1
|
Pradel LS, Ho YL, Gohlke H, Kassack MU. The Antioxidant and HDAC-Inhibitor α-Lipoic Acid Is Synergistic with Exemestane in Estrogen Receptor-Positive Breast Cancer Cells. Int J Mol Sci 2024; 25:8455. [PMID: 39126024 PMCID: PMC11313180 DOI: 10.3390/ijms25158455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Anti-estrogenic therapy is established in the management of estrogen receptor (ER)-positive breast cancer. However, to overcome resistance and improve therapeutic outcome, novel strategies are needed such as targeting widely recognized aberrant epigenetics. The study aims to investigate the combination of the aromatase inhibitor exemestane and the histone deacetylase (HDAC) inhibitor and antioxidant α-lipoic acid in ER-positive breast cancer cells. First, the enantiomers and the racemic mixture of α-lipoic acid, and rac-dihydro-lipoic acid were investigated for HDAC inhibition. We found HDAC inhibitory activity in the 1-3-digit micromolar range with a preference for HDAC6. Rac-dihydro-lipoic acid is slightly more potent than rac-α-lipoic acid. The antiproliferative IC50 value of α-lipoic acid is in the 3-digit micromolar range. Notably, the combination of exemestane and α-lipoic acid resulted in synergistic behavior under various incubation times (24 h to 10 d) and readouts (MTT, live-cell fluorescence microscopy, caspase activation) analyzed by the Chou-Talalay method. α-lipoic acid increases mitochondrial fusion and the expression of apoptosis-related proteins p21, APAF-1, BIM, FOXO1, and decreases expression of anti-apoptotic proteins survivin, BCL-2, and c-myc. In conclusion, combining exemestane with α-lipoic acid is a promising novel treatment option for ER-positive breast cancer.
Collapse
Affiliation(s)
- Laura S. Pradel
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.S.P.); (Y.-L.H.); (H.G.)
| | - Yu-Lin Ho
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.S.P.); (Y.-L.H.); (H.G.)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.S.P.); (Y.-L.H.); (H.G.)
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Matthias U. Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.S.P.); (Y.-L.H.); (H.G.)
| |
Collapse
|
2
|
Jia J, Shi S, Liu C, Shu T, Li T, Lou Q, Jin X, He J, Du Z, Zhai G, Yin Z. Use of All-Male cyp17a1-Deficient Zebrafish (Danio rerio) for Evaluation of Environmental Estrogens. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1062-1074. [PMID: 38477699 DOI: 10.1002/etc.5839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
Natural and synthetic environmental estrogens (EEs) are widespread and have received extensive attention. Our previous studies demonstrated that depletion of the cytochrome P450 17a1 gene (cyp17a1) leads to all-testis differentiation phenotype in zebrafish and common carp. In the present study, cyp17a1-deficient zebrafish with defective estrogen biosynthesis were used for the evaluation of EEs, as assessed by monitoring vitellogenin (vtg) expression. A rapid and sensitive assessment procedure was established with the 3-day administration of estradiol (E2), followed by examination of the transcriptional expression of vtgs in our cyp17a1-deficient fish. Compared with the control fish, a higher E2-mediated vtg upregulation observed in cyp17a1-deficient zebrafish exposed to 0.1 μg/L E2 is known to be estrogen receptor-dependent and likely due to impaired in vivo estrogen biosynthesis. The more responsive vtg expression in cyp17a1-deficient zebrafish was observed when exposed to 200 and 2000 μg/L bisphenol A (BPA) and perfluoro-1-octanesulfonate (PFOS). The estrogenic potentials of E2, BPA, and PFOS were compared and assessed by the feminization effect on ovarian differentiation in cyp17a1-deficient zebrafish from 18 to 50 days postfertilization, based on which a higher sensitivity of E2 in ovarian differentiation than BPA and PFOS was concluded. Collectively, through the higher sensitivity to EEs and the capacity to distinguish chemicals with different estrogenic potentials exhibited by the all-male cyp17a1-deficient zebrafish with impaired estrogen biosynthesis, we demonstrated that they can be used as an excellent in vivo model for the evaluation of EEs. Environ Toxicol Chem 2024;43:1062-1074. © 2024 SETAC.
Collapse
Affiliation(s)
- Jingyi Jia
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Shengchi Shi
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Congying Liu
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Shu
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tianhui Li
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyong Lou
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xia Jin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiangyan He
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhenyu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Gang Zhai
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhan Yin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Ghosh D. Structures and functions of human placental aromatase and steroid sulfatase, two key enzymes in estrogen biosynthesis. Steroids 2023; 196:109249. [PMID: 37207843 DOI: 10.1016/j.steroids.2023.109249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Cytochrome P450 aromatase (AROM) and steroid sulfatase (STS) are the two key enzymes for the biosynthesis of estrogens in human, and maintenance of the critical balance between androgens and estrogens. Human AROM, an integral membrane protein of the endoplasmic reticulum, is a member of the cytochrome P450 superfamily. It is the only enzyme to catalyze the conversion of androgens with non-aromatic A-rings to estrogens characterized by the aromatic A-ring. Human STS, also an integral membrane protein of the endoplasmic reticulum, is a Ca2+-dependent enzyme that catalyzes the hydrolysis of sulfate esters of estrone and dehydroepiandrosterone to the unconjugated steroids, the precursors of the most potent forms of estrogens and androgens, namely, 17β-estradiol, 16α,17β-estriol, testosterone and dihydrotestosterone. Expression of these steroidogenic enzymes locally within organs and tissues of the endocrine, reproductive, and central nervous systems is the key for maintaining high levels of the reproductive steroids. The enzymes have been drug targets for the prevention and treatment of diseases associated with steroid hormone excesses, especially in breast, endometrial and prostate malignancies. Both enzymes have been the subjects of vigorous research for the past six decades. In this article, we review the important findings on their structure-function relationships, specifically, the work that began with unravelling of the closely guarded secrets, namely, the 3-D structures, active sites, mechanisms of action, origins of substrate specificity and the basis of membrane integration. Remarkably, these studies were conducted on the enzymes purified in their pristine forms from human placenta, the discarded and their most abundant source. The purification, assay, crystallization, and structure determination methodologies are described. Also reviewed are their functional quaternary organizations, post-translational modifications and the advancements made in the structure-guided inhibitor design efforts. Outstanding questions that still remain open are summarized in closing.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
4
|
Amaral C, Correia-da-Silva G, Almeida CF, Valente MJ, Varela C, Tavares-da-Silva E, Vinggaard AM, Teixeira N, Roleira FMF. An Exemestane Derivative, Oxymestane-D1, as a New Multi-Target Steroidal Aromatase Inhibitor for Estrogen Receptor-Positive (ER +) Breast Cancer: Effects on Sensitive and Resistant Cell Lines. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020789. [PMID: 36677847 PMCID: PMC9865664 DOI: 10.3390/molecules28020789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Around 70-85% of all breast cancer (BC) cases are estrogen receptor-positive (ER+). The third generation of aromatase inhibitors (AIs) is the first-line treatment option for these tumors. Despite their therapeutic success, they induce several side effects and resistance, which limits their efficacy. Thus, it is crucial to search for novel, safe and more effective anti-cancer molecules. Currently, multi-target drugs are emerging, as they present higher efficacy and lower toxicity in comparison to standard options. Considering this, this work aimed to investigate the anti-cancer properties and the multi-target potential of the compound 1α,2α-epoxy-6-methylenandrost-4-ene-3,17-dione (Oxy), also designated by Oxymestane-D1, a derivative of Exemestane, which we previously synthesized and demonstrated to be a potent AI. For this purpose, it was studied for its effects on the ER+ BC cell line that overexpresses aromatase, MCF-7aro cells, as well as on the AIs-resistant BC cell line, LTEDaro cells. Oxy reduces cell viability, impairs DNA synthesis and induces apoptosis in MCF-7aro cells. Moreover, its growth-inhibitory properties are inhibited in the presence of ERα, ERβ and AR antagonists, suggesting a mechanism of action dependent on these receptors. In fact, Oxy decreased ERα expression and activation and induced AR overexpression with a pro-death effect. Complementary transactivation assays demonstrated that Oxy presents ER antagonist and AR agonist activities. In addition, Oxy also decreased the viability and caused apoptosis of LTEDaro cells. Therefore, this work highlights the discovery of a new and promising multi-target drug that, besides acting as an AI, appears to also act as an ERα antagonist and AR agonist. Thus, the multi-target action of Oxy may be a therapeutic advantage over the three AIs applied in clinic. Furthermore, this new multi-target compound has the ability to sensitize the AI-resistant BC cells, which represents another advantage over the endocrine therapy used in the clinic, since resistance is a major drawback in the clinic.
Collapse
Affiliation(s)
- Cristina Amaral
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (C.A.); (F.M.F.R.); Tel.: +351-220428560 (C.A.); +351-239488400 (F.M.F.R.); Fax: +351-226093390 (C.A.); +351-239488503 (F.M.F.R.)
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cristina Ferreira Almeida
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Carla Varela
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- CIEPQPF, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Pólo III Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Elisiário Tavares-da-Silva
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Fernanda M. F. Roleira
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- Correspondence: (C.A.); (F.M.F.R.); Tel.: +351-220428560 (C.A.); +351-239488400 (F.M.F.R.); Fax: +351-226093390 (C.A.); +351-239488503 (F.M.F.R.)
| |
Collapse
|
5
|
Almeida CF, Teixeira N, Oliveira A, Augusto TV, Correia-da-Silva G, Ramos MJ, Fernandes PA, Amaral C. Discovery of a multi-target compound for estrogen receptor-positive (ER +) breast cancer: Involvement of aromatase and ERs. Biochimie 2020; 181:65-76. [PMID: 33278557 DOI: 10.1016/j.biochi.2020.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Despite intense research, breast cancer remains the leading cause of cancer-related death in women worldwide, being estrogen receptor-positive (ER+) the most common subtype. Nowadays, aromatase inhibitors (AIs), the selective estrogen receptor modulator (SERM) tamoxifen and the selective estrogen receptor down-regulator (SERD) fulvestrant are used as therapeutic options for ER+ breast cancer, since they interfere directly with the production of estrogens and with the activation of estrogen-dependent signaling pathways. Despite the success of these treatments, the occurrence of resistance limits their clinical efficacy, demanding the development of novel therapies. Recently, multi-target compounds emerged as promising therapeutic strategies for ER+ breast cancer, as they can potentially modulate several important targets simultaneously. In line with this, in this work, the anti-cancer properties and multi-target action of 1,1-Bis(4-hydroxyphenyl)-2-phenylbut-1-ene, tamoxifen bisphenol (1,1-BHPE), were evaluated in an ER+ breast cancer cell model (MCF-7aro cells). Molecular docking analysis predicted that 1,1-BHPE was able to bind to aromatase, ERα and ERβ. In vitro studies showed that, although it did not present anti-aromatase activity, 1,1-BHPE reduced aromatase protein levels and interfered with ERα and ERβ signaling pathways, acting as an ERα antagonist and inducing ERβ up-regulation. Through these mechanisms, 1,1-BHPE was able to impair breast cancer growth and induce apoptosis. This represents an important therapeutic advantage because the main players responsible for estrogen production and signaling are modulated by a single compound. To the best of our knowledge, this is the first study describing the anti-cancer properties of 1,1-BHPE as a multi-target compound specific for ER+ breast cancer.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313, Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313, Porto, Portugal
| | - Ana Oliveira
- LAQV.REQUIMTE, Computational Biochemistry Group, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Tiago V Augusto
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313, Porto, Portugal
| | - Maria João Ramos
- LAQV.REQUIMTE, Computational Biochemistry Group, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Pedro Alexandrino Fernandes
- LAQV.REQUIMTE, Computational Biochemistry Group, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313, Porto, Portugal.
| |
Collapse
|
6
|
Bahrami N, Chang G, Kanaya N, Sauer T, Park D, Loeng M, Gravdehaug B, Chen S, Geisler J. Changes in serum estrogenic activity during neoadjuvant therapy with letrozole and exemestane. J Steroid Biochem Mol Biol 2020; 200:105641. [PMID: 32151708 DOI: 10.1016/j.jsbmb.2020.105641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/29/2022]
Abstract
The aromatase inhibitors (AIs), letrozole (Femar®/Femara®) and exemestane (Aromasin®), are widely used to treat estrogen receptor (ER) positive breast cancer in postmenopausal patients. In the setting of metastatic breast cancer, these drugs may be used after another causing new responses in selected patients after progressing on the first choice. The precise explanation for this "lack of cross resistance" is still missing. NEOLETEXE is a neoadjuvant, randomized, open-label, cross-over trial. Postmenopausal patients with ER-positive, HER-2 negative, locally advanced breast cancer were enrolled. All patients were randomized to treatment starting with either letrozole or exemestane for at least 2 months followed by another 2 months on the alternative AI. The total estrogenic activities in blood samples were determined using the AroER tri-screen assay developed in the Chen laboratory. Using this highly sensitive assay, estrogenic activity was detected at three time points for all patients. Importantly, a significantly higher total estrogenic activity was found during therapy with exemestane compared to letrozole in 21 out of 26 patients. When letrozole was included in the AroER tri-screen assay, the estrogenic activities in most samples collected during exemestane treatment were further reduced, suggesting that low levels of androgens remained in specimens obtained after exemestane treatment. Our results suggest the AroER tri-screen to be a very sensitive method to estimate the overall estrogen-mediated activity in human samples even during therapy with highly potent aromatase inhibitors. In the present study, serum estrogen activity was significantly higher during exemestane therapy when compared to letrozole therapy.
Collapse
Affiliation(s)
- Nazli Bahrami
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway; Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus AHUS, Norway
| | - Daehoon Park
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Marie Loeng
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
| | - Berit Gravdehaug
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus AHUS, Norway.
| |
Collapse
|
7
|
Amaral C, Augusto TV, Almada M, Cunha SC, Correia-da-Silva G, Teixeira N. The potential clinical benefit of targeting androgen receptor (AR) in estrogen-receptor positive breast cancer cells treated with Exemestane. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165661. [PMID: 31891807 DOI: 10.1016/j.bbadis.2019.165661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 01/19/2023]
Abstract
The development of acquired resistance to the aromatase inhibitors (AIs) used in clinic is being considered the major concern in estrogen-receptor positive (ER+) breast cancer therapy. Recently, androgen receptor (AR) has gained attention in the clinical setting, since it has been implicated in AIs-resistance, although, different roles for AR in cell fate have been described. In this work, our group elucidates, for the first time, the oncogenic role of AR in sensitive and resistant ER+ breast cancer cells treated with the potent third-generation steroidal AI Exemestane (Exe). We demonstrate that Exe promotes an overexpression/activation of AR, which has an oncogenic and pro-survival role in Exe-sensitive and Exe-resistant cells. Moreover, we also disclose that targeting AR with bicalutamide (CDX) in Exe-treated cells, enhances the efficacy of this AI in sensitive cells and re-sensitizes resistant cells to Exe treatment. Furthermore, by targeting AR in Exe-resistant cells, it is also possible to block the activation of the ERK1/2 and PI3K cell survival pathways, hamper ERα activation and increase ERβ expression. Thus, this study, highlights a new mechanism involved in Exe-acquired resistance, implicating AR as a key molecule in this setting and suggesting that Exe-resistant cells may have an AR-dependent but ER-independent mechanism. Hence we propose AR antagonism as a potential and attractive therapeutic strategy to overcome Exe-acquired resistance or to enhance the growth inhibitory properties of Exe on ER+ breast cancer cells, improving breast cancer treatment.
Collapse
Affiliation(s)
- Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Tiago V Augusto
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Marta Almada
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV.REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Spinello A, Ritacco I, Magistrato A. Recent advances in computational design of potent aromatase inhibitors: open-eye on endocrine-resistant breast cancers. Expert Opin Drug Discov 2019; 14:1065-1076. [DOI: 10.1080/17460441.2019.1646245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Angelo Spinello
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ida Ritacco
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
9
|
Selli C, Turnbull AK, Pearce DA, Li A, Fernando A, Wills J, Renshaw L, Thomas JS, Dixon JM, Sims AH. Molecular changes during extended neoadjuvant letrozole treatment of breast cancer: distinguishing acquired resistance from dormant tumours. Breast Cancer Res 2019; 21:2. [PMID: 30616553 PMCID: PMC6323855 DOI: 10.1186/s13058-018-1089-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/19/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The risk of recurrence for endocrine-treated breast cancer patients persists for many years or even decades following surgery and apparently successful adjuvant therapy. This period of dormancy and acquired resistance is inherently difficult to investigate; previous efforts have been limited to in-vitro or in-vivo approaches. In this study, sequential tumour samples from patients receiving extended neoadjuvant aromatase inhibitor therapy were characterised as a novel clinical model. METHODS Consecutive tumour samples from 62 patients undergoing extended (4-45 months) neoadjuvant aromatase inhibitor therapy with letrozole were subjected to transcriptomic and proteomic analysis, representing before (≤ 0), early (13-120 days), and long-term (> 120 days) neoadjuvant aromatase inhibitor therapy with letrozole. Patients with at least a 40% initial reduction in tumour size by 4 months of treatment were included. Of these, 42 patients with no subsequent progression were classified as "dormant", and the remaining 20 patients as "acquired resistant". RESULTS Changes in gene expression in dormant tumours begin early and become more pronounced at later time points. Therapy-induced changes in resistant tumours were common features of treatment, rather than being specific to the resistant phenotype. Comparative analysis of long-term treated dormant and resistant tumours highlighted changes in epigenetics pathways including DNA methylation and histone acetylation. The DNA methylation marks 5-methylcytosine and 5-hydroxymethylcytosine were significantly reduced in resistant tumours compared with dormant tissues after extended letrozole treatment. CONCLUSIONS This is the first patient-matched gene expression study investigating long-term aromatase inhibitor-induced dormancy and acquired resistance in breast cancer. Dormant tumours continue to change during treatment whereas acquired resistant tumours more closely resemble their diagnostic samples. Global loss of DNA methylation was observed in resistant tumours under extended treatment. Epigenetic alterations may lead to escape from dormancy and drive acquired resistance in a subset of patients, supporting a potential role for therapy targeted at these epigenetic alterations in the management of resistance to oestrogen deprivation therapy.
Collapse
Affiliation(s)
- Cigdem Selli
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.,Department of Pharmacology, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey
| | - Arran K Turnbull
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.,Edinburgh Breast Unit, Western General Hospital, Edinburgh, UK
| | - Dominic A Pearce
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Ang Li
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Anu Fernando
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.,Edinburgh Breast Unit, Western General Hospital, Edinburgh, UK
| | - Jimi Wills
- Mass Spectrometry Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Lorna Renshaw
- Edinburgh Breast Unit, Western General Hospital, Edinburgh, UK
| | - Jeremy S Thomas
- Edinburgh Breast Unit, Western General Hospital, Edinburgh, UK
| | - J Michael Dixon
- Edinburgh Breast Unit, Western General Hospital, Edinburgh, UK
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.
| |
Collapse
|
10
|
Amaral C, Augusto TV, Tavares-da-Silva E, Roleira FMF, Correia-da-Silva G, Teixeira N. Hormone-dependent breast cancer: Targeting autophagy and PI3K overcomes Exemestane-acquired resistance. J Steroid Biochem Mol Biol 2018; 183:51-61. [PMID: 29791862 DOI: 10.1016/j.jsbmb.2018.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/26/2018] [Accepted: 05/20/2018] [Indexed: 01/15/2023]
Abstract
The leading cause of cancer death in women around the world is breast cancer. The aromatase inhibitors (AIs) are considered - as first-line treatment for estrogen receptor-positive (ER+) breast tumors, in postmenopausal women. Exemestane (Exe) is a powerful steroidal AI, however, despite its therapeutic success, Exe-acquired resistance may occur leading to tumor relapse. Our group previously demonstrated that autophagy acts as a pro-survival process in Exe-induced cell death of ER+ sensitive breast cancer cells. In this work, the role of autophagy and its relationship with the PI3K/AKT/mTOR pathway in Exe-acquired resistance was explored. In that way, the mechanism behind the effects of the combination of Exe with pan-PI3K, or autophagic inhibitors, was studied in a long-term estrogen deprived ER+ breast cancer cell line (LTEDaro cells). Our results indicate that Exe induces autophagy as a cytoprotective mechanism linked to acquired resistance. Moreover, it was demonstrated that by inhibiting autophagy and/or PI3K pathway it is possible to revert Exe-resistance through apoptosis promotion, disruption of cell cycle, and inhibition of cell survival pathways. This work provides new insights into the mechanisms involved in Exe-acquired resistance, pointing autophagy as an attractive therapeutic target to surpass it. Thus, it highlights new targets that together with aromatase inhibition may improve ER+ breast cancer therapy, overcoming AIs-acquired resistance.
Collapse
Affiliation(s)
- Cristina Amaral
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Tiago Vieira Augusto
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Elisiário Tavares-da-Silva
- Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; CIEPQPF Centre for Chemical Processes Engineering and Forest Products, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Fernanda M F Roleira
- Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; CIEPQPF Centre for Chemical Processes Engineering and Forest Products, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
11
|
Exemestane Attenuates Hepatic Fibrosis in Rats by Inhibiting Activation of Hepatic Stellate Cells and Promoting the Secretion of Interleukin 10. J Immunol Res 2017; 2017:3072745. [PMID: 29464186 PMCID: PMC5804406 DOI: 10.1155/2017/3072745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023] Open
Abstract
Exemestane (EXE) is an irreversible steroidal aromatase inhibitor mainly used as an adjuvant endocrine therapy for postmenopausal women suffering from breast cancer. Besides inhibiting aromatase activity, EXE has multiple biological functions, such as antiproliferation, anti-inflammatory, and antioxidant activities which are all involved in hepatic fibrosis. Therefore, we investigated the role of EXE during the progress of hepatic fibrosis. The effect of EXE on liver injury and fibrosis were assessed in two hepatic fibrosis rat models, which were induced by either carbon tetrachloride (CCl4) or bile duct ligation (BDL). The influence of EXE treatment on activation and proliferation of primary rat hepatic stellate cells (HSCs) was observed in vitro. The results showed that EXE attenuated the liver fibrosis by decreasing the collagen deposition and α-SMA expression in vivo and inhibited the activation and proliferation of primary rat HSCs in vitro. Additionally, EXE promoted the secretion of antifibrotic and anti-inflammatory cytokine IL-10 in vivo and in HSC-T6 culture media. In conclusion, our findings reveal a new function of EXE on hepatic fibrosis and prompted its latent application in liver fibrotic-related disease.
Collapse
|
12
|
Amaral C, Varela CL, Maurício J, Sobral AF, Costa SC, Roleira FMF, Tavares-da-Silva EJ, Correia-da-Silva G, Teixeira N. Anti-tumor efficacy of new 7α-substituted androstanes as aromatase inhibitors in hormone-sensitive and resistant breast cancer cells. J Steroid Biochem Mol Biol 2017; 171:218-228. [PMID: 28396197 DOI: 10.1016/j.jsbmb.2017.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/02/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
The majority of breast cancer cases are estrogen receptor positive (ER+). Although, third-generation aromatase inhibitors (AIs) are used as first-line treatment in post-menopausal women, they cause endocrine resistance and bone loss, which limits their success. Therefore, there is a demand to discover new potent molecules, with less toxicity that can circumvent these drawbacks. Our group has previously demonstrated that new 7α-substituted steroidal molecules, 7α-(2ξ,3ξ-epoxypropyl)androsta-1,4-diene-3,17-dione (3), 7α-allylandrost-4-ene-3,17-dione (6), 7α-allylandrost-4-en-17-one (9), 7α-allyl-3-oxoandrosta-1,4-dien-17β-ol (10) and 7α-allylandrosta-1,4-diene-3,17-dione (12) are potent AIs in placental microsomes. In this work, it was investigated their anti-aromatase activity and in vitro effects in sensitive and resistant breast cancer cells. All the steroids efficiently inhibit aromatase in breast cancer cells, allowing to establish new structure-activity relationships for this class of compounds. Moreover, the new AIs can inhibit breast cancer cell growth, by causing cell cycle arrest and apoptosis. The effects of AIs 3 and 12 on sensitive cells were dependent on aromatase inhibition and androgen receptor (AR), while for AI 9 and AI 10 were AR- and ER-dependent, respectively. In addition, it was shown that all the AIs can sensitize resistant cancer cells being their behavior similar to the sensitive cells. In summary, this study contributes to the understanding of the structural modifications in steroidal scaffold that are translated into better aromatase inhibition and anti-tumor properties, providing important information for the rational design/synthesis of more effective AIs. In addition, allowed the discovery of new potent 7α-substituted androstane molecules to inhibit tumor growth and prevent endocrine resistance.
Collapse
Affiliation(s)
- Cristina Amaral
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla L Varela
- Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; CIEPQPF Centre for Chemical Processes Engineering and Forest Products, University of Coimbra, 3030-790 Coimbra, Portugal
| | - João Maurício
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Filipa Sobral
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Faculty of Science and Technology, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Saul C Costa
- Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Fernanda M F Roleira
- Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; CIEPQPF Centre for Chemical Processes Engineering and Forest Products, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Elisiário J Tavares-da-Silva
- Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; CIEPQPF Centre for Chemical Processes Engineering and Forest Products, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Sobral AF, Amaral C, Correia-da-Silva G, Teixeira N. Unravelling exemestane: From biology to clinical prospects. J Steroid Biochem Mol Biol 2016; 163:1-11. [PMID: 26992705 DOI: 10.1016/j.jsbmb.2016.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/29/2016] [Accepted: 03/13/2016] [Indexed: 11/28/2022]
Abstract
Aromatase inhibitors (AIs) are anti-tumor agents used in clinic to treat hormone-dependent breast cancer. AIs block estrogens biosynthesis by inhibiting the enzyme aromatase, preventing tumor progression. Exemestane, a third-generation steroidal AI, belongs to this class of drugs and is currently used in clinic to treat postmenopausal women, due to its high efficacy and good tolerability. Here, its pharmacological and biological aspects as well as its clinical applications and comparison to other endocrine therapeutic agents, are reviewed. It is also focused the benefits and risks of exemestane, drawbacks to be overcome and aspects to be explored.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas 3000-456 Coimbra, Portugal; UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Georgina Correia-da-Silva
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| |
Collapse
|
14
|
Chan HJ, Petrossian K, Chen S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and -resistant breast cancer cells. J Steroid Biochem Mol Biol 2016; 161:73-83. [PMID: 26277097 PMCID: PMC4752924 DOI: 10.1016/j.jsbmb.2015.07.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022]
Abstract
Aromatase and estrogen receptor α (ER) are two key proteins for the proliferation of endocrine-responsive and -resistant breast cancers. Aromatase is an enzyme involved in the conversion of androgen (such as testosterone) to estrogen (such as 17β-estradiol). It is also a very effective therapeutic target for the treatment of endocrine-responsive breast cancer. Comparing endocrine-responsive and -resistant breast cancer, aromatase protein levels do not change significantly. Aromatase activity; however, can be increased via PI3K/Akt/IGFR signaling pathways in endocrine resistant cells. The activity of aromatase has been reported to be modulated by phosphorylation. The ER is an important steroid nuclear receptor in the proliferation of both endocrine-responsive and -resistant cells. Although the mutation or amplification of ER can cause endocrine resistance, it is not commonly found. Some point mutations and translocation events have been characterized and shown to promote estrogen-independent growth. Phosphorylation by cross-talk with growth factor pathways is one of the main mechanisms for ligand-independent activation of ER. Taken together, both ER and aromatase are important in ER-dependent breast cancer and the development of endocrine resistance.
Collapse
Affiliation(s)
- Hei Jason Chan
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States.
| |
Collapse
|
15
|
Ghosh D, Lo J, Egbuta C. Recent Progress in the Discovery of Next Generation Inhibitors of Aromatase from the Structure-Function Perspective. J Med Chem 2016; 59:5131-48. [PMID: 26689671 DOI: 10.1021/acs.jmedchem.5b01281] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human aromatase catalyzes the synthesis of estrogen from androgen with high substrate specificity. For the past 40 years, aromatase has been a target of intense inhibitor discovery research for the prevention and treatment of estrogen-dependent breast cancer. The so-called third generation aromatase inhibitors (AIs) letrozole, anastrozole, and the steroidal exemestane were approved in the U.S. in the late 1990s for estrogen-dependent postmenopausal breast cancer. Efforts to develop better AIs with higher selectivity and lower side effects were handicapped by the lack of an experimental structure of this unique P450. The year 2009 marked the publication of the crystal structure of aromatase purified from human placenta, revealing an androgen-specific active site. The structure has reinvigorated research activities on this fascinating enzyme and served as the catalyst for next generation AI discovery research. Here, we present an account of recent developments in the AI field from the perspective of the enzyme's structure-function relationships.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| | - Jessica Lo
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| | - Chinaza Egbuta
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| |
Collapse
|
16
|
Exemestane metabolites suppress growth of estrogen receptor-positive breast cancer cells by inducing apoptosis and autophagy: A comparative study with Exemestane. Int J Biochem Cell Biol 2015; 69:183-95. [DOI: 10.1016/j.biocel.2015.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/18/2015] [Accepted: 10/23/2015] [Indexed: 02/04/2023]
|
17
|
Varela CL, Amaral C, Tavares da Silva E, Lopes A, Correia-da-Silva G, Carvalho RA, Costa SC, Roleira FM, Teixeira N. Exemestane metabolites: Synthesis, stereochemical elucidation, biochemical activity and anti-proliferative effects in a hormone-dependent breast cancer cell line. Eur J Med Chem 2014; 87:336-45. [DOI: 10.1016/j.ejmech.2014.09.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 01/17/2023]
|
18
|
Amaral C, Varela C, Azevedo M, da Silva ET, Roleira FMF, Chen S, Correia-da-Silva G, Teixeira N. Effects of steroidal aromatase inhibitors on sensitive and resistant breast cancer cells: aromatase inhibition and autophagy. J Steroid Biochem Mol Biol 2013; 135:51-9. [PMID: 23318878 DOI: 10.1016/j.jsbmb.2012.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 01/31/2023]
Abstract
Several therapeutic approaches are used in estrogen receptor positive (ER(+)) breast cancers, being one of them the use of aromatase inhibitors (AIs). Although AIs demonstrate higher efficacy than tamoxifen, they can also exhibit de novo or acquired resistance after prolonged treatment. Recently, we have described the synthesis and biochemical evaluation of four steroidal AIs, 3β-hydroxyandrost-4-en-17-one (1), androst-4-en-17-one (12), 4α,5α-epoxyandrostan-17-one (13a) and 5α-androst-2-en-17-one (16), obtained from modifications in the A-ring of the aromatase substrate, androstenedione. In this study, it was investigated the biological effects of these AIs in different breast cancer cell lines, an ER(+) aromatase-overexpressing human breast cancer cell line (MCF-7aro cells), an estrogen-receptor negative (ER(-)) human breast cancer cell line (SK-BR-3 cells), and a late stage of acquired resistance cell line (LTEDaro cells). The effects of an autophagic inhibitor (3-methyladenine) plus AIs 1, 12, 13a or exemestane in LTEDaro cells were also studied to understand the involvement of autophagy in AI acquired resistance. Our results showed that these steroids inhibit aromatase of MCF-7aro cells and decrease cell viability in a dose- and time-dependent manner. The new AI 1 is the most potent inhibitor, although the AI 12 demonstrates to be the most effective in decreasing cell viability. Besides, and in advantage over exemestane, AIs 12 and 13a also reduced LTEDaro cells viability. The use of the autophagic inhibitor allowed AIs to diminish viability of LTEDaro cells, presenting a similar behavior to the sensitive cells. Thus, inhibition of autophagy may sensitize hormone-resistant cancer cells to anti-estrogen therapies.
Collapse
Affiliation(s)
- Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wong C, Chen S. The development, application and limitations of breast cancer cell lines to study tamoxifen and aromatase inhibitor resistance. J Steroid Biochem Mol Biol 2012; 131:83-92. [PMID: 22265958 PMCID: PMC3369003 DOI: 10.1016/j.jsbmb.2011.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/28/2011] [Accepted: 12/12/2011] [Indexed: 12/20/2022]
Abstract
Estrogen plays important roles in hormone receptor-positive breast cancer. Endocrine therapies, such as the antiestrogen tamoxifen, antagonize the binding of estrogen to estrogen receptor (ER), whereas aromatase inhibitors (AIs) directly inhibit the production of estrogen. Understanding the mechanisms of endocrine resistance and the ways in which we may better treat these types of resistance has been aided by the development of cellular models for resistant breast cancers. In this review, we will discuss what is known thus far regarding both de novo and acquired resistance to tamoxifen or AIs. Our laboratory has generated a collection of AI- and tamoxifen-resistant cell lines in order to comprehensively study the individual types of resistance mechanisms. Through the use of microarray analysis, we have determined that our cell lines resistant to a particular AI (anastrozole, letrozole, or exemestane) or tamoxifen are distinct from each other, indicating that these mechanisms can be quite complex. Furthermore, we will describe two novel de novo AI-resistant cell lines that were generated from our laboratory. Initial characterization of these cells reveals that they are distinct from our acquired AI-resistant cell models. In addition, we will review potential therapies which may be useful for overcoming resistant breast cancers through studies using endocrine resistant cell lines. Finally, we will discuss the benefits and shortcomings of cell models. Together, the information presented in this review will provide us a better understanding of acquired and de novo resistance to tamoxifen and AI therapies, the use of appropriate cell models to better study these types of breast cancer, which are valuable for identifying novel treatments and strategies for overcoming both tamoxifen and AI-resistant breast cancers.
Collapse
Affiliation(s)
- Cynthie Wong
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
20
|
Chen S. An "omics" approach to determine the mechanisms of acquired aromatase inhibitor resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:347-52. [PMID: 21332390 DOI: 10.1089/omi.2010.0097] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aromatase inhibitors (AIs) are the major types of drugs to treat hormone-dependent breast cancer. Although these drugs work effectively, cancer still recurs in many patients after treatment as a result of acquired resistance to the AIs. To characterize the resistant mechanisms, a set of MCF-7aro cell lines that acquired resistance to the AIs was generated. Through an "Omics" approach, we found that the resistance mechanisms of the three AIs (anastrozole, letrozole, and exemestane) differ and activation of estrogen receptor alpha (ERα) is critical for acquired AI resistance. Our results reveal that growth factor/signal transduction pathways are upregulated after ERα-dependent pathways are suppressed by AIs, and ERα can then be activated through different crosstalk mechanisms.
Collapse
Affiliation(s)
- Shiuan Chen
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, California, USA.
| |
Collapse
|
21
|
Johnson JJ, Syed DN, Suh Y, Heren CR, Saleem M, Siddiqui IA, Mukhtar H. Disruption of androgen and estrogen receptor activity in prostate cancer by a novel dietary diterpene carnosol: implications for chemoprevention. Cancer Prev Res (Phila) 2010; 3:1112-23. [PMID: 20736335 DOI: 10.1158/1940-6207.capr-10-0168] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging data are suggesting that estrogens, in addition to androgens, may also be contributing to the development of prostate cancer (PCa). In view of this notion, agents that target estrogens, in addition to androgens, may be a novel approach for PCa chemoprevention and treatment. Thus, the identification and development of nontoxic dietary agents capable of disrupting androgen receptor (AR) in addition to estrogen receptor (ER) could be extremely useful in the management of PCa. Through molecular modeling, we found that carnosol, a dietary diterpene, fits within the ligand-binding domain of both AR and ER-alpha. Using a time-resolved fluorescence resonance energy transfer assay, we found that carnosol interacts with both AR and ER-alpha and additional experiments confirmed that it functions as a receptor antagonist with no agonist effects. LNCaP, 22Rv1, and MCF7 cells treated with carnosol (20-40 mumol/L) showed decreased protein expression of AR and ER-alpha. Oral administration of carnosol at 30 mg/kg 5 days weekly for 28 days to 22Rv1 PCa xenografted mice suppressed tumor growth by 36% (P = 0.028) and was associated with a decrease in serum prostate-specific antigen by 26% (P = 0.0042). These properties make carnosol unique to any known antiandrogen or antiestrogen investigated thus far for the simultaneous disruption of AR and ER-alpha. We suggest that carnosol may be developed or chemically modified through more rigorous structure-activity relationship studies for a new class of investigational agents-a dual AR/ER modulator.
Collapse
Affiliation(s)
- Jeremy J Johnson
- Division of Pharmacy Practice, University of Wisconsin School of Pharmacy, 1031 Rennebohm Hall, Madison, WI 53705, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Masri S, Phung S, Wang X, Chen S. Molecular characterization of aromatase inhibitor-resistant, tamoxifen-resistant and LTEDaro cell lines. J Steroid Biochem Mol Biol 2010; 118:277-82. [PMID: 19897035 PMCID: PMC2836255 DOI: 10.1016/j.jsbmb.2009.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/27/2009] [Indexed: 01/07/2023]
Abstract
To determine potential genes involved in mediating resistance to aromatase inhibitors (AIs), a microarray study was performed using MCF-7aro (aromatase overexpressing) cells that are resistant to letrozole (T+LET R), anastrozole (T+ANA R) and exemestane (T+EXE R), as well as LTEDaro and tamoxifen-resistant (T+TAM R) lines for comparison. Based on hierarchical clustering, estrogen-responsive genes were found to be differentially expressed in AI-resistant lines versus LTEDaro and T+TAM R. Additional genome-wide analysis showed that gene expression profiles of the non-steroidal AI-resistant lines were most closely correlated and that T+EXE R lines exhibit differing profiles. Also, LTEDaro and T+TAM R lines are inherently different from expression profiles of AI-resistant lines. Further characterization of these resistant lines revealed that T+LET R, T+ANA R and LTEDaro cells contain a constitutively active estrogen receptor alpha (ERalpha) that does not require the ligand estrogen for activation. Ligand-independent activation of ERalpha does not activate identical estrogen-responsive gene profiles in AI-resistant lines as in LTEDaro lines, thereby establishing differing mechanisms of resistance. This ligand-independent activation of ER was not observed in the parental cell lines MCF-7aro, T+EXE R or T+TAM R cells. Based on the steroidal structure of EXE, our laboratory has shown that this AI has weak estrogen-like properties, and that EXE resistance involves an ER-dependent crosstalk with EGFR growth factor signaling. Recent studies in our laboratory pertaining to pre-clinical models of AI treatment revealed that intermittent use of EXE delays the onset of acquired resistance in comparison to continuous treatment. Specific molecular mechanisms involved in intermittent use of EXE are currently being explored, based on microarray gene expression profiling. Lastly, our laboratory has initiated a study of microRNAs and their potential role in regulating target genes involved in AI-resistance. Overall, we propose a model of acquired resistance that progresses from hormone-dependence (T+TAM R and T+EXE R) to hormone-independence (T+LET R and T+ANA R), eventually resulting in hormone-independence that does not rely on conventional ER signaling (LTEDaro).
Collapse
Affiliation(s)
- Selma Masri
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | | | | |
Collapse
|
23
|
Koutras A, Giannopoulou E, Kritikou I, Antonacopoulou A, Evans TRJ, Papavassiliou AG, Kalofonos H. Antiproliferative effect of exemestane in lung cancer cells. Mol Cancer 2009; 8:109. [PMID: 19930708 PMCID: PMC2789046 DOI: 10.1186/1476-4598-8-109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 11/24/2009] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent evidence suggests that estrogen signaling may be involved in the pathogenesis of non-small cell lung cancer (NSCLC). Aromatase is an enzyme complex that catalyses the final step in estrogen synthesis and is present in several tissues, including the lung. In the current study we investigated the activity of the aromatase inhibitor exemestane in human NSCLC cell lines H23 and A549. RESULTS Aromatase expression was detected in both cell lines. H23 cells showed lower protein and mRNA levels of aromatase, compared to A549 cells. Exemestane decreased cell proliferation and increased apoptosis in both cell lines, 48 h after its application, with A549 exhibiting higher sensitivity than H23 cells. Aromatase protein and mRNA levels were not affected by exemestane in A549 cells, whereas an increase in both protein and mRNA levels was observed in H23 cells, 48 h after exemestane application. Moreover, an increase in cAMP levels was found in both cell lines, 15 min after the administration of exemestane. In addition, we studied the effect of exemestane on epidermal growth factor receptor (EGFR) localization and activation. Exemestane increased EGFR activation 15 min after its application in H23 cells. Furthermore, we demonstrated a translocation of EGFR from cell membrane, 24 h after the addition of exemestane in H23 cells. No changes in EGFR activation or localization were observed in A549 cells. CONCLUSION Our findings suggest an antiproliferative effect of exemestane on NSCLC cell lines. Exemestane may be more effective in cells with higher aromatase levels. Further studies are needed to assess the activity of exemestane in NSCLC.
Collapse
Affiliation(s)
- Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital of Patras, Rion 26504, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, Rion 26504, Greece
| | - Ismini Kritikou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, Rion 26504, Greece
| | - Anna Antonacopoulou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, Rion 26504, Greece
| | - TR Jeffry Evans
- University of Glasgow, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | - Haralabos Kalofonos
- Division of Oncology, Department of Medicine, University Hospital of Patras, Rion 26504, Greece
| |
Collapse
|