802141 DOI: 10.4155/fmc-2018-0403] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in cancer remains a critical obstacle for efficient chemotherapy. Many MDR reversal agents have been discovered but failed in clinical trials due to severe toxic effects. Gaseous signaling molecules (GSMs), such as oxygen, nitric oxide, hydrogen sulfide and carbon monoxide, play key roles in regulating cell biological function and MDR. Compared with other toxic chemosensitizing agents, GSMs are endogenous and biocompatible molecules with little side effects. Research show that GSM modulators, including pharmaceutical formulations of GSMs (combined with conventional chemotherapeutic drugs) and GSM-donors (small molecules with GSMs releasing property), can overcome or reverse MDR. This review discusses the roles of these four GSMs in modulating MDR, and summarizes GSMs modulators in treating cancers with drug resistance.
Collapse
|
6
|
Zhang C, Li Q, Zhao Y, Liu H, Song S, Zhao Y, Lin Q, Chang Y. Near-infrared light-mediated and nitric oxide-supplied nanospheres for enhanced synergistic thermo-chemotherapy. J Mater Chem B 2019; 7:548-555. [PMID: 32254788 DOI: 10.1039/c8tb02939c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synergistic thermo-chemotherapy based multiple stimuli-responsive drug delivery systems have achieved significant improvement of cancer curative effects compared with single modality treatment. Nevertheless, the efficacy of thermo-chemotherapy is often reduced in drug-resistant tumors and the therapy method is unexpectedly associated with potential toxicity by utilizing poorly degradable materials. Here, we report a simple approach to encapsulate three drug payloads into multi-sensitive and degradable nanospheres (SDC@NS) to achieve anticancer effects. SDC@NS comprise a photothermal agent (cypate), an anticancer agent (doxorubicin), and a nitric oxide donor (SNAP) to achieve controllable drugs release in high concentration glutathione or under near-infrared light (NIR) irradiation. Hyperthermia from NIR-mediated cypate can accelerate cancer cell apoptosis in vitro and tumor tissue ablation in vivo. Furthermore, our results also confirmed that the nitric oxide-based SDC@NS showed significant cytotoxicity compared to the nitric oxide absent group (denoted as DC@NS) and an enhanced chemotherapy effect in vivo. The photothermal effect and payloads can synchronously realize cancer therapy and provide a new insight into the enhanced synergistic therapeutic effect.
Collapse
Affiliation(s)
- Chuan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Minassian LM, Cotechini T, Huitema E, Graham CH. Hypoxia-Induced Resistance to Chemotherapy in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:123-139. [PMID: 31201721 DOI: 10.1007/978-3-030-12734-3_9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A major barrier to the successful management of cancer is the development of resistance to therapy. Chemotherapy resistance can either be an intrinsic property of malignant cells developed prior to therapy, or acquired following exposure to anti-cancer drugs. Given the impact of drug resistance to the overall poor survival of cancer patients, there is an urgent need to better understand the molecular pathways regulating this malignant phenotype. In this chapter we describe some of the molecular pathways that contribute to drug resistance in cancer, the role of a microenvironment deficient in oxygen (hypoxia) in malignant progression, and how hypoxia can be a significant factor in the development of drug resistance. We conclude by proposing potential therapeutic approaches that take advantage of a hypoxic microenvironment to chemosensitize therapy-resistant tumours.
Collapse
Affiliation(s)
- Lori M Minassian
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Erin Huitema
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
8
|
Lu J, Shi KK, Chen S, Wang J, Hassouna A, White LN, Merien F, Xie M, Kong Q, Li J, Ying T, White WL, Nie S. Fucoidan Extracted from the New Zealand Undaria pinnatifida-Physicochemical Comparison against Five Other Fucoidans: Unique Low Molecular Weight Fraction Bioactivity in Breast Cancer Cell Lines. Mar Drugs 2018; 16:E461. [PMID: 30469516 PMCID: PMC6316445 DOI: 10.3390/md16120461] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023] Open
Abstract
Fucoidan, the complex fucose-containing sulphated polysaccharide varies considerably in structure, composition, and bioactivity, depending on the source, species, seasonality, and extraction method. In this study, we examined five fucoidans extracted from the same seaweed species Undaria pinnatifida but from different geological locations, and compared them to the laboratory-grade fucoidan from Sigma (S). The five products differed in molecular composition. The amount of over 2 kDa low molecular weight fraction (LMWF) of the New Zealand crude fucoidan (S1) was larger than that of S, and this fraction was unique, compared to the other four fucoidans. The difference of molecular compositions between S and S1 explained our previous observation that S1 exhibited different anticancer profile in some cancer cell lines, compared with S. Since we observed this unique LMWF, we compared the cytotoxic effects of a LMWF and a high molecular weight fucoidan (HMWF) in two breast cancer cell lines-MCF-7 and MDA-MB-231. Results indicated that the molecular weight is a critical factor in determining the anti-cancer potential of fucoidan, from the New Zealand U. pinnatifida, as the LMWF exhibited a dose-dependent inhibition on the proliferation of breast cancer cells, significantly better than the HMWF, in both cell lines. A time-dependent inhibition was only observed in the MCF-7. Induction of caspase-dependent apoptosis was observed in the MDA-MB-231 cells, through the intrinsic apoptosis pathway alone, or with the extrinsic pathway. LMWF stimulated a dose-dependent NOS activation in the MDA-MB-231 cells. In conclusion, the fucoidan extracted from the New Zealand U. pinnatifida contains a unique LMWF, which could effectively inhibit the growth of breast cancer cell lines. Therefore, the LMWF from New Zealand U. pinnatifida could be used as a supplement cancer treatment.
Collapse
Affiliation(s)
- Jun Lu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, China.
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Keyu Kally Shi
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Shuping Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Junqiao Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Amira Hassouna
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 12613, Egypt.
| | - Loretta Nicole White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Fabrice Merien
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Qingjun Kong
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China.
| | - William Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
9
|
Tevis KM, Colson YL, Grinstaff MW. Embedded Spheroids as Models of the Cancer Microenvironment. ADVANCED BIOSYSTEMS 2017; 1:1700083. [PMID: 30221187 PMCID: PMC6135264 DOI: 10.1002/adbi.201700083] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To more accurately study the complex mechanisms behind cancer invasion, progression, and response to treatment, researchers require models that replicate both the multicellular nature and 3D stromal environment present in an in vivo tumor. Multicellular aggregates (i.e., spheroids) embedded in an extracellular matrix mimic are a prevalent model. Recently, quantitative metrics that fully utilize the capability of spheroids are described along with conventional experiments, such as invasion into a matrix, to provide additional details and insights into the underlying cancer biology. The review begins with a discussion of the salient features of the tumor microenvironment, introduces the early work on non-embedded spheroids as tumor models, and then concentrates on the successes achieved with the study of embedded spheroids. Examples of studies include cell movement, drug response, tumor cellular heterogeneity, stromal effects, and cancer progression. Additionally, new methodologies and those borrowed from other research fields (e.g., vascularization and tissue engineering) are highlighted that expand the capability of spheroids to aid future users in designing their cancer-related experiments. The convergence of spheroid research among the various fields catalyzes new applications and leads to a natural synergy. Finally, the review concludes with a reflection and future perspectives for cancer spheroid research.
Collapse
Affiliation(s)
- Kristie M. Tevis
- Departments of Biomedical Engineering, Chemistry, and Medicine, Metcalf Center for Science and Engineering, Boston University, Boston, MA 02215
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02215
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Metcalf Center for Science and Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
10
|
Fan J, He Q, Liu Y, Zhang F, Yang X, Wang Z, Lu N, Fan W, Lin L, Niu G, He N, Song J, Chen X. Light-Responsive Biodegradable Nanomedicine Overcomes Multidrug Resistance via NO-Enhanced Chemosensitization. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13804-11. [PMID: 27213922 PMCID: PMC5233726 DOI: 10.1021/acsami.6b03737] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Multidrug resistance (MDR) is responsible for the relatively low effectiveness of chemotherapeutics. Herein, a nitric oxide (NO) gas-enhanced chemosensitization strategy is proposed to overcome MDR by construction of a biodegradable nanomedicine formula based on BNN6/DOX coloaded monomethoxy(polyethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA). On one hand, the nanomedicine features high biocompatibility due to the high density of PEG and biodegradable PLGA. On the other hand, the nanoformula exhibits excellent stability under physiological conditions but exhibits stimuli-responsive decomposition of BNN6 for NO gas release upon ultraviolet-visible irradiation. More importantly, after NO release is triggered, gas molecules are generated that break the nanoparticle shell and lead to the release of doxorubicin. Furthermore, NO was demonstrated to reverse the MDR of tumor cells and enhance the chemosensitization for doxorubicin therapy.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Bioelectronics, Southeast University , Nanjing 210096, Jiangsu, P.R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
- Biological Target Diagnosis & Treatment Center, Guangxi Medical University , Nanning 530021, Guangxi, P.R. China
| | - Qianjun He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University , Shenzhen 518060, Guangdong, P.R. China
| | - Yi Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Xiangyu Yang
- State Key Laboratory of Bioelectronics, Southeast University , Nanjing 210096, Jiangsu, P.R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Nan Lu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University , Shenzhen 518060, Guangdong, P.R. China
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University , Nanjing 210096, Jiangsu, P.R. China
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
11
|
Fan J, Song J, Liu Y, Yu G, Ma Y, Deng Y, He N, Zhang F. Synthesis of biocompatible polymeric nanomaterial dually loaded with paclitaxel and nitric oxide for anti-MDR cancer therapy. RSC Adv 2016. [DOI: 10.1039/c6ra23637e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A copolymer nanomedicine mPEG–PEI–PLLA–PTX–NO was synthesized and studied in an OVCAR-8/ADR MDR cancer model.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Bioelectronics
- Southeast University
- Nanjing 210096
- P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Yan Deng
- State Key Laboratory of Bioelectronics
- Southeast University
- Nanjing 210096
- P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics
- Southeast University
- Nanjing 210096
- P. R. China
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| |
Collapse
|
12
|
Fan J, He N, He Q, Liu Y, Ma Y, Fu X, Liu Y, Huang P, Chen X. A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO. NANOSCALE 2015; 7:20055-62. [PMID: 26568270 PMCID: PMC4666708 DOI: 10.1039/c5nr06630a] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A novel sandwich nanomedicine (GO-BNN6) for near-infrared (NIR) light responsive release of nitric oxide (NO) has been constructed by self-assembly of graphene oxide (GO) nanosheets and a NO donor BNN6 through the π-π stacking interaction. The GO-BNN6 nanomedicine has an extraordinarily high drug loading capacity (1.2 mg BNN6 per mg GO), good thermal stability, and high NIR responsiveness. The NO release from GO-BNN6 can be easily triggered and effectively controlled by adjusting the switching, irradiation time and power density of NIR laser. The intracellular NIR-responsive release of NO from the GO-BNN6 nanomedicine causes a remarkable anti-cancer effect.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, Jiangsu, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nesbitt H, Browne G, O'Donovan KM, Byrne NM, Worthington J, McKeown SR, McKenna DJ. Nitric Oxide Up-Regulates RUNX2 in LNCaP Prostate Tumours: Implications for Tumour Growth In Vitro and In Vivo. J Cell Physiol 2015; 231:473-82. [DOI: 10.1002/jcp.25093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Heather Nesbitt
- Biomedical Science Research Institute; University of Ulster; Coleraine Londonderry, Northern Ireland
| | - Gillian Browne
- Department of Biochemistry and Vermont Cancer Center; University of Vermont College of Medicine; Burlington Vermont
| | - Katie M. O'Donovan
- Biomedical Science Research Institute; University of Ulster; Coleraine Londonderry, Northern Ireland
| | - Niall M. Byrne
- Bone Biology Division; Garvan Institute of Medical Research; Darlinghurst Sydney Australia
| | - Jenny Worthington
- Biomedical Science Research Institute; University of Ulster; Coleraine Londonderry, Northern Ireland
- Axis Bioservices Ltd.; Research Laboratory; Coleraine Londonderry, Northern Ireland
| | - Stephanie R. McKeown
- Biomedical Science Research Institute; University of Ulster; Coleraine Londonderry, Northern Ireland
| | - Declan J. McKenna
- Biomedical Science Research Institute; University of Ulster; Coleraine Londonderry, Northern Ireland
| |
Collapse
|
14
|
Sukhatme V, Bouche G, Meheus L, Sukhatme VP, Pantziarka P. Repurposing Drugs in Oncology (ReDO)-nitroglycerin as an anti-cancer agent. Ecancermedicalscience 2015; 9:568. [PMID: 26435741 PMCID: PMC4583240 DOI: 10.3332/ecancer.2015.568] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 01/30/2023] Open
Abstract
Nitroglycerin (NTG), a drug that has been in clinical use for more than a century, has a range of actions which make it of particular interest in an oncological setting. It is generally accepted that the main mechanism of action of NTG is via the production of nitric oxide (NO), which improves cardiac oxygenation via multiple mechanisms including improved blood flow (vasodilation), decreased platelet aggregation, increased erythrocyte O2 release and decreased mitochondrial utilization of oxygen. Its vasoactive properties mean that it has the potential to exploit more fully the enhanced permeability and retention effect in delivering anti-cancer drugs to tumour tissues. Moreover NTG can reduce HIF-1α levels in hypoxic tumour tissues and this may have anti-angiogenic, pro-apoptotic and anti-efflux effects. Additionally NTG may enhance anti-tumour immunity. Pre-clinical and clinical data on these anti-cancer properties of NTG are summarised and discussed. While there is evidence of a positive action as a monotherapy in prostate cancer, there are mixed results in NSCLC where initially positive results have yet to be fully replicated. Based on the evidence presented, a case is made that further exploration of the clinical benefits that may accrue to cancer patients is warranted. Additionally, it is proposed that NTG may synergise with a number of other drugs, including other repurposed drugs, and these are discussed in the supplementary material appended to this paper.
Collapse
Affiliation(s)
- Vidula Sukhatme
- GlobalCures, Inc, Newton MA 02459, USA
- Corresponding authors
- Lead authors
| | | | - Lydie Meheus
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
| | - Vikas P Sukhatme
- GlobalCures, Inc, Newton MA 02459, USA
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
- The George Pantziarka TP53 Trust, London KT1 2JP, UK
- Corresponding authors
- Lead authors
| |
Collapse
|
15
|
Pedrini I, Gazzano E, Chegaev K, Rolando B, Marengo A, Kopecka J, Fruttero R, Ghigo D, Arpicco S, Riganti C. Liposomal nitrooxy-doxorubicin: one step over caelyx in drug-resistant human cancer cells. Mol Pharm 2014; 11:3068-79. [PMID: 25057799 DOI: 10.1021/mp500257s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work we prepared and characterized two liposomal formulations of a semisynthetic nitric oxide (NO)-releasing doxorubicin (Dox), called nitrooxy-Dox (NitDox), which we previously demonstrated to be cytotoxic in Dox-resistant human colon cancer cells. Liposomes with 38.2% (Lip A) and 19.1% (Lip B) cholesterol were synthesized: both formulations had similar size and zeta potential values and caused the same intracellular distribution of free NitDox, but Lip B accumulated and released NitDox more efficiently. In Dox-resistant human colon cancer cells, Lip A and Lip B exhibited a more favorable kinetics of drug uptake and NO release, and a stronger cytotoxicity than Dox and free NitDox. While Caelyx, one of the liposomal Dox formulations approved for breast and ovary tumors treatment, was ineffective in Dox-resistant breast/ovary cancer cells, Lip B, and to a lesser extent Lip A, still exerted a significant cytotoxicity in these cells. This event was accompanied in parallel by a higher release of NO, which caused nitration of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two transporters involved in Dox efflux, and impaired their pump activity. By doing so, the efflux kinetics of Dox after treatment with Lip B was markedly slowed down and the intracellular accumulation of Dox was increased in breast and ovary drug-resistant cells. We propose these liposomal formulations of NitDox as new tools with a specific indication for tumors overexpressing Pgp and MRP1.
Collapse
Affiliation(s)
- Isabella Pedrini
- Department of Drug Science and Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
He H, Xu YJ, Yin JY, Li X, Qu J, Xu XJ, Liu ZG, Zhou F, Zhai M, Li Y, Zhou HH, Liu ZQ. Association of nitric oxide synthase 3 (NOS3) 894 G>T polymorphism with prognostic outcomes of anthracycline in Chinese patients with acute myeloid leukaemia. Clin Exp Pharmacol Physiol 2014; 41:400-7. [PMID: 24684492 DOI: 10.1111/1440-1681.12235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/13/2014] [Accepted: 03/16/2014] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to investigate the influence of the nitric oxide synthase 3 (NOS3) 894 G>T polymorphism on prognostic outcomes of anthracycline in Chinese patients with de novo intermediate-risk acute myeloid leukaemia (AML) and to examine the gene expression level in relation to genetic variation. In all, 225 Chinese patients with intermediate-risk AML (at the complete remission stage) treated with anthracycline were enrolled in the study. The 894 G>T polymorphism of the NOS3 gene was analysed by allele-specific matrix-assisted laser desorption ionization time-of-flight. Expression of NOS3 mRNA was tested in 72 patients of known genotype for NOS3 894 G>T. The clinical characteristics of these patients were obtained from medical records. Survival analysis showed that patients with AML (GG genotype) had a longer overall survival (OS; P = 0.006). After adjusting for age, gender, leucocyte count, haemoglobin level, platelet level, French, American and Britain (FAB) classification, lactate dehydrogenase levels, Eastern Cooperative Oncology Group Performance Status, nucleophosmin gene and fms-related tyrosine kinase 3 gene, multivariate survival analysis showed that the NOS3 894 G>T polymorphism appeared to be a predicting factor for OS (P = 0.014; hazard ratio = 1.856). However, no significant associations between the NOS3 894 G>T polymorphism and relapse-free survival and relapse in patients with AML were observed. Gene expression levels were significantly higher in patients with the GG genotype than in patients with the GT and TT genotypes (P = 0.033). The findings suggest that the NOS3 894 G>T variant may be a biomarker for the prediction of OS in Chinese patients with AML.
Collapse
Affiliation(s)
- Hui He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Central South University, Benxi, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, China; Department of Hematology, Benxi Central Hospital of China Medical University, Benxi, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Riganti C, Rolando B, Kopecka J, Campia I, Chegaev K, Lazzarato L, Federico A, Fruttero R, Ghigo D. Mitochondrial-targeting nitrooxy-doxorubicin: a new approach to overcome drug resistance. Mol Pharm 2012. [PMID: 23186264 DOI: 10.1021/mp300311b] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In previous studies, we showed that nitric oxide (NO) donors and synthetic doxorubicins (DOXs) modified with moieties containing NO-releasing groups--such as nitrooxy-DOX (NitDOX) or 3-phenylsulfonylfuroxan-DOX (FurDOX)--overcome drug resistance by decreasing the activity of ATP-binding cassette (ABC) transporters that can extrude the drug. Here, we have investigated the biochemical mechanisms by which NitDOX and FurDOX exert antitumor effects. Both NitDOX and FurDOX were more cytotoxic than DOX against drug-resistant cells. Interestingly, NitDOX exhibited a faster uptake and an extranuclear distribution. NitDOX was preferentially localized in the mitochondria, where it nitrated and inhibited the mitochondria-associated ABC transporters, decreased the flux through the tricarboxylic acid cycle, slowed down the activity of complex I, lowered the synthesis of ATP, induced oxidative and nitrosative stress, and elicited the release of cytochrome c and the activation of caspase-9 and -3 in DOX-resistant cells. We suggest that NitDOX may represent the prototype of a new class of multifunctional anthracyclines, which have cellular targets different from conventional anthracyclines and greater efficacy against drug-resistant tumors.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Effect of nitric oxide on the daunorubicin efflux mechanism in K562 cells. Cell Biol Int 2012; 36:529-35. [DOI: 10.1042/cbi20110193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Doublier S, Belisario DC, Polimeni M, Annaratone L, Riganti C, Allia E, Ghigo D, Bosia A, Sapino A. HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast. BMC Cancer 2012; 12:4. [PMID: 22217342 PMCID: PMC3262753 DOI: 10.1186/1471-2407-12-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 01/04/2012] [Indexed: 11/30/2022] Open
Abstract
Background Invasive micropapillary carcinoma (IMPC) of the breast is a distinct and aggressive variant of luminal type B breast cancer that does not respond to neoadjuvant chemotherapy. It is characterized by small pseudopapillary clusters of cancer cells with inverted cell polarity. To investigate whether hypoxia-inducible factor-1 (HIF-1) activation may be related to the drug resistance described in this tumor, we used MCF7 cancer cells cultured as 3-D spheroids, which morphologically simulate IMPC cell clusters. Methods HIF-1 activation was measured by EMSA and ELISA in MCF7 3-D spheroids and MCF7 monolayers. Binding of HIF-1α to MDR-1 gene promoter and modulation of P-glycoprotein (Pgp) expression was evaluated by ChIP assay and FACS analysis, respectively. Intracellular doxorubicin retention was measured by spectrofluorimetric assay and drug cytotoxicity by annexin V-FITC measurement and caspase activity assay. Results In MCF7 3-D spheroids HIF-1 was activated and recruited to participate to the transcriptional activity of MDR-1 gene, coding for Pgp. In addition, Pgp expression on the surface of cells obtained from 3-D spheroids was increased. MCF7 3-D spheroids accumulate less doxorubicin and are less sensitive to its cytotoxic effects than MCF7 cells cultured as monolayer. Finally, HIF-1α inhibition either by incubating cells with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (a widely used HIF-1α inhibitor) or by transfecting cells with specific siRNA for HIF-1α significantly decreased the expression of Pgp on the surface of cells and increased the intracellular doxorubicin accumulation in MCF7 3-D spheroids. Conclusions MCF7 breast cancer cells cultured as 3-D spheroids are resistant to doxorubicin and this resistance is associated with an increased Pgp expression in the plasma membrane via activation of HIF-1. The same mechanism may be suggested for IMPC drug resistance.
Collapse
Affiliation(s)
- Sophie Doublier
- Department of Genetics, Biology and Biochemistry, University of Turin, Via Santena, 5/bis, 10126 Turin, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Eficacia de la suplementación con L-arginina sobre la respuesta a la quimioterapia neoadyuvante en pacientes con cáncer de mama. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2011. [DOI: 10.1016/j.gine.2010.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Agastin S, Giang UBT, Geng Y, Delouise LA, King MR. Continuously perfused microbubble array for 3D tumor spheroid model. BIOMICROFLUIDICS 2011; 5:24110. [PMID: 21716809 PMCID: PMC3124519 DOI: 10.1063/1.3596530] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/09/2011] [Indexed: 05/19/2023]
Abstract
Multi-cellular tumor spheroids (MCTSs) have been established as a 3D physiologically relevant tumor model for drug testing in cancer research. However, it is difficult to control the MCTS testing parameters and the entire process is time-consuming and expensive. To overcome these limitations, we developed a simple microfluidic system using polydimethylsiloxane (PDMS) microbubbles to culture tumor spheroids under physiological flow. The flow characteristics such as streamline directions, shear stress profile, and velocity profile inside the microfluidic system were first examined computationally using a COMSOL simulation. Colo205 tumor spheroids were created by a modified hanging drop method and maintained inside PDMS microbubble cavities in perfusion culture. Cell viability inside the microbubbles was examined by live cell staining and confocal imaging. E-selectin mediated cell sorting of Colo205 and MDA-MB-231 cell lines on functionalized microbubble and PDMS surfaces was achieved. Finally, to validate this microfluidic system for drug screening purposes, the toxicity of the anti-cancer drug, doxorubicin, on Colo205 cells in spheroids was tested and compared to cells in 2D culture. Colo205 spheroids cultured in flow showed a threefold increase in resistance to doxorubicin compared to Colo205 monolayer cells cultured under static conditions, consistent with the resistance observed previously in other MCTS models. The advantages presented by our microfluidic system, such as the ability to control the size uniformity of the spheroids and to perform real-time imaging on cells in the growth platform, show potential for high throughput drug screening development.
Collapse
|
22
|
Nitric oxide: role in tumour biology and iNOS/NO-based anticancer therapies. Cancer Chemother Pharmacol 2011; 67:1211-24. [DOI: 10.1007/s00280-011-1654-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/14/2011] [Indexed: 01/10/2023]
|
23
|
Li Q, Chow AB, Mattingly RR. Three-dimensional overlay culture models of human breast cancer reveal a critical sensitivity to mitogen-activated protein kinase kinase inhibitors. J Pharmacol Exp Ther 2010; 332:821-8. [PMID: 19952304 PMCID: PMC2835447 DOI: 10.1124/jpet.109.160390] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 11/30/2009] [Indexed: 11/22/2022] Open
Abstract
Tumor cells that are grown in three-dimensional (3D) cell culture exhibit relative resistance to cytotoxic drugs compared with their response in conventional two-dimensional (2D) culture. We studied the effects of targeted agents and doxorubicin on 2D and 3D cultures of human breast cell lines that represent the progression from normal epithelia (modeled by MCF10A cells) through hyperplastic variants to a dysplastic/carcinoma phenotype (MCF10.DCIS cells), variants transformed by expression of activated Ras, and also a basal-subtype breast carcinoma cell line (MDA-MB-231). The results showed the expected relative resistance to the cytotoxic agent doxorubicin in 3D cultures, with greater resistance in normal and hyperplastic cells than in carcinoma models. However, the response to the targeted inhibitors was more complex. Inhibition of mitogen-activated protein kinase kinase (MEK) by either 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) or 2-(2-chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide (CI-1040, PD184352) produced a similar inhibition of the growth of all the MCF10 cell lines in 2D. In 3D culture, the normal and hyperplastic models exhibited some resistance, whereas the carcinoma models became far more sensitive to MEK inhibition. Increased sensitivity to MEK inhibition was also seen in MDA-MB-231 cells grown in 3D compared with 2D. In contrast, inhibition of phosphatidylinositol 3'-kinase activity by wortmannin had no significant effect on the growth of any of the cells in either 2D or 3D. Our conclusion is that 3D culture models may not only model the relative resistance of tumor cells to cytotoxic therapy but also that the 3D approach may better identify the driving oncogenic pathways and critical targeted inhibitors that may be effective treatment approaches.
Collapse
Affiliation(s)
- Quanwen Li
- Wayne State University, Department of Pharmacology, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | | | |
Collapse
|
24
|
Choi JY, Barlow WE, Albain KS, Hong CC, Blanco JG, Livingston RB, Davis W, Rae JM, Yeh IT, Hutchins LF, Ravdin PM, Martino S, Lyss AP, Osborne CK, Abeloff MD, Hayes DF, Ambrosone CB. Nitric oxide synthase variants and disease-free survival among treated and untreated breast cancer patients in a Southwest Oncology Group clinical trial. Clin Cancer Res 2009; 15:5258-66. [PMID: 19671875 PMCID: PMC2745926 DOI: 10.1158/1078-0432.ccr-09-0685] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Numerous chemotherapeutic agents are cytotoxic through generation of reactive species, and variability in genes related to oxidative stress may influence disease-free survival (DFS). We examined relationships between DFS and variants in NOS3, as well as NQO1, NQO2, and CBR3, among treated and untreated breast cancer patients in a Southwest Oncology Group clinical trial (S8897). EXPERIMENTAL DESIGN In the parent trial, women were assigned according to prognostic features; the high-risk group was randomized to cyclophosphamide, i.v. methotrexate, and 5-fluorouracil or to cyclophosphamide, i.v. doxorubicin, and 5-fluorouracil +/- tamoxifen, and the low-risk group did not receive adjuvant therapy. We extracted DNA from normal lymph node tissue and examined functional polymorphisms in NOS3, NQO1, NQO2, and CBR3, in relation to DFS, using Cox proportional hazard model. RESULTS There were significant interactions between DFS, adjuvant therapy, and NOS3 Glu298Asp and -786 polymorphisms, alone and in combination (P for interaction = 0.008). When NOS3 genotypes were combined, women with genotypes encoding for lower nitric oxide who received chemotherapy had a >2-fold increase in hazard of progression (hazard ratio, 2.32; 95% confidence interval, 1.26-4.25), whereas there was reduced risk for those who did not receive adjuvant therapy (hazard ratio, 0.42; 95% confidence interval, 0.19-0.95). There were no associations between the other genotypes and DFS in either group. CONCLUSION Variants encoding lower activity of NOS3 may affect outcomes in breast cancer patients, with the direction of risk differing depending on chemotherapy status. These results may mirror the known dual functions of nitric oxide and nitric oxide synthase, depending on oxidative environment.
Collapse
Affiliation(s)
- Ji-Yeob Choi
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263
- PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 614-735 Korea
| | - William E. Barlow
- Southwest Oncology Group Statistical Center, 1730 Minor Ave, Ste 1900, Seattle, WA 98101-1468
| | - Kathy S. Albain
- Loyola University Stritch School of Medicine, Cardinal Bernardin Cancer Center, Division of Hematology/Oncology, 2160 S. First Ave, Maywood, IL 60153
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263
| | - Javier G. Blanco
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, 545 Cooke Hall, Buffalo, NY 14260-1200
| | - Robert B. Livingston
- University of Arizona Cancer Center, Clinical Trials Office, 1515 N. Campbell Ave, Tucson, AZ 85724-5024
| | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263
| | - James M. Rae
- University of Michigan Medical Center, Breast Oncology Program, 6312 CCGC, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0942
| | - I-Tien Yeh
- University of Texas Health Science Center at San Antonio, Department of Pathology, 7703 Floyd Curl Dr, San Antonio, TX 78229
| | - Laura F. Hutchins
- University of Arkansas for Medical Sciences, 4301 W. Markham St, Ste. 783, Little Rock, AR 72205
| | - Peter M. Ravdin
- University of Texas Health Science Center at San Antonio, Department of Pathology, 7703 Floyd Curl Dr, San Antonio, TX 78229
| | - Silvana Martino
- The Angeles Clinic and Research Institute, 2001 Santa Monica Blvd, #560, Santa Monica, CA 90404
| | - Alan P. Lyss
- Heartland Cancer Research CCOP, Missouri Baptist Medical Center, 3015 N. Ballas Rd, St. Louis, MO 63131
| | - C. Kent Osborne
- Baylor College of Medicine, Dept Molecular and Cellular Biology, One Baylor Plaza, Houston, TX 77030
| | - Martin D. Abeloff
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Harry and Jeanette Weinberg Building, Ste 1100, 401 N. Broadway, Baltimore, MD 21231
| | - Daniel F. Hayes
- University of Michigan Medical Center, Breast Oncology Program, 6312 CCGC, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0942
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263
| |
Collapse
|
25
|
Dueñas-González A, García-López P, Herrera LA, Medina-Franco JL, González-Fierro A, Candelaria M. The prince and the pauper. A tale of anticancer targeted agents. Mol Cancer 2008; 7:82. [PMID: 18947424 PMCID: PMC2615789 DOI: 10.1186/1476-4598-7-82] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/23/2008] [Indexed: 02/07/2023] Open
Abstract
Cancer rates are set to increase at an alarming rate, from 10 million new cases globally in 2000 to 15 million in 2020. Regarding the pharmacological treatment of cancer, we currently are in the interphase of two treatment eras. The so-called pregenomic therapy which names the traditional cancer drugs, mainly cytotoxic drug types, and post-genomic era-type drugs referring to rationally-based designed. Although there are successful examples of this newer drug discovery approach, most target-specific agents only provide small gains in symptom control and/or survival, whereas others have consistently failed in the clinical testing. There is however, a characteristic shared by these agents: -their high cost-. This is expected as drug discovery and development is generally carried out within the commercial rather than the academic realm. Given the extraordinarily high therapeutic drug discovery-associated costs and risks, it is highly unlikely that any single public-sector research group will see a novel chemical "probe" become a "drug". An alternative drug development strategy is the exploitation of established drugs that have already been approved for treatment of non-cancerous diseases and whose cancer target has already been discovered. This strategy is also denominated drug repositioning, drug repurposing, or indication switch. Although traditionally development of these drugs was unlikely to be pursued by Big Pharma due to their limited commercial value, biopharmaceutical companies attempting to increase productivity at present are pursuing drug repositioning. More and more companies are scanning the existing pharmacopoeia for repositioning candidates, and the number of repositioning success stories is increasing. Here we provide noteworthy examples of known drugs whose potential anticancer activities have been highlighted, to encourage further research on these known drugs as a means to foster their translation into clinical trials utilizing the more limited public-sector resources. If these drug types eventually result in being effective, it follows that they could be much more affordable for patients with cancer; therefore, their contribution in terms of reducing cancer mortality at the global level would be greater.
Collapse
Affiliation(s)
- Alfonso Dueñas-González
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
- Dirección de Investigación, Unidad de Investigacion Biomédica en Cáncer, Av. San Fernando 22, Tlalpan, 14080 México, D.F., México
| | - Patricia García-López
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Luis Alonso Herrera
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Jose Luis Medina-Franco
- Torrey Pines Institute for Molecular Studies. 5775 Old Dixie Highway, Fort Pierce, Florida 34946, USA
| | - Aurora González-Fierro
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Myrna Candelaria
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| |
Collapse
|
26
|
Nitric oxide-induced resistance or sensitization to death in tumor cells. Nitric Oxide 2008; 19:158-63. [PMID: 18495079 DOI: 10.1016/j.niox.2008.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/25/2008] [Accepted: 04/25/2008] [Indexed: 02/07/2023]
Abstract
This report summarizes the present state of our knowledge pertaining to the NO-induced resistance or sensitization of tumor cell death. The effects of NO and its synergy with members of the TNF family, with cytotoxic drugs, and with ionizing radiations have been investigated. The dual effect of NO-induced resistance or sensitization and the underlying molecular mechanisms are discussed.
Collapse
|
27
|
Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Int J Radiat Biol 2008; 83:849-71. [PMID: 18058370 DOI: 10.1080/09553000701727531] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To give a state-of-the-art overview on the promise of three-dimensional (3-D) culture systems for anticancer drug development, with particular emphasis on multicellular tumor spheroids (MCTS). RESULTS AND CONCLUSIONS Cell-based assays have become an integral component in many stages of routine anti-tumor drug testing. However, they are almost always based on homogenous monolayer or suspension cultures and thus represent a rather artificial cellular environment. 3-D cultures--such as the well established spheroid culture system--better reflect the in vivo behavior of cells in tumor tissues and are increasingly recognized as valuable advanced tools for evaluating the efficacy of therapeutic intervention. The present article summarizes past and current applications and particularly discusses technological challenges, required improvements and recent progress with the use of the spheroid model in experimental therapeutics, as a basis for sophisticated drug/therapy screening. A brief overview is given focusing on the nomenclature of spherical 3-D cultures, their potential to mimic many aspects of the pathophysiological situation in tumors, and currently available protocols for culturing and analysis. A list of spheroid-forming epithelial cancer cell lines of different origin is provided and the recent trend to use spheroids for testing combination treatment strategies is highlighted. Finally, various spheroid co-culture approaches are presented that have been established to study heterologous cell interactions in solid tumors and thereby are able to reflect the cellular tumor environment with increasing accuracy. The intriguing observation that in order to retain certain tumor initiating cell properties, some primary tumor cell populations must be maintained exclusively in 3-D culture is mentioned, adding a new but fascinating challenge for future therapeutic campaigns.
Collapse
|
28
|
Frederiksen LJ, Sullivan R, Maxwell LR, Macdonald-Goodfellow SK, Adams MA, Bennett BM, Siemens DR, Graham CH. Chemosensitization of cancer in vitro and in vivo by nitric oxide signaling. Clin Cancer Res 2007; 13:2199-206. [PMID: 17404104 DOI: 10.1158/1078-0432.ccr-06-1807] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Hypoxia contributes to drug resistance in solid cancers, and studies have revealed that low concentrations of nitric oxide (NO) mimetics attenuate hypoxia-induced drug resistance in tumor cells in vitro. Classic NO signaling involves activation of soluble guanylyl cyclase, generation of cyclic GMP (cGMP), and activation of cGMP-dependent protein kinase. Here, we determined whether chemosensitization by NO mimetics requires cGMP-dependent signaling and whether low concentrations of NO mimetics can chemosensitize tumors in vivo. EXPERIMENTAL DESIGN Survival of human prostate and breast cancer cells was assessed by clonogenic assays following exposure to chemotherapeutic agents. The effect of NO mimetics on tumor chemosensitivity in vivo was determined using a mouse xenograft model of human prostate cancer. Drug efflux in vitro was assessed by measuring intracellular doxorubicin-associated fluorescence. RESULTS Low concentrations of the NO mimetics glyceryl trinitrate (GTN) and isosorbide dinitrate attenuated hypoxia-induced resistance to doxorubicin and paclitaxel. Similar to hypoxia-induced drug resistance, inhibition of various components of the NO signaling pathway increased resistance to doxorubicin, whereas activation of the pathway with 8-bromo-cGMP attenuated hypoxia-induced resistance. Drug efflux was unaffected by hypoxia and inhibitors of drug efflux did not significantly attenuate hypoxia-induced chemoresistance. Compared with mice treated with doxorubicin alone, tumor growth was decreased in mice treated with doxorubicin and a transdermal GTN patch. The presence of GTN and GTN metabolites in plasma samples was confirmed by gas chromatography. CONCLUSION Tumor hypoxia induces resistance to anticancer drugs by interfering with endogenous NO signaling and reactivation of NO signaling represents a novel approach to enhance chemotherapy.
Collapse
|
29
|
Wang J, Shang F, Jiang R, Liu L, Wang S, Hou J, Huan M, Mei Q. Nitric Oxide-Donating Genistein Prodrug: Design, Synthesis, and Bioactivity on MC3T3-E1 Cells. J Pharmacol Sci 2007; 104:82-9. [PMID: 17510526 DOI: 10.1254/jphs.fp0061549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
To find a more potent alternative with less estrogen-related side effects for hormone replacement therapy, we designed and synthesized a nitric oxide (NO)-releasing prodrug of genistein, named NO-donating genistein (NO-G). The characteristics of NO-G were determined by melting point, NMR spectroscopy, and mass spectrometric analysis. HPLC has been used to test the new prodrug's stability. The releasing capacity of NO-G was tested by Griess reagent in vitro. The bioactivities of NO-G on proliferation, differentiation, and mineralization of the osteoblastic cell line MC3T3-E1 were determined by MTT assay, flow cytometric analysis, measurement of the alkaline phosphatase (ALP) activity and the secreted osteocalcin (OCN), and Alizarin Red-S staining. The product showed 1H NMR spectra and relative molecular mass in agreement with the designed structure, and it was stable in buffer solution. NO-G continually released low level NO within 5 h in MC3T3-E1 cells. NO-G caused a significant elevation of cell growth, ALP activity, and OCN secretion in both dose- and time-dependent manner. Furthermore, the Alizarin Red-S staining showed that NO-G promoted mineralization of MC3T3-E1 cells. These effects were all significantly greater than those of its parent drugs. The results suggested that NO-G might be a novel drug for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jiepin Wang
- Department of Pharmacology, Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, and Department of Cardiology, Tangdu Hospital, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|