1
|
Przanowska RK, Labban N, Przanowski P, Hawes RB, Atkins KA, Showalter SL, Janes KA. Patient-derived response estimates from zero-passage organoids of luminal breast cancer. Breast Cancer Res 2024; 26:192. [PMID: 39741344 DOI: 10.1186/s13058-024-01931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations. METHODS We freshly isolated patient-derived cells from luminal tumor scrapes, miniaturized the organoid format into 5 µl replicates for increased throughput, and set an endpoint of 14 days to minimize drift. Therapeutic hormone targeting was mimicked in these "zero-passage" organoids by withdrawing β-estradiol and adding 4-hydroxytamoxifen. We also examined sulforaphane as an electrophilic stress and commercial nutraceutical with reported anti-cancer properties. Downstream mechanisms were tested genetically by lentiviral transduction of two complementary sgRNAs and Cas9 stabilization for the first week of organoid culture. Transcriptional changes were measured by RT-qPCR or RNA sequencing (RNA-seq), and organoid phenotypes were quantified by serial brightfield imaging, digital image segmentation, and regression modeling of volumetric growth rates. RESULTS We achieved > 50% success in initiating luminal breast cancer organoids from tumor scrapes and maintaining them to the 14-day zero-passage endpoint. Success was mostly independent of clinical parameters, supporting general applicability of the approach. Abundance of ESR1 and PGR in zero-passage organoids consistently remained within the range of patient variability at the endpoint. However, responsiveness to hormone withdrawal and blockade was highly variable among luminal breast cancer cases tested. Combining sulforaphane with knockout of NQO1 (a phase II antioxidant response gene and downstream effector of sulforaphane) also yielded a breadth of organoid growth phenotypes, including growth inhibition with sulforaphane, growth promotion with NQO1 knockout, and growth antagonism when combined. CONCLUSIONS Zero-passage organoids are a rapid and scalable way to interrogate properties of luminal breast cancer cells from patient-derived material. This includes testing drug mechanisms of action in different clinical cohorts. A future goal is to relate inter-patient variability of zero-passage organoids to long-term outcomes.
Collapse
Affiliation(s)
- Róża K Przanowska
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Najwa Labban
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Piotr Przanowski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Russell B Hawes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shayna L Showalter
- Division of Surgical Oncology, Department of Surgery, University of Virginia Health System, Charlottesville, VA, 22908, USA.
- Comprehensive Cancer Center, University of Virginia, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
- Comprehensive Cancer Center, University of Virginia, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
2
|
Lim JS, Lee KW, Ko KP, Jeong SI, Ryu BK, Lee MG, Chi SG. XAF1 destabilizes estrogen receptor α through the assembly of a BRCA1-mediated destruction complex and promotes estrogen-induced apoptosis. Oncogene 2022; 41:2897-2908. [DOI: 10.1038/s41388-022-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
|
3
|
Pospiech K, Orzechowska M, Nowakowska M, Anusewicz D, Płuciennik E, Kośla K, Bednarek AK. TGFα-EGFR pathway in breast carcinogenesis, association with WWOX expression and estrogen activation. J Appl Genet 2022; 63:339-359. [PMID: 35290621 PMCID: PMC8979909 DOI: 10.1007/s13353-022-00690-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
WWOX is a tumor-suppressive steroid dehydrogenase, which relationship with hormone receptors was shown both in animal models and breast cancer patients. Herein, through nAnT-iCAGE high-throughput gene expression profiling, we studied the interplay of estrogen receptors and the WWOX in breast cancer cell lines (MCF7, T47D, MDA-MB-231, BT20) under estrogen stimulation and either introduction of the WWOX gene by retroviral transfection (MDA-MB-231, T47D) or silenced with shRNA (MCF7, BT20). Additionally, we evaluated the consequent biological characteristics by proliferation, apoptosis, invasion, and adhesion assays. TGFα-EGFR signaling was found to be significantly affected in all examined breast cancer cell lines in response to estrogen and strongly associated with the level of WWOX expression, especially in ER-positive MCF7 cells. Under the influence of 17β-estradiol presence, biological characteristics of the cell lines were also delineated. The study revealed modulation of adhesion, invasion, and apoptosis. The obtained results point at a complex role of the WWOX gene in the carcinogenesis of the breast tissue, which seems to be closely related to the presence of estrogen α and/or β receptors.
Collapse
Affiliation(s)
- Karolina Pospiech
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Magdalena Nowakowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Dorota Anusewicz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
4
|
Naim S, Fernandez-Marrero Y, de Brot S, Bachmann D, Kaufmann T. Loss of BOK Has a Minor Impact on Acetaminophen Overdose-Induced Liver Damage in Mice. Int J Mol Sci 2021; 22:ijms22063281. [PMID: 33807047 PMCID: PMC8004760 DOI: 10.3390/ijms22063281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/27/2022] Open
Abstract
Acetaminophen (APAP) is one of the most commonly used analgesic and anti-pyretic drugs, and APAP intoxication is one of the main reasons for liver transplantation following liver failure in the Western world. While APAP poisoning ultimately leads to liver necrosis, various programmed cell death modalities have been implicated, including ER stress-triggered apoptosis. The BCL-2 family member BOK (BCL-2-related ovarian killer) has been described to modulate the unfolded protein response and to promote chemical-induced liver injury. We therefore investigated the impact of the loss of BOK following APAP overdosing in mice. Surprisingly, we observed sex-dependent differences in the activation of the unfolded protein response (UPR) in both wildtype (WT) and Bok-/- mice, with increased activation of JNK in females compared with males. Loss of BOK led to a decrease in JNK activation and a reduced percentage of centrilobular necrosis in both sexes after APAP treatment; however, this protection was more pronounced in Bok-/- females. Nevertheless, serum ALT and AST levels of Bok-/- and WT mice were comparable, indicating that there was no major difference in the overall outcome of liver injury. We conclude that after APAP overdosing, loss of BOK affects initiating signaling steps linked to ER stress, but has a more minor impact on the outcome of liver necrosis. Furthermore, we observed sex-dependent differences that might be worthwhile to investigate.
Collapse
Affiliation(s)
- Samara Naim
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
| | - Yuniel Fernandez-Marrero
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
- Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland;
| | - Daniel Bachmann
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
- Correspondence:
| |
Collapse
|
5
|
Role of 17 β-Estradiol on Cell Proliferation and Mitochondrial Fitness in Glioblastoma Cells. JOURNAL OF ONCOLOGY 2020; 2020:2314693. [PMID: 32148493 PMCID: PMC7042539 DOI: 10.1155/2020/2314693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Gliomas are the most common primary tumors of the central nervous system (CNS) in the adult. Previous data showed that estrogen affects cancer cells, but its effect is cell-type-dependent and controversial. The present study aimed to analyze the effects of estradiol (E2, 5 nM) in human glioblastoma multiforme U87-MG cells and how it may impact on cell proliferation and mitochondrial fitness. We monitored cell proliferation by xCELLigence technology and mitochondrial fitness by assessing the expression of genes involved in mitochondrial biogenesis (PGC1α, SIRT1, and TFAM), oxidative phosphorylation (ND4, Cytb, COX-II, COX IV, NDUFA6, and ATP synthase), and dynamics (OPA1, MNF2, MNF1, and FIS1). Finally, we evaluated Nrf2 nuclear translocation by immunocytochemical analysis. Our results showed that E2 resulted in a significant increase in cell proliferation, with a significant increase in the expression of genes involved in various mechanisms of mitochondrial fitness. Finally, E2 treatment resulted in a significant increase of Nrf2 nuclear translocation with a significant increase in the expression of one of its target genes (i.e., heme oxygenase-1). Our results suggest that E2 promotes proliferation in glioblastoma cells and regulate the expression of genes involved in mitochondrial fitness and chemoresistance pathway.
Collapse
|
6
|
Hosford SR, Shee K, Wells JD, Traphagen NA, Fields JL, Hampsch RA, Kettenbach AN, Demidenko E, Miller TW. Estrogen therapy induces an unfolded protein response to drive cell death in ER+ breast cancer. Mol Oncol 2019; 13:1778-1794. [PMID: 31180176 PMCID: PMC6670014 DOI: 10.1002/1878-0261.12528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 06/07/2019] [Indexed: 01/06/2023] Open
Abstract
Estrogens have been shown to elicit anticancer effects against estrogen receptor α (ER)-positive breast cancer. We sought to determine the mechanism underlying the therapeutic response. Response to 17β-estradiol was assessed in ER+ breast cancer models with resistance to estrogen deprivation: WHIM16 patient-derived xenografts, C7-2-HI and C4-HI murine mammary adenocarcinomas, and long-term estrogen-deprived MCF-7 cells. As another means to reactivate ER, the anti-estrogen fulvestrant was withdrawn from fulvestrant-resistant MCF-7 cells. Transcriptional, growth, apoptosis, and molecular alterations in response to ER reactivation were measured. 17β-estradiol treatment and fulvestrant withdrawal induced transcriptional activation of ER, and cells adapted to estrogen deprivation or fulvestrant were hypersensitive to 17β-estradiol. ER transcriptional response was followed by an unfolded protein response and apoptosis. Such apoptosis was dependent upon the unfolded protein response, p53, and JNK signaling. Anticancer effects were most pronounced in models exhibiting genomic amplification of the gene encoding ER (ESR1), suggesting that engagement of ER at high levels is cytotoxic. These data indicate that long-term adaptation to estrogen deprivation or ER inhibition alters sensitivity to ER reactivation. In such adapted cells, 17β-estradiol treatment and anti-estrogen withdrawal hyperactivate ER, which drives an unfolded protein response and subsequent growth inhibition and apoptosis. 17β-estradiol treatment should be considered as a therapeutic option for anti-estrogen-resistant disease, particularly in patients with tumors harboring ESR1 amplification or ER overexpression. Furthermore, therapeutic strategies that enhance an unfolded protein response may increase the therapeutic effects of ER reactivation.
Collapse
Affiliation(s)
- Sarah R Hosford
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kevin Shee
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jason D Wells
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Nicole A Traphagen
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jennifer L Fields
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Riley A Hampsch
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Eugene Demidenko
- Department of Biomedical Data Sciences, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W Miller
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Comprehensive Breast Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
7
|
Fortini F, Vieceli Dalla Sega F, Caliceti C, Lambertini E, Pannuti A, Peiffer DS, Balla C, Rizzo P. Estrogen-mediated protection against coronary heart disease: The role of the Notch pathway. J Steroid Biochem Mol Biol 2019; 189:87-100. [PMID: 30817989 DOI: 10.1016/j.jsbmb.2019.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
Estrogen regulates a plethora of biological processes, under physiological and pathological conditions, by affecting key pathways involved in the regulation of cell proliferation, fate, survival and metabolism. The Notch receptors are mediators of communication between adjacent cells and are key determinants of cell fate during development and in postnatal life. Crosstalk between estrogen and the Notch pathway intervenes in many processes underlying the development and maintenance of the cardiovascular system. The identification of molecular mechanisms underlying the interaction between these types of endocrine and juxtacrine signaling are leading to a deeper understanding of physiological conditions regulated by these steroid hormones and, potentially, to novel therapeutic approaches to prevent pathologies linked to reduced levels of estrogen, such as coronary heart disease, and cardiotoxicity caused by hormone therapy for estrogen-receptor-positive breast cancer.
Collapse
Affiliation(s)
| | | | - Cristiana Caliceti
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio Pannuti
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Daniel S Peiffer
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA; Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA
| | - Cristina Balla
- Cardiovascular Center, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, RA, Italy; Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
8
|
Landeros RV, Jobe SO, Aranda-Pino G, Lopez GE, Zheng J, Magness RR. Convergent ERK1/2, p38 and JNK mitogen activated protein kinases (MAPKs) signalling mediate catecholoestradiol-induced proliferation of ovine uterine artery endothelial cells. J Physiol 2017; 595:4663-4676. [PMID: 28437005 DOI: 10.1113/jp274119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS The catechol metabolites of 17β-oestradiol (E2 β), 2-hydroxyoestradiol (2-OHE2 ) and 4-hydroxyoestradiol (4-OHE2 ), stimulate proliferation of pregnancy-derived ovine uterine artery endothelial cells (P-UAECs) through β-adrenoceptors (β-ARs) and independently of the classic oestrogen receptors (ERs). Herein we show that activation of ERK1/2, p38 and JNK mitogen activated protein kinases (MAPKs) is necessary for 2-OHE2 - and 4-OHE2 -induced P-UAEC proliferation, as well as proliferation induced by the parent hormone E2 β and other β-AR signalling hormones (i.e. catecholamines). Conversely, although 2-OHE2 and 4-OHE2 rapidly activate phosphatidylinositol 3-kinase (PI3K), its activation is not involved in catecholoestradiol-induced P-UAEC proliferation. We also show for the first time the signalling mechanisms involved in catecholoestradiol-induced P-UAEC proliferation; which converge at the level of MAPKs with the signalling mechanisms mediating E2 β- and catecholamine-induced proliferation. The present study advances our understanding of the complex signalling mechanisms involved in regulating uterine endothelial cell proliferation during pregnancy. ABSTRACT Previously we demonstrated that the biologically active metabolites of 17β-oestradiol, 2-hydroxyoestradiol (2-OHE2 ) and 4-hydroxyoestradiol (4-OHE2 ), stimulate pregnancy-specific proliferation of uterine artery endothelial cells derived from pregnant (P-UAECs), but not non-pregnant ewes. However, unlike 17β-oestradiol, which induces proliferation via oestrogen receptor-β (ER-β), the catecholoestradiols mediate P-UAEC proliferation via β-adrenoceptors (β-AR) and independently of classic oestrogen receptors. Herein, we aim to further elucidate the signalling mechanisms involved in proliferation induced by catecholoestradiols in P-UAECs. P-UAECs were treated with 2-OHE2 and 4-OHE2 for 0, 0.25, 0.5, 1, 2, 4, 12 and 24 h, to analyse activation of mitogen activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3K)-AKT. Specific inhibitors for ERK1/2 MAPK (PD98059), p38 MAPK (SB203580), JNK MAPK (SP600125), or PI3K (LY294002) were used to determine the involvement of individual kinases in agonist-induced P-UAEC proliferation. 2-OHE2 and 4-OHE2 stimulated biphasic phosphorylation of ERK1/2, slow p38 and JNK phosphorylation over time, and rapid monophasic AKT phosphorylation. Furthermore, ERK1/2, p38 and JNK MAPKs, but not PI3K, were individually necessary for catecholoestradiol-induced proliferation. In addition, when comparing the signalling mechanisms of the catecholoestradiols, to 17β-oestradiol and catecholamines, we observed that convergent MAPKs signalling pathways facilitate P-UAEC proliferation induced by all of these hormones. Thus, all three members of the MAPK family mediate the mitogenic effects of catecholoestradiols in the endothelium during pregnancy. Furthermore, the convergent signalling of MAPKs involved in catecholoestradiol-, 17β-oestradiol- and catecholamine-induced endothelial cell proliferation may be indicative of unappreciated evolutionary functional redundancy to facilitate angiogenesis and ensure maintenance of uterine blood flow during pregnancy.
Collapse
Affiliation(s)
- Rosalina Villalon Landeros
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Sheikh O Jobe
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabrielle Aranda-Pino
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Gladys E Lopez
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Zheng
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Ronald R Magness
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA.,Department of Pediatrics and Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Obstetrics and Gynaecology, University of South Florida Perinatal Research Vascular Centre, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
9
|
Ahmad DAJ, Negm OH, Alabdullah ML, Mirza S, Hamed MR, Band V, Green AR, Ellis IO, Rakha EA. Clinicopathological and prognostic significance of mitogen-activated protein kinases (MAPK) in breast cancers. Breast Cancer Res Treat 2016; 159:457-67. [PMID: 27592113 PMCID: PMC5021722 DOI: 10.1007/s10549-016-3967-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mitogen-activated protein kinases (MAPKs) are signalling transduction molecules that have different functions and diverse behaviour in cancer. In breast cancer, MAPK is related to oestrogen receptor (ER) and HER2. METHODS Protein expression of a large panel of MAPKs (JNK1/2, ERK, p38, C-JUN and ATF2 including phosphorylated forms) were assessed immunohistochemically in a large (n = 1400) and well-characterised breast cancer series prepared as tissue microarray. Moreover, reverse phase protein array was applied to quantify protein expression of MAPKs in six breast cancer cell lines with different phenotypes including HER2-transfected cells. RESULTS MAPKs expression was associated with clinicopathological variables characteristic of good prognosis. These associations were most significant in the whole series and in the ER+ subgroup compared to other BC classes. Most of MAPKs showed a positive association with ER, BCL2 and better outcome and were negatively associated with the proliferation marker Ki67 and p53. Association of MAPK with HER2 was mainly seen in the ER- subgroup. Reverse phase protein array confirmed immunohistochemistry results and revealed differential expression of MAPK proteins in ER+ and ER- cell lines. CONCLUSIONS MAPKs are associated with good prognosis and their expression is mainly related to ER. Studying a large panel rather than individual biomarkers may provide improved understanding of the pathway.
Collapse
Affiliation(s)
- Dena A J Ahmad
- Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, Nottingham City Hospital, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK.,Department of Pathology, Mosul Medical School, University of Mosul, Mosul, Iraq
| | - Ola H Negm
- School of Medicine, Queen's Medical Hospital, University of Nottingham, Derby Road, Nottingham, NG7 2UH, UK. .,Faculty of Medicine, Medical Microbiology and Immunology Department, Mansoura University, Mansoura, Egypt.
| | - M Layth Alabdullah
- Academic Unit of Clinical Oncology, School of Medicine, Nottingham City Hospital, University of Nottingham, Nottingham, UK
| | - Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska, Omaha, USA
| | - Mohamed R Hamed
- School of Medicine, Queen's Medical Hospital, University of Nottingham, Derby Road, Nottingham, NG7 2UH, UK.,Faculty of Medicine, Medical Microbiology and Immunology Department, Mansoura University, Mansoura, Egypt
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska, Omaha, USA
| | - Andrew R Green
- Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, Nottingham City Hospital, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, Nottingham City Hospital, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, Nottingham City Hospital, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
10
|
The complex nature of oestrogen signalling in breast cancer: enemy or ally? Biosci Rep 2016; 36:BSR20160017. [PMID: 27160081 PMCID: PMC5293589 DOI: 10.1042/bsr20160017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
The pleiotropic nature of oestradiol, the main oestrogen found in women, has been well described in the literature. Oestradiol is positioned to play a unique role since it can respond to environmental, genetic and non-genetic cues to affect genetic expression and cellular signalling. In breast cancer, oestradiol signalling has a dual effect, promoting or inhibiting cancer growth. The potential impact of oestradiol on tumorigenesis depends on the molecular and cellular characteristics of the breast cancer cell. In this review, we provide a broad survey discussing the cellular and molecular consequences of oestrogen signalling in breast cancer. First, we review the structure of the classical oestrogen receptors and resultant transcriptional (genomic) and non-transcriptional (non-genomic) signalling. We then discuss the nature of oestradiol signalling in breast cancer including the specific receptors that initiate these signalling cascades as well as potential outcomes, such as cancer growth, proliferation and angiogenesis. Finally, we examine cellular and molecular mechanisms underlying the dimorphic effect of oestrogen signalling in breast cancer.
Collapse
|
11
|
Liu X, Nie S, Huang D, Xie M. Mitogen-activated protein kinase and Akt pathways are involved in 4-n-nonyphenol induced apoptosis in mouse Sertoli TM4 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:815-824. [PMID: 25748095 DOI: 10.1016/j.etap.2015.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
Nonylphenol (NP) is considered an important environmental toxicant, which may disrupt male reproductive system. The aim of this study was to investigate 4-n-nonylphenol (4-n-NP) induced apoptosis and its related mechanism in mouse Sertoli cell line, TM4 cells. Our results showed that NP treatment (0.1, 1, 10, 20 and 30 μM) decreased cell viability and induced apoptosis in the cells, accompanied by alteration of Bcl-2 family mRNA expression, activation of caspases-3, release of Ca(2+), and increase of reactive oxygen species (ROS) generation. Subsequently, it was found that the levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-PX) in the cells were markedly decreased, and maleic dialdehyde (MDA) content was increased by NP treatment. Then activation of the mitogen-activated protein kinases (MAPKs) pathways and inhibition of Akt pathway were simultaneously detected in NP challenged TM4 cells. Taken together, it was concluded that NP induced cytotoxicity and apoptosis in TM4 cells, and the apoptosis may be mediated via MAPKs and Akt pathways in addition to Ca(2+) release and ROS generation.
Collapse
Affiliation(s)
- Xiaozhen Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
12
|
Vitexin 6, a novel lignan, induces autophagy and apoptosis by activating the Jun N-terminal kinase pathway. Anticancer Drugs 2014; 24:928-36. [PMID: 23965728 DOI: 10.1097/cad.0b013e328364e8d3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous studies have reported that vitexins induce cytotoxic effects. In the present study, we investigate a new native lignan vitexin 6 (VB6) in vitro to determine the molecular mechanism underlying its cytotoxicity. We screened and cultured several tumor cell lines and subsequently analyzed VB6 cytotoxicity against 14 different tumor cell lines using a 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The expression of proteins that regulate apoptosis and autophagy was determined using western blot analysis. VB6 showed an excellent cytotoxic effect against various cancer cell lines in vitro. It induced apoptosis and autophagy of cancer cells. VB6-induced apoptosis showed a time-dependent and concentration-dependent relationship with cleaved poly (ADP-ribose) polymerase, cleaved caspase-3, Bax upregulation, and Bcl-2 downregulation. The levels of Beclin-1 and LC3-II, which are markers for cell autophagy, gradually increased after VB6 treatment. Jun N-terminal kinase (JNK) phosphorylation was increased after VB6 treatment, accompanied by upregulation of P-Bcl-2 and P-C-Jun expression. Cotreatment with a JNK inhibitor significantly decreased VB6-induced cell death and downregulated P-Bcl-2, and cleaved PARP and Beclin-1 expression. The new native lignan VB6 inhibits cancer cell proliferation by activating the JNK pathway. We believe that VB6 could be a valuable chemotherapeutic drug after further evaluation.
Collapse
|
13
|
Deane EE, van de Merwe JP, Hui JHL, Wu RSS, Woo NYS. PBDE-47 exposure causes gender specific effects on apoptosis and heat shock protein expression in marine medaka, Oryzias melastigma. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:57-67. [PMID: 24374848 DOI: 10.1016/j.aquatox.2013.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 06/03/2023]
Abstract
Marine medaka (Oryzias melastigma) was fed with a low and high dose of dietary 2,2',4,4'-tetra-bromodiphenyl ether (PBDE-47), over 21 days. Gender specific changes in caspases 3 and 8 in medaka were found as activities in male medaka were significantly increased in both liver and muscle at both low and high exposure levels whereas caspase activity in female medaka tissue remained unchanged. Results of HSP90 and HSP70 immunoassays also showed gender specific related changes as both HSP families were unchanged in liver and muscle of male medaka but significantly increased in liver and muscle of female medaka, following PBDE-47 exposure. The gender specific effects of PBDE-47 on HSP expression profiles could not be explained by inherent differences in the heat shock response of male and female marine medaka, as the HSP profiles in liver and muscle, induced by acute heat shock, were similar in both sexes. The findings from this study provide evidence that PBDE-47 can cause gender specific modulatory effects on mechanisms critical to the apoptotic cascade as well as HSP regulation and expression.
Collapse
Affiliation(s)
- Eddie E Deane
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Jason P van de Merwe
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Jerome H L Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Rudolf S S Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Norman Y S Woo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
14
|
Sukocheva OA, Wee C, Ansar A, Hussey DJ, Watson DI. Effect of estrogen on growth and apoptosis in esophageal adenocarcinoma cells. Dis Esophagus 2013; 26:628-635. [PMID: 23163347 DOI: 10.1111/dote.12000] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The epidemiology of esophageal adenocarcinoma demonstrates a strong gender bias with a sex ratio of 8-9:1 in favor of males. A potential explanation for this is that estrogen might protect against esophageal adenocarcinoma. Estrogen has previously been shown to stimulate apoptosis in esophageal squamous cancer cells. However, the effect of estrogen on esophageal adenocarcinoma cells has not been determined. We used immunoblotting analysis to determine the expression of estrogen receptors, cell adhesion marker E-cadherin, and proliferation marker Ki-67 in cell lines derived from esophageal adenocarcinoma (OE-19, OE-33) and Barrett's esophagus (QhTRT, ChTRT, GihTRT). Estrogen and selective estrogen receptor modulator (SERM)-dependent effects on cell growth were determined by the CellTiter-96 Aqueous Proliferation Assay. Apoptosis was determined by Annexin V/Propidium Iodide cell labeling and flow cytometry. We detected that physiological and supra-physiological concentrations of 17β-estradiol and SERM decreased cell growth in esophageal adenocarcinoma cells. In Barrett's esophagus cells (QhTRT, ChTRT), decreased growth was also detected in response to estrogen/SERM. The level of estrogen receptor expression in the cell lines correlated with the level of anti-growth effects induced by the receptor agonists. Flow cytometry analysis confirmed estrogen/SERM stimulated apoptosis in esophageal adenocarcinoma cells. Estrogen/SERM treatments were associated with a decrease in the expression of Ki-67 and an increase in E-cadherin expression in esophageal adenocarcinoma cells. This study suggests that esophageal adenocarcinoma and Barrett's esophagus cells respond to treatment with selective estrogen receptor ligands, resulting in decreased cell growth and apoptosis. Further research to explore potential therapeutic applications is warranted.
Collapse
Affiliation(s)
- O A Sukocheva
- Department of Surgery, Flinders Centre for Cancer Prevention and Control, Flinders Medical Centre, Flinders University, Bedford Park, South Australia, Australia.
| | | | | | | | | |
Collapse
|
15
|
Mechanism of maprotiline-induced apoptosis: role of [Ca2+](i), ERK, JNK and caspase-3 signaling pathways. Toxicology 2012; 304:1-12. [PMID: 23219590 DOI: 10.1016/j.tox.2012.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 11/24/2022]
Abstract
Antidepressants are generally used for treatment of various mood and anxiety disorders. Several studies have shown the anti-tumor and cytotoxic activities of some antidepressants, but the underlying mechanisms were unclear. Maprotiline is a tetracyclic antidepressant and possesses a highly selective norepinephrine reuptake ability. We found that maprotiline decreased cell viability in a concentration- and time-dependent manner in Neuro-2a cells. Maprotiline induced apoptosis and increased caspase-3 activation. The activation of caspase-3 by maprotiline appears to depend on the activation of JNK and the inactivation of ERK. Maprotiline also induced [Ca(2+)](i) increases which involved the mobilization of intracellular Ca(2+) stored in the endoplasmic reticulum. Pretreatment with BAPTA/AM, a Ca(2+) chelator, suppressed maprotiline-induced ERK phosphorylation, enhanced caspase-3 activation and increased maprotiline-induced apoptosis. In conclusion, maprotiline induced apoptosis in Neuro-2a cells through activation of JNK-associated caspase-3 pathways. Maprotiline also evoked an anti-apoptotic response that was both Ca(2+)- and ERK-dependent.
Collapse
|
16
|
O'Hara J, Vareslija D, McBryan J, Bane F, Tibbitts P, Byrne C, Conroy RM, Hao Y, Gaora PÓ, Hill ADK, McIlroy M, Young LS. AIB1:ERα transcriptional activity is selectively enhanced in aromatase inhibitor-resistant breast cancer cells. Clin Cancer Res 2012; 18:3305-15. [PMID: 22550166 DOI: 10.1158/1078-0432.ccr-11-3300] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The use of aromatase inhibitors (AI) in the treatment of estrogen receptor (ER)-positive, postmenopausal breast cancer has proven efficacy. However, inappropriate activation of ER target genes has been implicated in the development of resistant tumors. The ER coactivator protein AIB1 has previously been associated with initiation of breast cancer and resistance to endocrine therapy. EXPERIMENTAL DESIGN Here, we investigated the role of AIB1 in the deregulation of ER target genes occurring as a consequence of AI resistance using tissue microarrays of patients with breast cancer and cell line models of resistance to the AI letrozole. RESULTS Expression of AIB1 associated with disease recurrence (P = 0.025) and reduced disease-free survival time (P = 0.0471) in patients treated with an AI as first-line therapy. In a cell line model of resistance to letrozole (LetR), we found ERα/AIB1 promoter recruitment and subsequent expression of the classic ER target genes pS2 and Myc to be constitutively upregulated in the presence of both androstenedione and letrozole. In contrast, the recruitment of the ERα/AIB1 transcriptional complex to the nonclassic ER target cyclin D1 and its subsequent expression remained sensitive to steroid treatment and could be inhibited by treatment with letrozole. Molecular studies revealed that this may be due in part to direct steroid regulation of c-jun-NH(2)-kinase (JNK), signaling to Jun and Fos at the cyclin D1 promoter. CONCLUSION This study establishes a role for AIB1 in AI-resistant breast cancer and describes a new mechanism of ERα/AIB1 gene regulation which could contribute to the development of an aggressive tumor phenotype.
Collapse
Affiliation(s)
- Jane O'Hara
- Endocrine Oncology Research Group, Department of Surgery and Epidemiology, Royal College of Surgeons in Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yu T, Bai Y. Improving gene expression data interpretation by finding latent factors that co-regulate gene modules with clinical factors. BMC Genomics 2011; 12:563. [PMID: 22087761 PMCID: PMC3282832 DOI: 10.1186/1471-2164-12-563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/16/2011] [Indexed: 12/31/2022] Open
Abstract
Background In the analysis of high-throughput data with a clinical outcome, researchers mostly focus on genes/proteins that show first-order relations with the clinical outcome. While this approach yields biomarkers and biological mechanisms that are easily interpretable, it may miss information that is important to the understanding of disease mechanism and/or treatment response. Here we test the hypothesis that unobserved factors can be mobilized by the living system to coordinate the response to the clinical factors. Results We developed a computational method named Guided Latent Factor Discovery (GLFD) to identify hidden factors that act in combination with the observed clinical factors to control gene modules. In simulation studies, the method recovered masked factors effectively. Using real microarray data, we demonstrate that the method identifies latent factors that are biologically relevant, and extracts more information than analyzing only the first-order response to the clinical outcome. Conclusions Finding latent factors using GLFD brings extra insight into the mechanisms of the disease/drug response. The R code of the method is available at http://userwww.service.emory.edu/~tyu8/GLFD.
Collapse
Affiliation(s)
- Tianwei Yu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
18
|
Li Y, Shen L, Xu H, Pang Y, Xu Y, Ling M, Zhou J, Wang X, Liu Q. Up-regulation of cyclin D1 by JNK1/c-Jun is involved in tumorigenesis of human embryo lung fibroblast cells induced by a low concentration of arsenite. Toxicol Lett 2011; 206:113-120. [PMID: 21726611 DOI: 10.1016/j.toxlet.2011.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/15/2011] [Accepted: 06/18/2011] [Indexed: 12/12/2022]
Abstract
Inorganic arsenic, a ubiquitous environmental contaminant, is associated with an increased risk of cancer. There are several hypotheses regarding arsenic-induced carcinogenesis. The mechanism of action remains obscure, although hyper-proliferation of cells is involved. In the present study, the molecular mechanisms underlying the proliferation and malignant transformation of human embryo lung fibroblast (HELF) cells induced by a low concentration of arsenite were investigated. The results reveal that a low concentration of arsenite induces cell proliferation and promotes cell cycle transition from the G(1) to the S phase. Moreover, arsenite activates the JNK1/c-Jun signal pathway, but not JNK2, which up-regulates the expression of cyclin D1/CDK4 and phosphorylates the retinoblastoma (Rb) protein. Blocking of the JNK1/c-Jun signal pathway suppresses the increases of cyclin D1 expression and Rb phosphorylation, which attenuates cell proliferation, reduces the transition from the G1 to the S phase, and thereby inhibits the neoplastic transformation of HELF cells induced by a low concentration of arsenite. Thus, activation of the JNK1/c-Jun pathway up-regulates the expression of cyclin D1, which is involved in the tumorigenesis caused by a low concentration of arsenite.
Collapse
Affiliation(s)
- Yuan Li
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Altiok N, Ersoz M, Koyuturk M. Estradiol induces JNK-dependent apoptosis in glioblastoma cells. Oncol Lett 2011; 2:1281-1285. [PMID: 22848302 DOI: 10.3892/ol.2011.385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/09/2011] [Indexed: 11/05/2022] Open
Abstract
Estrogens exert multiple regulatory actions on cellular events in a variety of tissues including the brain. In the present study, the signaling mechanisms of the concentration-dependent effects of 17-β-estradiol (estradiol) on glioblastoma cells were investigated. Cell viability was evaluated by the trypan blue exclusion assay. Cell growth and kinase activities were evaluated by immunocytochemistry and Western blotting. The results showed that high concentrations of estradiol inhibit growth and induce apoptosis in C6 rat glioma and T98G human glioblastoma cells. The blockade of the c-jun NH(2)-terminal kinase (JNK) signaling pathway prevented these effects of estradiol, indicating the critical role of the JNK/c-jun signaling cascade in glioblastoma cell growth inhibition and cell death in response to high concentrations of estradiol. Collectively, these findings highlight the potential of new discoveries in sensitizing estrogen-sensitive tumors to chemotherapeutic drugs, and may lead to the development of new JNK-based effective therapies.
Collapse
Affiliation(s)
- Nedret Altiok
- Department of Pharmacology, Yeni Yuzyil University School of Medicine, Istanbul, Turkey
| | | | | |
Collapse
|
20
|
Phytoestrogenic activity of ethanol extract from Korean wild vegetable Disporum uniflorum. Food Sci Biotechnol 2010. [DOI: 10.1007/s10068-010-0219-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Koutras A, Giannopoulou E, Kritikou I, Antonacopoulou A, Evans TRJ, Papavassiliou AG, Kalofonos H. Antiproliferative effect of exemestane in lung cancer cells. Mol Cancer 2009; 8:109. [PMID: 19930708 PMCID: PMC2789046 DOI: 10.1186/1476-4598-8-109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 11/24/2009] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent evidence suggests that estrogen signaling may be involved in the pathogenesis of non-small cell lung cancer (NSCLC). Aromatase is an enzyme complex that catalyses the final step in estrogen synthesis and is present in several tissues, including the lung. In the current study we investigated the activity of the aromatase inhibitor exemestane in human NSCLC cell lines H23 and A549. RESULTS Aromatase expression was detected in both cell lines. H23 cells showed lower protein and mRNA levels of aromatase, compared to A549 cells. Exemestane decreased cell proliferation and increased apoptosis in both cell lines, 48 h after its application, with A549 exhibiting higher sensitivity than H23 cells. Aromatase protein and mRNA levels were not affected by exemestane in A549 cells, whereas an increase in both protein and mRNA levels was observed in H23 cells, 48 h after exemestane application. Moreover, an increase in cAMP levels was found in both cell lines, 15 min after the administration of exemestane. In addition, we studied the effect of exemestane on epidermal growth factor receptor (EGFR) localization and activation. Exemestane increased EGFR activation 15 min after its application in H23 cells. Furthermore, we demonstrated a translocation of EGFR from cell membrane, 24 h after the addition of exemestane in H23 cells. No changes in EGFR activation or localization were observed in A549 cells. CONCLUSION Our findings suggest an antiproliferative effect of exemestane on NSCLC cell lines. Exemestane may be more effective in cells with higher aromatase levels. Further studies are needed to assess the activity of exemestane in NSCLC.
Collapse
Affiliation(s)
- Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital of Patras, Rion 26504, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, Rion 26504, Greece
| | - Ismini Kritikou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, Rion 26504, Greece
| | - Anna Antonacopoulou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, Rion 26504, Greece
| | - TR Jeffry Evans
- University of Glasgow, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | - Haralabos Kalofonos
- Division of Oncology, Department of Medicine, University Hospital of Patras, Rion 26504, Greece
| |
Collapse
|
22
|
Lewis-Wambi JS, Jordan VC. Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res 2009; 11:206. [PMID: 19519952 PMCID: PMC2716493 DOI: 10.1186/bcr2255] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The link between estrogen and the development and proliferation of breast cancer is well documented. Estrogen stimulates growth and inhibits apoptosis through estrogen receptor-mediated mechanisms in many cell types. Interestingly, there is strong evidence that estrogen induces apoptosis in breast cancer and other cell types. Forty years ago, before the development of tamoxifen, high-dose estrogen was used to induce tumor regression of hormone-dependent breast cancer in post-menopausal women. While the mechanisms by which estrogen induces apoptosis were not completely known, recent evidence from our laboratory and others demonstrates the involvement of the extrinsic (Fas/FasL) and the intrinsic (mitochondria) pathways in this process. We discuss the different apoptotic signaling pathways involved in E2 (17beta-estradiol)-induced apoptosis, including the intrinsic and extrinsic apoptosis pathways, the NF-kappaB (nuclear factor-kappa-B)-mediated survival pathway as well as the PI3K (phosphoinositide 3-kinase)/Akt signaling pathway. Breast cancer cells can also be sensitized to estrogen-induced apoptosis through suppression of glutathione by BSO (L-buthionine sulfoximine). This finding has implications for the control of breast cancer with low-dose estrogen and other targeted therapeutic drugs.
Collapse
Affiliation(s)
- Joan S Lewis-Wambi
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - V Craig Jordan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
23
|
Kang K, Lee SB, Jung SH, Cha KH, Park WD, Sohn YC, Nho CW. Tectoridin, a poor ligand of estrogen receptor alpha, exerts its estrogenic effects via an ERK-dependent pathway. Mol Cells 2009; 27:351-7. [PMID: 19326083 DOI: 10.1007/s10059-009-0045-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 11/26/2022] Open
Abstract
Phytoestrogens are the natural compounds isolated from plants, which are structurally similar to animal estrogen, 17beta-estradiol. Tectoridin, a major isoflavone isolated from the rhizome of Belamcanda chinensis. Tectoridin is known as a phytoestrogen, however, the molecular mechanisms underlying its estrogenic effect are remained unclear. In this study we investigated the estrogenic signaling triggered by tectoridin as compared to a famous phytoestrogen, genistein in MCF-7 human breast cancer cells. Tectoridin scarcely binds to ER alpha as compared to 17beta-estradiol and genistein. Despite poor binding to ER alpha, tectoridin induced potent estrogenic effects, namely recovery of the population of cells in the S-phase after serum starvation, transactivation of the estrogen response element, and induction of MCF-7 cell proliferation. The tectoridin-induced estrogenic effect was severely abrogated by treatment with U0126, a specific MEK1/2 inhibitor. Tectoridin promoted phosphorylation of ERK1/2, but did not affect phosphorylation of ER alpha at Ser(118). It also increased cellular accumulation of cAMP, a hallmark of GPR30-mediated estrogen signaling. These data imply that tectoridin exerts its estrogenic effect mainly via the GPR30 and ERK-mediated rapid nongenomic estrogen signaling pathway. This property of tectoridin sets it aside from genistein where it exerts the estrogenic effects via both an ER-dependent genomic pathway and a GPR30-dependent nongenomic pathway.
Collapse
Affiliation(s)
- Kyungsu Kang
- Natural Products Research Center, Korea Institute of Science and Technology Gangneung Institute, Gangneung 210-340, Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Chang HC, Huang CC, Huang CJ, Cheng JS, Liu SI, Tsai JY, Chang HT, Huang JK, Chou CT, Jan CR. Desipramine-induced apoptosis in human PC3 prostate cancer cells: Activation of JNK kinase and caspase-3 pathways and a protective role of [Ca2+]i elevation. Toxicology 2008; 250:9-14. [DOI: 10.1016/j.tox.2008.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
|
25
|
Maia CJB, Socorro S, Schmitt F, Santos CRA. Characterization of oligoadenylate synthetase-1 expression in rat mammary gland and prostate: effects of 17beta-estradiol on the regulation of OAS1g in both tissues. Mol Cell Biochem 2008; 314:113-21. [PMID: 18421422 DOI: 10.1007/s11010-008-9771-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/07/2008] [Indexed: 11/28/2022]
Abstract
OAS1 belongs to a protein family of interferon-induced enzymes characterized by their ability to catalyze the synthesis of 2'-5'-linked oligomers of adenosine from ATP (2-5A). 2-5A bind to the latent Ribonuclease L (RNase L), which subsequently dimerizes into the active form, acquiring the capacity of cleaving cellular and viral mRNA. Several studies indicate that OAS1 is an important inducer of apoptosis in human cancer cells and that it may be regulated by 17beta-estradiol (E(2)). The aim of this study was to characterize OAS1 gene expression in rat mammary gland and prostate, and to analyze its regulation by E(2) in both tissues. It is demonstrated that OAS1g is the most abundant OAS1 gene expressed in both tissues, and that OAS1 protein is present in the nucleus of rat mammary gland and prostate epithelial cells. In addition, it is shown by Real Time PCR that OAS1g is up-regulated by E(2) in rat mammary gland, but down-regulated in prostate, suggesting that the OAS1g gene may be related to estrogen dependent pathways in rat mammary gland and prostate physiology.
Collapse
Affiliation(s)
- C J B Maia
- Centre of Investigation in Health Sciences, CICS, University of Beira Interior. Henrique, Covilha, Portugal
| | | | | | | |
Collapse
|
26
|
Sekine Y, Ikeda O, Hayakawa Y, Tsuji S, Imoto S, Aoki N, Sugiyama K, Matsuda T. DUSP22/LMW-DSP2 regulates estrogen receptor-alpha-mediated signaling through dephosphorylation of Ser-118. Oncogene 2007; 26:6038-49. [PMID: 17384676 DOI: 10.1038/sj.onc.1210426] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the previous study, we demonstrated the involvement of dual specificity phosphatase 22 (DUSP22/LMW-DSP2) in regulating the leukemia inhibitory factor/interleukin-6/signal transducer and activator of transcription 3-mediated signaling pathway. In this study, we show beta-estradiol (E2)-induced DUSP22 mRNA expression in estrogen receptor alpha (ERalpha)-positive breast cancer cells, whereas E2-induced phosphorylation and activation of ERalpha was suppressed by overexpression of DUSP22 but not catalytically inactive mutants. Furthermore, small-interfering RNA-mediated reduction of DUSP22 expression enhanced ERalpha-mediated transcription and endogenous gene expression. In fact, DUSP22 associated with ERalpha in vivo and both endogenous proteins interacted in ERalpha-positive breast cancer T47D cells. These results strongly suggest that DUSP22 acts as a negative regulator of the ERalpha-mediated signaling pathway.
Collapse
Affiliation(s)
- Y Sekine
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|