1
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
2
|
Liu X, Zhu Y, Huang W, Chen J, Lan J, Long X, Zhou J. MYG1 interacts with HSP90 to promote breast cancer progression through Wnt/β-catenin and Notch signaling pathways. Exp Cell Res 2025; 446:114448. [PMID: 39956425 DOI: 10.1016/j.yexcr.2025.114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND As an evolutionarily conserved gene involved in embryonic development, cell differentiation, and immune metabolism, MYG1 exhibits a dynamic expression pattern related to development in human and mouse embryonic tissues, especially upregulates in undifferentiated or pluripotent stem cells. However, MYG1 has been poorly studied in breast cancer and its functional mechanism still remains unclear. METHOD Immunohistochemistry and immunofluorescence were used to study MYG1 expression and localization in breast cancer. Lentivirus transfection combined with CCK8, colony formation, matrix gel experiment and breast fat pad tumor formation in nude mice were used for in vivo and in vitro functional assessment. GSEA enrichment analysis, immunofluorescence and Western blot were conducted to explore functional mechanism. RESULT MYG1 expression was upregulated in breast cancer and its higher expression correlated with a variety of clinicopathological characteristics indicating poor prognosis. In vitro and in vivo experiments showed that overexpression of MYG1 promoted breast cancer cells proliferation, migration, invasion and tumorigenesis, while downregulation of MYG1 had an opposite effect. Mechanistically, MYG1 interacted with HSP90 to significantly activate Wnt/β-catenin and Notch signaling pathways in breast cancer cells, thus promoting EMT, cell cycle process and breast cancer progression. CONCLUSION MYG1 is highly expressed in breast cancer and functions as an oncogene. Mechanistically, MYG1 interacts with HSP90 to accelerate EMT and cell cycle process by activating both Wnt/β-catenin and Notch signaling pathways.
Collapse
Affiliation(s)
- Xuming Liu
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yurong Zhu
- Department of Pathology, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, 78 Wandao Road, Dongguan, 523039, China; Dongguan Clinical Pathology Diagnosis Center, 14 Yuhua Road, Dongguan, 523001, China; Dongguan Key Laboratory of Clinical Pathology, 14 Yuhua Road, Dongguan, 523001, China
| | - Wenqing Huang
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Jianxiong Chen
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Jiawen Lan
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xiaoli Long
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China; Department of Pathology, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, 78 Wandao Road, Dongguan, 523039, China; Dongguan Clinical Pathology Diagnosis Center, 14 Yuhua Road, Dongguan, 523001, China; Dongguan Key Laboratory of Clinical Pathology, 14 Yuhua Road, Dongguan, 523001, China.
| |
Collapse
|
3
|
Shen Q, Murakami K, Sotov V, Butler M, Ohashi PS, Reedijk M. Inhibition of Notch enhances efficacy of immune checkpoint blockade in triple-negative breast cancer. SCIENCE ADVANCES 2024; 10:eado8275. [PMID: 39475614 PMCID: PMC11524187 DOI: 10.1126/sciadv.ado8275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Aberrant Notch, which is a defining feature of triple-negative breast cancer (TNBC) cells, regulates intercellular communication in the tumor immune microenvironment (TIME). This includes tumor-associated macrophage (TAM) recruitment through Notch-dependent cytokine secretion, contributing to an immunosuppressive TIME. Despite the low response rate of TNBC to immune checkpoint blockade (ICB), here, we report that inhibition of Notch-driven cytokine-mediated programs reduces TAMs and induces responsiveness to sequentially delivered ICB. This is characterized by the emergence of GrB+ cytotoxic T lymphocytes (CTLs) in the primary tumor. A more impressive effect of sequential treatment is observed in the lung where TAM depletion and increased CTLs are accompanied by near-complete abolition of metastases. This is due to (i) therapeutic reduction in Notch-dependent, prometastatic circulating factors released by the primary tumor, and (ii) elevated PD ligand 1 (PD-L1) in lung metastases, rendering them profoundly sensitive to ICB. These findings highlight the potential of combination cytokine inhibition and ICB as an immunotherapeutic strategy in TNBC.
Collapse
Affiliation(s)
- Qiang Shen
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Kiichi Murakami
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Valentin Sotov
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Marcus Butler
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Room 7205, Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario M5G 2M9, Canada
| | - Michael Reedijk
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario M5G 2M9, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 8-411, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
4
|
Lee B, Park Y, Lee Y, Kwon S, Shim J. Triptolide, a Cancer Cell Proliferation Inhibitor, Causes Zebrafish Muscle Defects by Regulating Notch and STAT3 Signaling Pathways. Int J Mol Sci 2024; 25:4675. [PMID: 38731894 PMCID: PMC11083231 DOI: 10.3390/ijms25094675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.
Collapse
Affiliation(s)
- Byongsun Lee
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yongjin Park
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Younggwang Lee
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Seyoung Kwon
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Jaekyung Shim
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| |
Collapse
|
5
|
Braune EB, Geist F, Tang X, Kalari K, Boughey J, Wang L, Leon-Ferre RA, D'Assoro AB, Ingle JN, Goetz MP, Kreis J, Wang K, Foukakis T, Seshire A, Wienke D, Lendahl U. Identification of a Notch transcriptomic signature for breast cancer. Breast Cancer Res 2024; 26:4. [PMID: 38172915 PMCID: PMC10765899 DOI: 10.1186/s13058-023-01757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Dysregulated Notch signalling contributes to breast cancer development and progression, but validated tools to measure the level of Notch signalling in breast cancer subtypes and in response to systemic therapy are largely lacking. A transcriptomic signature of Notch signalling would be warranted, for example to monitor the effects of future Notch-targeting therapies and to learn whether altered Notch signalling is an off-target effect of current breast cancer therapies. In this report, we have established such a classifier. METHODS To generate the signature, we first identified Notch-regulated genes from six basal-like breast cancer cell lines subjected to elevated or reduced Notch signalling by culturing on immobilized Notch ligand Jagged1 or blockade of Notch by γ-secretase inhibitors, respectively. From this cadre of Notch-regulated genes, we developed candidate transcriptomic signatures that were trained on a breast cancer patient dataset (the TCGA-BRCA cohort) and a broader breast cancer cell line cohort and sought to validate in independent datasets. RESULTS An optimal 20-gene transcriptomic signature was selected. We validated the signature on two independent patient datasets (METABRIC and Oslo2), and it showed an improved coherence score and tumour specificity compared with previously published signatures. Furthermore, the signature score was particularly high for basal-like breast cancer, indicating an enhanced level of Notch signalling in this subtype. The signature score was increased after neoadjuvant treatment in the PROMIX and BEAUTY patient cohorts, and a lower signature score generally correlated with better clinical outcome. CONCLUSIONS The 20-gene transcriptional signature will be a valuable tool to evaluate the response of future Notch-targeting therapies for breast cancer, to learn about potential effects on Notch signalling from conventional breast cancer therapies and to better stratify patients for therapy considerations.
Collapse
Affiliation(s)
- Eike-Benjamin Braune
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Xiaojia Tang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Krishna Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Judy Boughey
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | | | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Kang Wang
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
7
|
Liu D, Shi Y, Chen H, Nisar MA, Jabara N, Langwinski N, Mattson S, Nagaoka K, Bai X, Lu S, Huang CK. Molecular profiling reveals potential targets in cholangiocarcinoma. World J Gastroenterol 2023; 29:4053-4071. [PMID: 37476584 PMCID: PMC10354586 DOI: 10.3748/wjg.v29.i25.4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a devastating malignancy and has a very poor prognosis if tumors spread outside the liver. Understanding the molecular mechanisms underlying the CCA progression will likely yield therapeutic approaches toward treating this deadly disease. AIM To determine the molecular pathogenesis in CCA progression. METHODS In silico analysis, in vitro cell culture, CCA transgenic animals, histological, and molecular assays were adopted to determine the molecular pathogenesis. RESULTS The transcriptomic data of human CCA samples were retrieved from The Cancer Genome Atlas (TGCA, CHOL), European Bioinformatics Institute (EBI, GAD00001001076), and Gene Expression Omnibus (GEO, GSE107943) databases. Using Gene set enrichment analysis, the cell cycle and Notch related pathways were demonstrated to be significantly activated in CCA in TCGA and GEO datasets. We, through differentially expressed genes, found several cell cycle and notch associated genes were significantly up-regulated in cancer tissues when compared with the non-cancerous control samples. The associated genes, via quantitative real-time PCR and western blotting assays, were further examined in normal human cholangiocytes, CCA cell lines, mouse normal bile ducts, and mouse CCA tumors established by specifically depleting P53 and expressing KrasG12D mutation in the liver. Consistently, we validated that the cell cycle and Notch pathways are up-regulated in CCA cell lines and mouse CCA tumors. Interestingly, targeting cell cycle and notch pathways using small molecules also exhibited significant beneficial effects in controlling tumor malignancy. More importantly, we demonstrated that several cell cycle and Notch associated genes are significantly associated with poor overall survival and disease-free survival using the Log-Rank test. CONCLUSION In summary, our study comprehensively analyzed the gene expression pattern of CCA samples using publicly available datasets and identified the cell cycle and Notch pathways are potential therapeutic targets in this deadly disease.
Collapse
Affiliation(s)
- Dan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yang Shi
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hongze Chen
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Muhammad Azhar Nisar
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Nicholas Jabara
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Noah Langwinski
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sophia Mattson
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Katsuya Nagaoka
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Xuewei Bai
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Shaolei Lu
- Department of Pathology, Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Chiung-Kuei Huang
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
8
|
El Hejjioui B, Lamrabet S, Amrani Joutei S, Senhaji N, Bouhafa T, Malhouf MA, Bennis S, Bouguenouch L. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13111949. [PMID: 37296801 DOI: 10.3390/diagnostics13111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer lacking hormone receptor expression and HER2 gene amplification. TNBC represents a heterogeneous subtype of breast cancer, characterized by poor prognosis, high invasiveness, high metastatic potential, and a tendency to relapse. In this review, the specific molecular subtypes and pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the biomarker characteristics of TNBC, namely: regulators of cell proliferation and migration and angiogenesis, apoptosis-regulating proteins, regulators of DNA damage response, immune checkpoints, and epigenetic modifications. This paper also focuses on omics approaches to exploring TNBC, such as genomics to identify cancer-specific mutations, epigenomics to identify altered epigenetic landscapes in cancer cells, and transcriptomics to explore differential mRNA and protein expression. Moreover, updated neoadjuvant treatments for TNBC are also mentioned, underlining the role of immunotherapy and novel and targeted agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Salma Lamrabet
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Sarah Amrani Joutei
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | - Nadia Senhaji
- Faculty of Sciences, Moulay Ismail University, Meknès 50000, Morocco
| | - Touria Bouhafa
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| |
Collapse
|
9
|
Pandey P, Khan F, Choi M, Singh SK, Kang HN, Park MN, Ko SG, Sahu SK, Mazumder R, Kim B. Review deciphering potent therapeutic approaches targeting Notch signaling pathway in breast cancer. Biomed Pharmacother 2023; 164:114938. [PMID: 37267635 DOI: 10.1016/j.biopha.2023.114938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
In the current period of drug development, natural products have provided an unrivaled supply of anticancer medications. By modifying the cancer microenvironment and various signaling pathways, natural products and their derivatives and analogs play a significant role in cancer treatment. These substances are effective against several signaling pathways, particularly the cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch, Wnt, and Hedgehog pathways). Natural products have a long history, but more research is needed to understand their current function in the research and development of cancer treatments and the potential for natural products to serve as a significant source of therapeutic agents in the future. Several target-specific anticancer medications failed to treat cancer, necessitating research into natural compounds with multiple target properties. To help develop a better treatment plan for managing breast cancer, this review has outlined the anticancerous potential of several therapeutic approaches targeting the notch signaling system in breast tumors.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sujeet Kumar Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sanjeev Kumar Sahu
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rupa Mazumder
- Noida Institute of Engineering & Technology (Pharmacy Institute), Greater Noida 201306, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
10
|
NOTCH Signaling in Osteosarcoma. Curr Issues Mol Biol 2023; 45:2266-2283. [PMID: 36975516 PMCID: PMC10047431 DOI: 10.3390/cimb45030146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The combination of neoadjuvant chemotherapy and surgery has been promoted for the treatment of osteosarcoma; however, the local recurrence and lung metastasis rates remain high. Therefore, it is crucial to explore new therapeutic targets and strategies that are more effective. The NOTCH pathway is not only involved in normal embryonic development but also plays an important role in the development of cancers. The expression level and signaling functional status of the NOTCH pathway vary in different histological types of cancer as well as in the same type of cancer from different patients, reflecting the distinct roles of the Notch pathway in tumorigenesis. Studies have reported abnormal activation of the NOTCH signaling pathway in most clinical specimens of osteosarcoma, which is closely related to a poor prognosis. Similarly, studies have reported that NOTCH signaling affected the biological behavior of osteosarcoma through various molecular mechanisms. NOTCH-targeted therapy has shown potential for the treatment of osteosarcoma in clinical research. After the introduction of the composition and biological functions of the NOTCH signaling pathway, the review paper discussed the clinical significance of dysfunction in osteosarcoma. Then the paper reviewed the recent relevant research progress made both in the cell lines and in the animal models of osteosarcoma. Finally, the paper explored the potential of the clinical application of NOTCH-targeted therapy for the treatment of osteosarcoma.
Collapse
|
11
|
Re-Sensitizing Cancer Stem Cells to Conventional Chemotherapy Agents. Int J Mol Sci 2023; 24:ijms24032122. [PMID: 36768445 PMCID: PMC9917165 DOI: 10.3390/ijms24032122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer stem cells are found in many cancer types. They comprise a distinct subpopulation of cells within the tumor that exhibit properties of stem cells. They express a number of cell surface markers, such as CD133, CD44, ALDH, and EpCAM, as well as embryonic transcription factors Oct4, Nanog, and SOX2. CSCs are more resistant to conventional chemotherapy and can potentially drive tumor relapse. Therefore, it is essential to understand the molecular mechanisms that drive chemoresistance and to target them with specific therapy effectively. Highly conserved developmental signaling pathways such as Wnt, Hedgehog, and Notch are commonly reported to play a role in CSCs chemoresistance development. Studies show that particular pathway inhibitors combined with conventional therapy may re-establish sensitivity to the conventional therapy. Another significant contributor of chemoresistance is a specific tumor microenvironment. Surrounding stroma in the form of cancer-associated fibroblasts, macrophages, endothelial cells, and extracellular matrix components produce cytokines and other factors, thus creating a favorable environment and decreasing the cytotoxic effects of chemotherapy. Anti-stromal agents may potentially help to overcome these effects. Epigenetic changes and autophagy were also among the commonly reported mechanisms of chemoresistance. This review provides an overview of signaling pathway components involved in the development of chemoresistance of CSCs and gathers evidence from experimental studies in which CSCs can be re-sensitized to conventional chemotherapy agents across different cancer types.
Collapse
|
12
|
Rajput S, Sharma PK, Malviya R. Biomarkers and Treatment Strategies for Breast Cancer Recurrence. Curr Drug Targets 2023; 24:1209-1220. [PMID: 38164731 DOI: 10.2174/0113894501258059231103072025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
Despite recent treatment advancements, breast cancer remains a life-threatening disease. Although treatment is successful in the early stages, a significant proportion of individuals with breast cancer eventually experience a recurrence of the disease. Breast tumour recurrence poses a significant medical issue. Despite tumours being a primary cause of mortality, there remains a limited understanding of the fundamental mechanisms underlying tumour recurrence. The majority of the time, after surgery or medical treatment, this metastatic disease manifests itself after the disease is undiagnosed for a considerable amount of time. This phenomenon is commonly referred to as a relapse or recurrence. Metastatic breast cancer has the potential to recur at varying intervals, ranging from a few months to several decades following the initial diagnosis and treatment. This article aimed to summarise the primary causes of breast cancer recurrence and highlight the key issues that need to be addressed in order to effectively decrease the mortality rate among breast cancer patients. This article discusses various therapeutic approaches currently employed and emerging treatment strategies that hold the potential for the complete cure of cancer.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
13
|
JAG1 is associated with the prognosis and metastasis in breast cancer. Sci Rep 2022; 12:21986. [PMID: 36539520 PMCID: PMC9768120 DOI: 10.1038/s41598-022-26241-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Jagged canonical Notch ligand 1 (JAG1) regulates the progression of many cancers by the Notch signaling pathway, but its role in breast cancer (BC) remains unclear. In this research, JAG1 protein expression in BC tissues was detected by immunohistochemistry. The association between JAG1 and clinical significance was analyzed. The effect of JAG1 on malignant behaviors of BC cells was demonstrated by in vitro experiments. JAG1 expression in BC tissues was higher than that in para-carcinoma tissues. High JAG1 expression was significantly linked to advanced lymph node metastasis, distant metastasis, and the TNM stage. JAG1 was an independent prognostic factor for BC patients. JAG1 knockdown inhibited the proliferation, motility, migration, and invasion of BC cells, and weakened adhesion and penetration abilities to the blood-brain barrier, whereas JAG1 overexpression had the opposite effects. JAG1 has the potential to be a prognostic marker and therapeutic target for BC patients.
Collapse
|
14
|
Yousefi H, Bahramy A, Zafari N, Delavar MR, Nguyen K, Haghi A, Kandelouei T, Vittori C, Jazireian P, Maleki S, Imani D, Moshksar A, Bitaraf A, Babashah S. Notch signaling pathway: a comprehensive prognostic and gene expression profile analysis in breast cancer. BMC Cancer 2022; 22:1282. [PMID: 36476410 PMCID: PMC9730604 DOI: 10.1186/s12885-022-10383-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a complex disease exhibiting a great degree of heterogeneity due to different molecular subtypes. Notch signaling regulates the differentiation of breast epithelial cells during normal development and plays a crucial role in breast cancer progression through the abnormal expression of the Notch up-and down-stream effectors. To date, there are only a few patient-centered clinical studies using datasets characterizing the role of Notch signaling pathway regulators in breast cancer; thus, we investigate the role and functionality of these factors in different subtypes using publicly available databases containing records from large studies. High-throughput genomic data and clinical information extracted from TCGA were analyzed. We performed Kaplan-Meier survival and differential gene expression analyses using the HALLMARK_NOTCH_SIGNALING gene set. To determine if epigenetic regulation of the Notch regulators contributes to their expression, we analyzed methylation levels of these factors using the TCGA HumanMethylation450 Array data. Notch receptors and ligands expression is generally associated with the tumor subtype, grade, and stage. Furthermore, we showed gene expression levels of most Notch factors were associated with DNA methylation rate. Modulating the expression levels of Notch receptors and effectors can be a potential therapeutic approach for breast cancer. As we outline herein, elucidating the novel prognostic and regulatory roles of Notch implicate this pathway as an essential mediator controlling breast cancer progression.
Collapse
Affiliation(s)
- Hassan Yousefi
- Biochemistry & Molecular Biology, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, USA
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Zafari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Atousa Haghi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Kandelouei
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Cecilia Vittori
- Louisiana State University Health Sciences Center (LSUHSC), and Stanley S. Scott Cancer Center, New Orleans, LA, USA
| | - Parham Jazireian
- Department of Biology, University Campus 2, University of Guilan, Rasht, Iran
| | - Sajad Maleki
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amin Moshksar
- Interventional Radiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran.
| |
Collapse
|
15
|
Gómez-Archila JD, Espinosa-García AM, Palacios-Reyes C, Trujillo-Cabrera Y, Mejía ALS, González AVDA, Rangel-López E, Alonso-Themann PG, Solís NDS, Hernández-Zavala A, López PG, Contreras-Ramos A, Palma-Lara I. NOTCH expression variability and relapse of breast cancer in high-risk groups. Am J Med Sci 2022; 364:583-594. [PMID: 35508283 DOI: 10.1016/j.amjms.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/21/2021] [Accepted: 12/17/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND In regards to breast cancer (BC), survival or disease-free periods are still compromised mainly in Triple Negative (TN) and HER2 tumors. The participation of estrogen receptor (ER) has been reported as crucial in the signaling pathways, including the NOTCH pathway. The study was aimed to evaluate the expression of NOTCH1 and NOTCH3 in BC and its relationship with the presence of ER, as well as with relapses. METHODS NOTCH1 and NOTCH3 expression was evaluated in BC using Oncomine database, Breast Cancer Gene Expression Miner database and Kaplan Meier Plotter. Subsequently, detection of NOTCH1 and NOTCH3 in 100 paraffin-embedded BC samples from Mexican patients was achieved by immunohistochemistry (IHC) and RT-qPCR, a group of benign breast tumors were included as controls. Relapses were evaluated by BC subtypes and their relationship with NOTCH1 and NOTCH3 expression, as well as with ER expression. RESULTS The analyses from public databases of TN and HER2 groups, which are estrogen receptor-negative (ERN), revealed NOTCH1 and NOTCH3 expression variability. The overexpression was associated with lower relapse-free survival (P = 0.00019). These data were concordant with results from tumor samples of patients included in this study, which showed overexpression of NOTCH1 and NOTCH3 in ERN tumors, as well as lower relapse-free survival (P < 0.0001). CONCLUSIONS NOTCH1 and NOTCH3 were found to be overexpressed mainly in ERN tumors. HER2 and TN groups, are related to higher relapse rates. Therefore, anti-NOTCH therapy could be justified and implemented in conventional treatments of high-risk BC groups.
Collapse
Affiliation(s)
- José Damián Gómez-Archila
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Santo Tomás, Ciudad de México 11340, Mexico; Servicio de Oncología Quirúrgica, Servicio de Patología, Hospital de Gineco-Obstetricia No.3, IMSS, Centro Médico La Raza, Ciudad de México, Mexico
| | | | | | | | - Ana Lilia Sandoval Mejía
- Servicio de Oncología Quirúrgica, Servicio de Patología, Hospital de Gineco-Obstetricia No.3, IMSS, Centro Médico La Raza, Ciudad de México, Mexico
| | - Ana Victoria De Alba González
- Servicio de Oncología Quirúrgica, Servicio de Patología, Hospital de Gineco-Obstetricia No.3, IMSS, Centro Médico La Raza, Ciudad de México, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | | | - Nereo Damaso Sandoval Solís
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Santo Tomás, Ciudad de México 11340, Mexico
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Santo Tomás, Ciudad de México 11340, Mexico
| | - Pedro Grajeda López
- Servicio de Cirugía Plástica y Reconstructiva, Hospital de Especialidades, IMSS, Centro Médico La Raza, Ciudad de México, Mexico
| | - Alejandra Contreras-Ramos
- Laboratorio de Investigación de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez (HIMFG), Ciudad de México, Mexico
| | - Icela Palma-Lara
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Santo Tomás, Ciudad de México 11340, Mexico.
| |
Collapse
|
16
|
Pongjantarasatian S, Nowwarote N, Rotchanakitamnuai V, Srirodjanakul W, Saehun R, Janebodin K, Manokawinchoke J, Fournier BPJ, Osathanon T. A γ-Secretase Inhibitor Attenuates Cell Cycle Progression and Invasion in Human Oral Squamous Cell Carcinoma: An In Vitro Study. Int J Mol Sci 2022; 23:8869. [PMID: 36012128 PMCID: PMC9408752 DOI: 10.3390/ijms23168869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is associated with many human malignancies, including oral squamous cell carcinoma (OSCC). However, the exact function of Notch signaling in OSCC remains unclear. Here, we investigated the effect of Notch signaling inhibition using a γ-secretase inhibitor (DAPT) on OSCC behaviours in vitro. Bioinformatic analysis of public-available gene expression profiles revealed the dysregulation of the Notch signaling pathway in OSCC compared with normal tissues, indicating the role of Notch signaling in OSCC regulation. RNA sequencing analysis of DAPT-treated human OSCC cells revealed the dysregulation of genes related to cell cycle-related pathways. Blocking Notch signaling significantly inhibited cell proliferation. DAPT-induced G0/G1 cell cycle arrest induced cell apoptosis. Furthermore, cell migration and invasion were also reduced in DAPT-treated cells. These findings indicate that Notch signaling activation participates in OSCC regulation by promoting cell growth, cell cycle progression, cell migration, and invasion. These mechanisms could facilitate OSCC progression. These results imply the potential use of Notch signaling inhibitors as a candidate adjuvant treatment in OSCC patients.
Collapse
Affiliation(s)
- Sarai Pongjantarasatian
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nunthawan Nowwarote
- Department of Oral Biology, Faculty of Dentistry, Universite Paris Cite, 75006 Paris, France
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Universite Paris Cite, Sorbonne Universite, 75006 Paris, France
| | - Varumporn Rotchanakitamnuai
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Watcharee Srirodjanakul
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ritmongkol Saehun
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kajohnkiart Janebodin
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Jeeranan Manokawinchoke
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P. J. Fournier
- Department of Oral Biology, Faculty of Dentistry, Universite Paris Cite, 75006 Paris, France
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Universite Paris Cite, Sorbonne Universite, 75006 Paris, France
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
17
|
Roles of Notch Signaling in the Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23116241. [PMID: 35682918 PMCID: PMC9181414 DOI: 10.3390/ijms23116241] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The Notch signaling pathway is an architecturally simple signaling mechanism, well known for its role in cell fate regulation during organ development and in tissue homeostasis. In keeping with its importance for normal development, dysregulation of Notch signaling is increasingly associated with different types of tumors, and proteins in the Notch signaling pathway can act as oncogenes or tumor suppressors, depending on the cellular context and tumor type. In addition to a role as a driver of tumor initiation and progression in the tumor cells carrying oncogenic mutations, it is an emerging realization that Notch signaling also plays a role in non-mutated cells in the tumor microenvironment. In this review, we discuss how aberrant Notch signaling can affect three types of cells in the tumor stroma-cancer-associated fibroblasts, immune cells and vascular cells-and how this influences their interactions with the tumor cells. Insights into the roles of Notch in cells of the tumor environment and the impact on tumor-stroma interactions will lead to a deeper understanding of Notch signaling in cancer and inspire new strategies for Notch-based tumor therapy.
Collapse
|
18
|
Meng J, Jiang YZ, Zhao S, Tao Y, Zhang T, Wang X, Zhang Y, Sun K, Yuan M, Chen J, Wei Y, Lan X, Chen M, David CJ, Chang Z, Guo X, Pan D, Chen M, Shao ZM, Kang Y, Zheng H. Tumor-derived Jagged1 promotes cancer progression through immune evasion. Cell Rep 2022; 38:110492. [PMID: 35263601 DOI: 10.1016/j.celrep.2022.110492] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy is generating remarkable responses in individuals with cancer, but only a small portion of individuals with breast cancer respond well. Here we report that tumor-derived Jagged1 is a key regulator of the tumor immune microenvironment. Jagged1 promotes tumorigenesis in multiple spontaneous mammary tumor models. Through Jagged1-induced Notch activation, tumor cells increase expression and secretion of multiple cytokines to help recruit macrophages into the tumor microenvironment. Educated macrophages crosstalk with tumor-infiltrating T cells to inhibit T cell proliferation and tumoricidal activity. In individuals with triple-negative breast cancer, a high expression level of Jagged1 correlates with increased macrophage infiltration and decreased T cell activity. Co-administration of an ICI PD-1 antibody with a Notch inhibitor significantly inhibits tumor growth in breast cancer models. Our findings establish a distinct signaling cascade by which Jagged1 promotes adaptive immune evasion of tumor cells and provide several possible therapeutic targets.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shen Zhao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwei Tao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tengjiang Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuxiang Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuan Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Keyong Sun
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Min Yuan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jin Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xun Lan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mo Chen
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Charles J David
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhijie Chang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohuan Guo
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Deng Pan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Meng Chen
- National Cancer Data Center, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ 08544, USA.
| | - Hanqiu Zheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Zhang T, Liu X, Su K, Zheng Q, Liu P, Xu Z, Zhang Y. A novel mechanism of the lncRNA PTTG3P/miR-142-5p/JAG1 axis modulating tongue cancer cell phenotypes through the Notch1 signaling. Cells Dev 2021; 169:203762. [PMID: 34952204 DOI: 10.1016/j.cdev.2021.203762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022]
Abstract
Tongue cancer is the most prevalent type of oral cancer. Our previous study revealed that JAG1 exerted an oncogenic effect on tongue carcinoma through the JAG1/Notch pathway. In this study, a lncRNA PTTG3P which was upregulated in tongue cancer, was found to be positively correlated with JAG1. In CAL-27 and SCC4 cells, PTTG3P silencing significantly decreased JAG1 proteins and the ability of tongue tumor cells to proliferate and migrate. PTTG3P overexpression exhibited the opposite effect on CAL-27 and SCC4 cells. PPTG3P directly bound miR-142-5p, and miR-142-5p directly bound 3'UTR of JAG1 and inhibited the expression levels of JAG1. As opposed to PTTG3P silencing, miR-142-5p inhibition increased JAG1 protein levels and tongue cancer cell proliferation and migration; moreover, miR-142-5p inhibition substantially reversed the effects of PTTG3P silencing. Finally, the PPTG3P/miR-142-5p axis regulated the level of NICD, Notch downstream c-myc, and cyclin D1, as well as EMT markers Snail, Twist, and Vimentin. In conclusion, the PTTG3P/miR-142-5p axis modulates tongue cancer aggressiveness through JAG1, potentially through a JAG1/Notch signaling pathway.
Collapse
Affiliation(s)
- Tonghan Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong 528400, China
| | - Xiaoling Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong 528400, China
| | - Kui Su
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong 528400, China.
| | - Qiaoyi Zheng
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong 528400, China
| | - Peng Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong 528400, China
| | - Zhijie Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong 528400, China
| | - Yonghao Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong 528400, China
| |
Collapse
|
20
|
Mei X, Cui XB, Li Y, Chen SY. CircSOD2: A Novel Regulator for Smooth Muscle Proliferation and Neointima Formation. Arterioscler Thromb Vasc Biol 2021; 41:2961-2973. [PMID: 34670409 DOI: 10.1161/atvbaha.121.316911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Vascular smooth muscle cell (SMC) proliferation contributes to neointima formation following vascular injury. Circular RNA-a novel type of noncoding RNA with closed-loop structure-exhibits cell- and tissue-specific expression patterns. However, the role of circular RNA in SMC proliferation and neointima formation is largely unknown. The objective of this study is to investigate the role and mechanism of circSOD2 in SMC proliferation and neointima formation. Approach and Results: Circular RNA profiling of human aortic SMCs revealed that PDGF (platelet-derived growth factor)-BB up- and downregulated numerous circular RNAs. Among them, circSOD2, derived from back-splicing event of SOD2 (superoxide dismutase 2), was significantly enriched. Knockdown of circSOD2 by short hairpin RNA blocked PDGF-BB-induced SMC proliferation. Inversely, circSOD2 ectopic expression promoted SMC proliferation. Mechanistically, circSOD2 acted as a sponge for miR-206, leading to upregulation of NOTCH3 (notch receptor 3) and NOTCH3 signaling, which regulates cyclin D1 and CDK (cyclin-dependent kinase) 4/6. In vivo studies showed that circSOD2 was induced in neointima SMCs in balloon-injured rat carotid arteries. Importantly, knockdown of circSOD2 attenuated injury-induced neointima formation along with decreased neointimal SMC proliferation. CONCLUSIONS CircSOD2 is a novel regulator mediating SMC proliferation and neointima formation following vascular injury. Therefore, circSOD2 could be a potential therapeutic target for inhibiting the development of proliferative vascular diseases.
Collapse
Affiliation(s)
- Xiaohan Mei
- Departments of Surgery (X.M., X.-B.C., S.-Y.C.), University of Missouri School of Medicine, Columbia.,Department of Physiology and Pharmacology (X.M., S.-Y.C.), University of Georgia, Athens
| | - Xiao-Bing Cui
- Departments of Surgery (X.M., X.-B.C., S.-Y.C.), University of Missouri School of Medicine, Columbia
| | - Yiran Li
- Institute of Bioinformatics (Y.L.), University of Georgia, Athens
| | - Shi-You Chen
- Departments of Surgery (X.M., X.-B.C., S.-Y.C.), University of Missouri School of Medicine, Columbia.,Medical Pharmacology and Physiology (S.-Y.C.), University of Missouri School of Medicine, Columbia.,Department of Physiology and Pharmacology (X.M., S.-Y.C.), University of Georgia, Athens
| |
Collapse
|
21
|
Chen W, Wei W, Yu L, Ye Z, Huang F, Zhang L, Hu S, Cai C. Mammary Development and Breast Cancer: a Notch Perspective. J Mammary Gland Biol Neoplasia 2021; 26:309-320. [PMID: 34374886 PMCID: PMC8566423 DOI: 10.1007/s10911-021-09496-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mammary gland development primarily occurs postnatally, and this unique process is complex and regulated by systemic hormones and local growth factors. The mammary gland is also a highly dynamic organ that undergoes profound changes at puberty and during the reproductive cycle. These changes are driven by mammary stem cells (MaSCs). Breast cancer is one of the most common causes of cancer-related death in women. Cancer stem cells (CSCs) play prominent roles in tumor initiation, drug resistance, tumor recurrence, and metastasis. The highly conserved Notch signaling pathway functions as a key regulator of the niche mediating mammary organogenesis and breast neoplasia. In this review, we discuss mechanisms by which Notch contributes to breast carcinoma pathology and suggest potentials for therapeutic targeting of Notch in breast cancer. In summary, we provide a comprehensive overview of Notch functions in regulating MaSCs, mammary development, and breast cancer.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liya Yu
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liyan Zhang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Shiqi Hu
- DU-ANU Joint Science College, Shandong University, Weihai, 264200, China
| | - Cheguo Cai
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
22
|
LINC01355 Contributes to Malignant Phenotype of Oral Squamous Cell Carcinoma and Cytotoxic T Cell Infiltration via Activating Notch Signaling Pathway. J Immunol Res 2021; 2021:1830790. [PMID: 34355042 PMCID: PMC8331309 DOI: 10.1155/2021/1830790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
LINC01355 has been demonstrated to be dysregulated in several cancers. However, the exact molecular function of LINC01355 in the pathogenesis of OSCC remains unstudied. Here, we reported the effect of LINC01355 in OSCC and investigated the mechanisms. Firstly, we found that the results indicated LINC01355 was increased in OSCC cells. Knockdown of LINC01355 repressed OSCC cell proliferation, migration, and invasion. Recently, immunotherapy is a significant method for the treatment of cancers, in which CD8+ T cells exhibit a significant role. The influence of LINC01355 on the antitumor activity of CD8+ T cells was also focused in this study. As shown, the silence of LINC01355 could repress OSCC tumor growth via inducing CD8+ T cell immune responses. In addition, we found that downregulation of LINC01355 significantly restrained CD8+ T cell apoptosis, induced CD8+ T cell percentage, and enhanced the cytolysis activity when cocultured with OSCC cells. It has been reported that the Notch pathway represses CD8+ T cell activity in cancer patients. In our present study, we displayed that lack of LINC01355 suppressed OSCC malignant behaviors and enhanced the antitumor activity of CD8+ T cells via inactivating Notch signaling. We showed that decreased LINC01355 significantly restrained the Notch signal via a decrease of Notch-1, JAG-1, and HES-1. Repression of Notch1 reversed the effect of LINC01355 in OSCC cells. In conclusion, it was implied that LINC01355 might induce the development of OSCC via modulating the Notch signal pathway, which could provide a candidate therapeutic target for OSCC.
Collapse
|
23
|
Beyaz H, Uludag H, Kavaz D, Rizaner N. Mechanisms of Drug Resistance and Use of Nanoparticle Delivery to Overcome Resistance in Breast Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:163-181. [PMID: 34287795 DOI: 10.1007/5584_2021_648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Breast cancer is the leading cancer type diagnosed among women in the world. Unfortunately, drug resistance to current breast cancer chemotherapeutics remains the main challenge for a higher survival rate. The recent progress in the nanoparticle platforms and distinct features of nanoparticles that enhance the efficacy of therapeutic agents, such as improved delivery efficacy, increased intracellular cytotoxicity, and reduced side effects, hold great promise to overcome the observed drug resistance. Currently, multifaceted investigations are probing the resistance mechanisms associated with clinical drugs, and identifying new breast cancer-associated molecular targets that may lead to improved therapeutic approaches with the nanoparticle platforms. Nanoparticle platforms including siRNA, antibody-specific targeting and the role of nanoparticles in cellular processes and their effect on breast cancer were discussed in this article.
Collapse
Affiliation(s)
- Huseyin Beyaz
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Nicosia, Turkey.
| | - Hasan Uludag
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Doga Kavaz
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Nicosia, Turkey
- Biotechnology Research Center, Cyprus International University, Nicosia, Turkey
| | - Nahit Rizaner
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Nicosia, Turkey
- Biotechnology Research Center, Cyprus International University, Nicosia, Turkey
| |
Collapse
|
24
|
Edwards A, Brennan K. Notch Signalling in Breast Development and Cancer. Front Cell Dev Biol 2021; 9:692173. [PMID: 34295896 PMCID: PMC8290365 DOI: 10.3389/fcell.2021.692173] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The Notch signalling pathway is a highly conserved developmental signalling pathway, with vital roles in determining cell fate during embryonic development and tissue homeostasis. Aberrant Notch signalling has been implicated in many disease pathologies, including cancer. In this review, we will outline the mechanism and regulation of the Notch signalling pathway. We will also outline the role Notch signalling plays in normal mammary gland development and how Notch signalling is implicated in breast cancer tumorigenesis and progression. We will cover how Notch signalling controls several different hallmarks of cancer within epithelial cells with sections focussed on its roles in proliferation, apoptosis, invasion, and metastasis. We will provide evidence for Notch signalling in the breast cancer stem cell phenotype, which also has implications for therapy resistance and disease relapse in breast cancer patients. Finally, we will summarise the developments in therapeutic targeting of Notch signalling, and the pros and cons of this approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Abigail Edwards
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Keith Brennan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
25
|
Pagella P, de Vargas Roditi L, Stadlinger B, Moor AE, Mitsiadis TA. Notch signaling in the dynamics of perivascular stem cells and their niches. Stem Cells Transl Med 2021; 10:1433-1445. [PMID: 34227747 PMCID: PMC8459638 DOI: 10.1002/sctm.21-0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway is a fundamental regulator of cell fate determination in homeostasis and regeneration. In this work, we aimed to determine how Notch signaling mediates the interactions between perivascular stem cells and their niches in human dental mesenchymal tissues, both in homeostatic and regenerative conditions. By single cell RNA sequencing analysis, we showed that perivascular cells across the dental pulp and periodontal human tissues all express NOTCH3, and that these cells are important for the response to traumatic injuries in vivo in a transgenic mouse model. We further showed that the behavior of perivascular NOTCH3‐expressing stem cells could be modulated by cellular and molecular cues deriving from their microenvironments. Taken together, the present studies, reinforced by single‐cell analysis, reveal the pivotal importance of Notch signaling in the crosstalk between perivascular stem cells and their niches in tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Laura de Vargas Roditi
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Andreas E Moor
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Zhang YQ, Liang YK, Wu Y, Chen M, Chen WL, Li RH, Zeng YZ, Huang WH, Wu JD, Zeng D, Gao WL, Chen CF, Lin HY, Yang RQ, Zhu JW, Liu WL, Bai JW, Wei M, Wei XL, Zhang GJ. Notch3 inhibits cell proliferation and tumorigenesis and predicts better prognosis in breast cancer through transactivating PTEN. Cell Death Dis 2021; 12:502. [PMID: 34006834 PMCID: PMC8131382 DOI: 10.1038/s41419-021-03735-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
Notch receptors (Notch1-4) play critical roles in tumorigenesis and metastasis of malignant tumors, including breast cancer. Although abnormal Notch activation is related to various tumors, the importance of single receptors and their mechanism of activation in distinct breast cancer subtypes are still unclear. Previous studies by our group demonstrated that Notch3 may inhibit the emergence and progression of breast cancer. PTEN is a potent tumor suppressor, and its loss of function is sufficient to promote the occurrence and progression of tumors. Intriguingly, numerous studies have revealed that Notch1 is involved in the regulation of PTEN through its binding to CBF-1, a Notch transcription factor, and the PTEN promoter. In this study, we found that Notch3 and PTEN levels correlated with the luminal phenotype in breast cancer cell lines. Furthermore, we demonstrated that Notch3 transactivated PTEN by binding CSL-binding elements in the PTEN promoter and, at least in part, inhibiting the PTEN downstream AKT-mTOR pathway. Notably, Notch3 knockdown downregulated PTEN and promoted cell proliferation and tumorigenesis. In contrast, overexpression of the Notch3 intracellular domain upregulated PTEN and inhibited cell proliferation and tumorigenesis in vitro and in vivo. Moreover, inhibition or overexpression of PTEN partially reversed the promotion or inhibition of cell proliferation induced by Notch3 alterations. In general, Notch3 expression positively correlated with elevated expression of PTEN, ER, lower Ki-67 index, and incidence of involved node status and predicted better recurrence-free survival in breast cancer patients. Therefore, our findings demonstrate that Notch3 inhibits breast cancer proliferation and suppresses tumorigenesis by transactivating PTEN expression.
Collapse
Affiliation(s)
- Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Yuan-Ke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
| | - Yang Wu
- Klinikum rechts der Isar der Technischen Universität München Institut für Allgemeine Pathologie und Pathologische Anatomie, Ismaninger Str. 22, 81675, München, Germany
| | - Min Chen
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Wei-Ling Chen
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Rong-Hui Li
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Yun-Zhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Wen-He Huang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Jun-Dong Wu
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Wen-Liang Gao
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Chun-Fa Chen
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou, China
| | - Rui-Qin Yang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Jiang-Wen Zhu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Wan-Ling Liu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Jing-Wen Bai
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Min Wei
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China.
| | - Guo-Jun Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China.
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen, China.
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, China.
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
27
|
Estella C, Baonza A. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila. AIMS GENETICS 2021. [DOI: 10.3934/genet.2015.1.70] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractThe Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling can be influenced by the cross-talk between Notch and other signalling pathways. The use of model organisms such as Drosophila has been proven to be very valuable to understand the developmental role of the Notch pathway in different tissues and its relationship with other signalling pathways during cell proliferation control. Here we review recent studies in Drosophila that shed light in the developmental control of cell proliferation by the Notch pathway in different contexts such as the eye, wing and leg imaginal discs. We also discuss the autonomous and non-autonomous effects of the Notch pathway on cell proliferation and its interactions with different signalling pathways.
Collapse
Affiliation(s)
- Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular SeveroOchoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Antonio Baonza
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM) c/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
28
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
29
|
Zheng L, Song J, Tang R, Chen X, Wang L, Wu D, Cen H, Shi L. MicroRNA‑524‑5p regulates the proliferation and invasion of HTR‑8/SVneo trophoblasts by targeting NUMB in the Notch signaling pathway. Mol Med Rep 2021; 23:436. [PMID: 33846809 PMCID: PMC8060792 DOI: 10.3892/mmr.2021.12075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Preeclampsia is a pregnancy disorder that is primarily associated with maternal and neonatal or fetal morbidity and mortality. The discovery of dysregulated microRNAs (miRs) and their roles in preeclampsia has provided new insight into the mechanisms involved in pregnancy‑related disorders. In the present study, quantitative PCR demonstrated that the expression levels of miR‑524‑5p were lower in patients with preeclampsia than those in normal pregnant women. Cell Counting Kit‑8 and Transwell assays indicated that overexpression of miR‑524‑5p promoted the proliferation and invasion of HTR‑8/SVneo cells, whereas inhibition of miR‑524‑5p suppressed HTR‑8/SVneo cell proliferation and invasion. Furthermore, NUMB endocytic adaptor protein (NUMB), a negative regulator of the Notch signaling pathway and a target gene of miR‑524‑5p, limited the effects of miR‑524‑5p on HTR‑8/SVneo cell invasion and migration. The present study demonstrated that miR‑524‑5p regulated the proliferation and invasion of HTR‑8/SVneo cells at least partly by targeting NUMB to regulate the Notch signaling pathway.
Collapse
Affiliation(s)
- Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Jie Song
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Rong Tang
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Xiaoju Chen
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Li Wang
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Dongcai Wu
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Hui Cen
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Lei Shi
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
30
|
Zhang J, Li N, Lu S, Chen Y, Shan L, Zhao X, Xu Y. The role of Notch ligand Jagged1 in osteosarcoma proliferation, metastasis, and recurrence. J Orthop Surg Res 2021; 16:226. [PMID: 33781318 PMCID: PMC8006358 DOI: 10.1186/s13018-021-02372-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary bone cancer occurring in young adults and the 5-year survival rate of patients with metastatic osteosarcoma is less than 30% due to high metastatic recurrence and drug resistance. Notch is a highly conserved cell to cell signaling pathway in evolution, and Jagged1 is an important ligand of Notch. Although some studies have found that Notch receptors and ligands including Jagged1 were highly expressed in osteosarcoma tissues and osteosarcoma cells, the role of Jagged1 in osteosarcoma progression and metastasis are still not clear. METHODS Tumor tissues were collected from 68 patients and immunohistochemical staining was employed to group these patients by expression of Jagged1. Real-time quantitative PCR and Western blotting were used to detect the expression of Jagged1. We used siRNA to knockdown the expression of Jagged1 in F5M2 cells. Colony formation assay and MTT were employed to detect and analyze the proliferation of F5M2 cells with or without knockdown of Jagged1. Transwell assay were used to detect the migration and invasion of F5M2 cells. RESULTS In this study, we found that the high expression of Jagged1 is closely related to the metastasis and recurrence of osteosarcoma in 68 clinical specimens. The expression of Jagged1 in F5M2 cells with high metastasis was significantly higher than that in F4 cells with low metastasis. Knockdown of Jagged1 led to lower ability of proliferation, migration, and invasion in F5M2 cells. CONCLUSION The high expression of Jagged1 is closely related to the metastasis and recurrence of osteosarcoma. Knockdown of Jagged1 significantly reduced the proliferation, migration, and invasion of osteosarcoma cells. Our results suggested that knockdown of Jagged1 may be a potentially effective treatment for metastatic osteosarcoma.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Daguan Road 212#, Kunming, 650032, China
| | - Na Li
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Siyu Lu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Daguan Road 212#, Kunming, 650032, China
| | - Yanling Chen
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Daguan Road 212#, Kunming, 650032, China
| | - Lequn Shan
- Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xingcheng Zhao
- School of Aerospace Medicine, Fourth Military Medical University, Changle West Road 169#, Xi'an, 710032, China.
| | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Daguan Road 212#, Kunming, 650032, China.
| |
Collapse
|
31
|
Yan T, Wu M, Lv S, Hu Q, Xu W, Zeng A, Huang K, Zhu X. Exosomes derived from microRNA-512-5p-transfected bone mesenchymal stem cells inhibit glioblastoma progression by targeting JAG1. Aging (Albany NY) 2021; 13:9911-9926. [PMID: 33795521 PMCID: PMC8064202 DOI: 10.18632/aging.202747] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/22/2021] [Indexed: 11/25/2022]
Abstract
In this study, we demonstrate that bone mesenchymal stem cell (BMSC)-derived exosomes alter tumor phenotypes by delivering miR-512-5p. miR-512-5p was downregulated in glioblastoma tissues and cells, and Jagged 1 (JAG1) was the target gene of miR-512-5p. We clarified the expression patterns of miR-512-5p and JAG1 along with their interactions in glioblastoma. Additionally, we observed that BMSC-derived exosomes could contain and transport miR-512-5p to glioblastoma cells in vitro. BMSC-derived exosomal miR-512-5p inhibited glioblastoma cell proliferation and induced cell cycle arrest by suppressing JAG1 expression. In vivo assays validated the in vitro findings, with BMSC-exosomal miR-512-5p inhibiting glioblastoma growth and prolonging survival in mice. These results suggest that BMSC-derived exosomes transport miR-512-5p into glioblastoma and slow its progression by targeting JAG1. This study reveals a new molecular mechanism for glioblastoma treatment and validates miRNA packaging into exosomes for glioblastoma cell communication.
Collapse
Affiliation(s)
- Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital, Nanchang University, Nanchang, P.R. China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Nanchang University, Nanchang, P.R. China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital, Nanchang University, Nanchang, P.R. China.,Department of Neurosurgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Qing Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Nanchang University, Nanchang, P.R. China
| | - Wenhua Xu
- Department of Neurosurgery, Jiujiang No.1 People's Hospital, Jiujiang, P.R. China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Nanchang University, Nanchang, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Nanchang University, Nanchang, P.R. China
| |
Collapse
|
32
|
Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R, Devi A. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol (Dordr) 2021; 44:473-494. [PMID: 33704672 DOI: 10.1007/s13402-021-00591-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a malignant oral cavity neoplasm that affects many people, especially in developing countries. Despite several advances that have been made in diagnosis and treatment, the morbidity and mortality rates due to OSCC remain high. Accumulating evidence indicates that aberrant activation of cellular signaling pathways, such as the Notch, Wnt and Hedgehog pathways, occurs during the development and metastasis of OSCC. In this review, we have articulated the roles of the Notch, Wnt and Hedgehog signaling pathways in OSCC and their crosstalk during tumor development and progression. We have also examined possible interactions and associations between these pathways and treatment regimens that could be employed to effectively tackle OSCC and/or prevent its recurrence. CONCLUSIONS Activation of the Notch signaling pathway upregulates the expression of several genes, including c-Myc, β-catenin, NF-κB and Shh. Associations between the Notch signaling pathway and other pathways have been shown to enhance OSCC tumor aggressiveness. Crosstalk between these pathways supports the maintenance of cancer stem cells (CSCs) and regulates OSCC cell motility. Thus, application of compounds that block these pathways may be a valid strategy to treat OSCC. Such compounds have already been employed in other types of cancer and could be repurposed for OSCC.
Collapse
Affiliation(s)
- Anjali P Patni
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - M K Harishankar
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Joel P Joseph
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Bhuvanadas Sreeshma
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- College of Human and Human Sciences, Charles Darwin University, Ellangowan Drive, Darwin, Northern Territory, 0909, Australia
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
33
|
Lattmann E, Deng T, Hajnal A. To Divide or Invade: A Look Behind the Scenes of the Proliferation-Invasion Interplay in the Caenorhabditis elegans Anchor Cell. Front Cell Dev Biol 2021; 8:616051. [PMID: 33490081 PMCID: PMC7815685 DOI: 10.3389/fcell.2020.616051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cell invasion is defined by the capability of cells to migrate across compartment boundaries established by basement membranes (BMs). The development of complex organs involves regulated cell growth and regrouping of different cell types, which are enabled by controlled cell proliferation and cell invasion. Moreover, when a malignant tumor takes control over the body, cancer cells evolve to become invasive, allowing them to spread to distant sites and form metastases. At the core of the switch between proliferation and invasion are changes in cellular morphology driven by remodeling of the cytoskeleton. Proliferative cells utilize their actomyosin network to assemble a contractile ring during cytokinesis, while invasive cells form actin-rich protrusions, called invadopodia that allow them to breach the BMs. Studies of developmental cell invasion as well as of malignant tumors revealed that cell invasion and proliferation are two mutually exclusive states. In particular, anchor cell (AC) invasion during Caenorhabditis elegans larval development is an excellent model to study the transition from cell proliferation to cell invasion under physiological conditions. This mini-review discusses recent insights from the C. elegans AC invasion model into how G1 cell-cycle arrest is coordinated with the activation of the signaling networks required for BM breaching. Many regulators of the proliferation-invasion network are conserved between C. elegans and mammals. Therefore, the worm may provide important clues to better understand cell invasion and metastasis formation in humans.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ting Deng
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program, University and ETH Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Mavingire N, Campbell P, Wooten J, Aja J, Davis MB, Loaiza-Perez A, Brantley E. Cancer stem cells: Culprits in endocrine resistance and racial disparities in breast cancer outcomes. Cancer Lett 2020; 500:64-74. [PMID: 33309858 DOI: 10.1016/j.canlet.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer stem cells (BCSCs) promote endocrine therapy (ET) resistance, also known as endocrine resistance in hormone receptor (HR) positive breast cancer. Endocrine resistance occurs via mechanisms that are not yet fully understood. In vitro, in vivo and clinical data suggest that signaling cascades such as Notch, hypoxia inducible factor (HIF), and integrin/Akt promote BCSC-mediated endocrine resistance. Once HR positive breast cancer patients relapse on ET, targeted therapy agents such as cyclin dependent kinase inhibitors are frequently implemented, though secondary resistance remains a threat. Here, we discuss Notch, HIF, and integrin/Akt pathway regulation of BCSC activity and potential strategies to target these pathways to counteract endocrine resistance. We also discuss a plausible link between elevated BCSC-regulatory gene levels and reduced survival observed among African American women with basal-like breast cancer which lacks HR expression. Should future studies reveal a similar link for patients with luminal breast cancer, then the use of agents that impede BCSC activity could prove highly effective in improving clinical outcomes among African American breast cancer patients.
Collapse
Affiliation(s)
- Nicole Mavingire
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Petreena Campbell
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Jonathan Wooten
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Joyce Aja
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine-New York Presbyterian Hospital Network, New York, NY, USA.
| | - Andrea Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Área Investigación, Av. San Martin, 5481, C1417 DTB Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Eileen Brantley
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, USA.
| |
Collapse
|
35
|
Aging-Associated Alterations in Mammary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing. Cell Rep 2020; 33:108566. [PMID: 33378681 PMCID: PMC7898263 DOI: 10.1016/j.celrep.2020.108566] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is closely associated with increased susceptibility to breast cancer, yet there have been limited systematic studies of aging-induced alterations in the mammary gland. Here, we leverage high-throughput single-cell RNA sequencing to generate a detailed transcriptomic atlas of young and aged murine mammary tissues. By analyzing epithelial, stromal, and immune cells, we identify age-dependent alterations in cell proportions and gene expression, providing evidence that suggests alveolar maturation and physiological decline. The analysis also uncovers potential pro-tumorigenic mechanisms coupled to the age-associated loss of tumor suppressor function and change in microenvironment. In addition, we identify a rare, age-dependent luminal population co-expressing hormone-sensing and secretory-alveolar lineage markers, as well as two macrophage populations expressing distinct gene signatures, underscoring the complex heterogeneity of the mammary epithelia and stroma. Collectively, this rich single-cell atlas reveals the effects of aging on mammary physiology and can serve as a useful resource for understanding aging-associated cancer risk. Using single-cell RNA-sequencing, Li et al. compare mammary epithelia and stroma in young and aged mice. Age-dependent changes at cell and gene levels provide evidence suggesting alveolar maturation, functional deterioration, and potential pro-tumorigenic and inflammatory alterations. Additionally, identification of heterogeneous luminal and macrophage subpopulations underscores the complexity of mammary lineages.
Collapse
|
36
|
Exploiting teeth as a model to study basic features of signaling pathways. Biochem Soc Trans 2020; 48:2729-2742. [DOI: 10.1042/bst20200514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Teeth constitute a classical model for the study of signaling pathways and their roles in mediating interactions between cells and tissues in organ development, homeostasis and regeneration. Rodent teeth are mostly used as experimental models. Rodent molars have proved fundamental in the study of epithelial–mesenchymal interactions and embryonic organ morphogenesis, as well as to faithfully model human diseases affecting dental tissues. The continuously growing rodent incisor is an excellent tool for the investigation of the mechanisms regulating stem cells dynamics in homeostasis and regeneration. In this review, we discuss the use of teeth as a model to investigate signaling pathways, providing an overview of the many unique experimental approaches offered by this organ. We discuss how complex networks of signaling pathways modulate the various aspects of tooth biology, and the models used to obtain this knowledge. Finally, we introduce new experimental approaches that allow the study of more complex interactions, such as the crosstalk between dental tissues, innervation and vascularization.
Collapse
|
37
|
Nasser F, Moussa N, Helmy MW, Haroun M. Dual targeting of Notch and Wnt/β-catenin pathways: Potential approach in triple-negative breast cancer treatment. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:481-490. [PMID: 33052427 DOI: 10.1007/s00210-020-01988-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022]
Abstract
Despite the continuously growing repertoire of new and improved anti-cancer therapies, triple-negative breast cancer (TNBC) remains a clinical challenge to treat. In this sense, targeting signaling pathways such as Notch and Wnt/β-catenin have attracted growing attention. This work aimed at investigating the possible antitumor effects of IMR-1 as a Notch inhibitor, PRI-724 as a Wnt/β-catenin inhibitor, as well as their combination and to explore the possible crosstalk between Notch and Wnt/β-catenin signaling pathways in MDA-MB-231 TNBC cell line. Microculture tetrazolium test (MTT) was used to determine the drug growth inhibition (GI50), and the results were analyzed using CompuSyn 3.0.1 software. MDA-MB-231 cells were divided into four treatment groups including positive control, IMR-1-treated, PRI-724-treated, and combination-treated groups. Sandwich enzyme-linked immunosorbent assay (ELISA) was used for the determination of the protein levels of hairy and enhancer of split-1 (HES-1), Notch-1, β-catenin, cyclin-D1, and vascular endothelial growth factor (VEGF1). HES-1 gene expression was assessed by quantitative real-time polymerase chain reaction. Statistical analyses were performed using GraphPad Prism Software. The GI50 for IMR-1 and PRI-724 were 15.3 μM and 0.69 μM, respectively. Upon treatment of MDA-MB-231 cells with these drugs, HES-1 gene expression was up-regulated due to single and combined treatments. Moreover, the protein levels of cyclin-D1, VEGF1, HES-1, and Notch-1 were reduced, while those of active β-catenin and active caspase-3 were elevated. IMR-1/PRI-724 combination augmented IMR-1- and PRI-724-mediated effects on MDA-MB-231 cells by initiating apoptotic cell death. Further in vitro and in vivo studies are warranted to support our findings.
Collapse
Affiliation(s)
- Fatma Nasser
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Maged W Helmy
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Damanhur University, Damanhur, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
38
|
Shen Q, Reedijk M. Notch Signaling and the Breast Cancer Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:183-200. [PMID: 33034033 DOI: 10.1007/978-3-030-55031-8_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Notch promotes breast cancer progression through tumor initiating cell maintenance, tumor cell fate specification, proliferation, survival, and motility. In addition, Notch is recognized as a decisive mechanism in regulating various juxtacrine and paracrine communications in the tumor microenvironment (TME). In this chapter, we review recent studies on stress-mediated Notch activation within the TME and sequelae such as angiogenesis, extracellular matrix remodeling, changes in the innate and adaptive immunophenotype, and therapeutic perspectives.
Collapse
Affiliation(s)
- Qiang Shen
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael Reedijk
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
39
|
BeLow M, Osipo C. Notch Signaling in Breast Cancer: A Role in Drug Resistance. Cells 2020; 9:cells9102204. [PMID: 33003540 PMCID: PMC7601482 DOI: 10.3390/cells9102204] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a heterogeneous disease that can be subdivided into unique molecular subtypes based on protein expression of the Estrogen Receptor, Progesterone Receptor, and/or the Human Epidermal Growth Factor Receptor 2. Therapeutic approaches are designed to inhibit these overexpressed receptors either by endocrine therapy, targeted therapies, or combinations with cytotoxic chemotherapy. However, a significant percentage of breast cancers are inherently resistant or acquire resistance to therapies, and mechanisms that promote resistance remain poorly understood. Notch signaling is an evolutionarily conserved signaling pathway that regulates cell fate, including survival and self-renewal of stem cells, proliferation, or differentiation. Deregulation of Notch signaling promotes resistance to targeted or cytotoxic therapies by enriching of a small population of resistant cells, referred to as breast cancer stem cells, within the bulk tumor; enhancing stem-like features during the process of de-differentiation of tumor cells; or promoting epithelial to mesenchymal transition. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance through reduction or elimination of breast cancer stem cells. However, Notch inhibitors have yet to be clinically approved for the treatment of breast cancer, mainly due to dose-limiting gastrointestinal toxicity. In this review, we discuss potential mechanisms of Notch-mediated resistance in breast cancer cells and breast cancer stem cells, and various methods of targeting Notch through γ-secretase inhibitors, Notch signaling biologics, or transcriptional inhibitors. We also discuss future plans for identification of novel Notch-targeted therapies, in order to reduce toxicity and improve outcomes for women with resistant breast cancer.
Collapse
Affiliation(s)
- McKenna BeLow
- Integrated Cell Biology Program, Loyola University Chicago, Maywood, IL 60513, USA;
| | - Clodia Osipo
- Integrated Cell Biology Program, Loyola University Chicago, Maywood, IL 60513, USA;
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60513, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60513, USA
- Correspondence: ; Tel.: +1-708-327-2372
| |
Collapse
|
40
|
Grilli G, Hermida-Prado F, Álvarez-Fernández M, Allonca E, Álvarez-González M, Astudillo A, Moreno-Bueno G, Cano A, García-Pedrero JM, Rodrigo JP. Impact of notch signaling on the prognosis of patients with head and neck squamous cell carcinoma. Oral Oncol 2020; 110:105003. [PMID: 32932170 DOI: 10.1016/j.oraloncology.2020.105003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The function of NOTCH signaling (oncogenic or oncosuppressive) remains controversial in head and neck squamous cell carcinomas (HNSCC). The purpose of this work is to investigate the role of NOTCH pathway in HNSCC prognosis. METHODS Immunohistochemical NOTCH1 and HES1 expression was jointly evaluated and correlated with other NOTCH1 targets, p21 (WAF1/Cip1) and Cyclin D1, using an unbiased cohort of 372 surgically treated HPV-negative HNSCC patients. RESULTS Membranous NOTCH1 expression was detected in 197 (61%) out of 324 evaluable tumor samples, and nuclear NOTCH1 expression in 91 samples (28%). Nuclear HES1 expression was found in 224 (67%) cases. Membranous and nuclear NOTCH1 expression were consistently and significantly correlated with nuclear HES1 (P < 0.001) and p21 (P = 0.03) expression, but not with Cyclin D1. NOTCH1 expression was significantly associated to early stages (I-II), non-recurrent disease, and better disease-specific (DSS) and overall survival (OS) rates (P < 0.001). Moreover, triple-positive cases (NOTCH1+/HES1+/p21+) exhibited significantly improved DSS (P < 0.001) and OS (P = 0.004), thus reinforcing the association of NOTCH pathway activation with a better prognosis in HNSCC. Multivariate analysis further revealed membranous NOTCH1 expression as a robust independent predictor of better DSS (HR = 0.554; 95% IC 0.412-0.745; P < 0.001) and better OS (HR = 0.640; 95% CI 0.491-0.835; P = 0.001). CONCLUSION These findings show the association of NOTCH pathway activation with a better prognosis in HNSCC patients, also revealing membranous NOTCH1 expression as a robust independent predictor of improved survival. Accordingly, these results suggest a tumor suppressive rather than an oncogenic role for NOTCH pathway in HNSCC.
Collapse
Affiliation(s)
- Gianluigi Grilli
- Department of Otolaryngology, Ospedali Riuniti and Università degli Studi di Foggia, Foggia, Italy
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Mónica Álvarez-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Álvarez-González
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Aurora Astudillo
- Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain; Departamento de Patología, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, Madrid, Spain; Fundación MD Anderson Internacional Madrid, Spain
| | - Amparo Cano
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
41
|
Kushwaha PP, Singh AK, Shuaib M, Prajapati KS, Vardhan PS, Gupta S, Kumar S. 3-O-(E)-p-Coumaroyl betulinic acid possess anticancer activity and inhibit Notch signaling pathway in breast cancer cells and mammosphere. Chem Biol Interact 2020; 328:109200. [PMID: 32702347 DOI: 10.1016/j.cbi.2020.109200] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/06/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023]
Abstract
Activation of Notch signaling is associated with tumor aggressiveness, poor clinical outcome and drug resistance in breast cancer patients. Targeting Notch signaling with small molecule inhibitors may be a better strategy for anticancer drug development. We identified 3-O-(E)-p-Coumaroylbetulinic acid (CB) as a lead compound and potent inhibitor of Notch signaling pathway. Treatment of human breast cancer MBA-MD-231 and T47D cells with CB resulted in a dose- and time-dependent inhibition of cell viability and G0/G1-phase cell cycle arrest. This effect was associated with a marked decrease in the expression of cyclin D1 and its activating partner, cyclin-dependent kinase 2 with concomitant increase in cyclin kinase inhibitor p21, operative in G1-phase of the cell cycle. CB treatment induced early apoptosis in breast cancer cells as evident by increase in cleaved caspase-3, decrease in Bcl2 and survivin, surge in reactive oxygen species and disruption of mitochondrial membrane potential. CB treatment altered Notch target genes viz. Hes1, Hey1 and E-cadherin at mRNA and protein level in time-dependent manner along with decrease in Notch promoter activity at IC50 concentration. Furthermore, CB treatment decreased mammosphere formation in MCF-7 cells through down-modulation of the Notch signaling pathway and suppression of self-renewal markers such as c-Myc, SOX-2 and CD44. Our findings demonstrate that CB possess anticancer activity in breast cancer cells and suppresses self-renewal ability in the mammosphere as a result of modulation in cell-cycle machinery, disruption of mitochondrial function, induction of apoptosis, and Notch inhibition.
Collapse
Affiliation(s)
- Prem Prakash Kushwaha
- Department of Biochemistry, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Atul Kumar Singh
- Department of Biochemistry, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Mohd Shuaib
- Department of Biochemistry, Central University of Punjab, Bathinda, 151001, Punjab, India
| | | | | | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shashank Kumar
- Department of Biochemistry, Central University of Punjab, Bathinda, 151001, Punjab, India.
| |
Collapse
|
42
|
Elsherbiny NM, El-Sherbiny M, Zaitone SA. Diallyl trisulfide potentiates chemotherapeutic efficacy of doxorubicin in experimentally induced mammary carcinoma: Role of Notch signaling. Pathol Res Pract 2020; 216:153139. [PMID: 32853959 DOI: 10.1016/j.prp.2020.153139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of breast cancer is remarkably increasing worldwide. Therefore, introduction of new approaches along with improvement of the existing ones in cancer treatment field is of great demand. The present study was designated to investigate the anti-proliferative role of Diallyl trisulfide (DATS) alone or in combination with Doxorubicin (Doxo) in Ehrlich solid carcinoma (ESC)-bearing mice. ESC was induced in female albino mice as an experimental model for breast cancer. The anti-tumorigenic effect of DATS was mediated by suppression of Notch signaling proteins (Notch 1, JAG 1 and HES 1), attenuation of tumor inflammation (NFκB, TNF-α, IL-6, IL-1β) and proliferation (cyclin D1, Ki67) and enhancement of apoptosis (caspase 3, p53). DATS and Doxo mono-treatments displayed opposing effect regarding expression of Notch signaling proteins and cyclin D1 gene expression. However, DATS and Doxo co-treatment markedly decreased tumor volume and weight, increased animals' survival rate, and attenuated Doxo-induced tumor inflammation. In parallel, microscopic investigation displayed that ESC tumor tissues from animals treated with DATS and/or DOX showed shrinkage of tumor lesions and wider zones of apoptosis. In conclusion, DATS acts via multiple molecular targets to elicit anti-proliferative activity. Combination of DATS with Doxo -which exhibit different mechanisms of action- might be a potential novel strategy to augment Doxo-antitumor effect.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Mohamed El-Sherbiny
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Egypt; Almaarefa University, College of Medicine, Riyadh, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
43
|
Abstract
Notch pathway signaling is implicated in several human cancers. Aberrant activation and mutations of Notch signaling components are linked to tumor initiation, maintenance, and resistance to cancer therapy. Several strategies, such as monoclonal antibodies against Notch ligands and receptors, as well as small-molecule γ-secretase inhibitors (GSIs), have been developed to interfere with Notch receptor activation at proximal points in the pathway. However, the use of drug-like small molecules to target the downstream mediators of Notch signaling, the Notch transcription activation complex, remains largely unexplored. Here, we report the discovery of an orally active small-molecule inhibitor (termed CB-103) of the Notch transcription activation complex. We show that CB-103 inhibits Notch signaling in primary human T cell acute lymphoblastic leukemia and other Notch-dependent human tumor cell lines, and concomitantly induces cell cycle arrest and apoptosis, thereby impairing proliferation, including in GSI-resistant human tumor cell lines with chromosomal translocations and rearrangements in Notch genes. CB-103 produces Notch loss-of-function phenotypes in flies and mice and inhibits the growth of human breast cancer and leukemia xenografts, notably without causing the dose-limiting intestinal toxicity associated with other Notch inhibitors. Thus, we describe a pharmacological strategy that interferes with Notch signaling by disrupting the Notch transcription complex and shows therapeutic potential for treating Notch-driven cancers.
Collapse
|
44
|
The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother 2020; 129:110416. [PMID: 32593969 DOI: 10.1016/j.biopha.2020.110416] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of Notch signaling plays an oncogenic role in cancer development. Jagged1 (JAG1) is an important Notch ligand that triggers Notch signaling through cell-cell interactions. JAG1 overexpression has been reported in many different types of cancer and correlates with a poor clinical prognosis. JAG1/Notch signaling controls oncogenic processes in different cell types and cellular contexts. Furthermore, JAG1/Notch signaling cascades activate a number of oncogenic factors that regulate cellular functions such as proliferation, metastasis, drug-resistance, and angiogenesis. To suppress the severe toxicity of pan-Notch inhibitors, JAG1 is attracting increasing attention as a source of therapeutic targets for cancers. In this review, the oncogenic role of JAG1/Notch signaling in cancer is discussed, as well as implications of strategies to inhibit JAG1/Notch signaling activity.
Collapse
|
45
|
Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clin Sci (Lond) 2020; 133:2481-2498. [PMID: 31868216 PMCID: PMC6928565 DOI: 10.1042/cs20190835] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Notch signalling is critically involved in vascular morphogenesis and function. Four Notch isoforms (Notch1–4) regulating diverse cellular processes have been identified. Of these, Notch3 is expressed almost exclusively in vascular smooth muscle cells (VSMCs), where it is critically involved in vascular development and differentiation. Under pathological conditions, Notch3 regulates VSMC switching between the contractile and synthetic phenotypes. Abnormal Notch3 signalling plays an important role in vascular remodelling, a hallmark of several cardiovascular diseases, including pulmonary arterial hypertension (PAH). Because of the importance of Notch3 in VSMC (de)differentiation, Notch3 has been implicated in the pathophysiology of pulmonary vascular remodelling in PAH. Here we review the current literature on the role of Notch in VSMC function with a focus on Notch3 signalling in pulmonary artery VSMCs, and discuss potential implications in pulmonary artery remodelling in PAH.
Collapse
|
46
|
The Caenorhabditis elegans homolog of the Evi1 proto-oncogene, egl-43, coordinates G1 cell cycle arrest with pro-invasive gene expression during anchor cell invasion. PLoS Genet 2020; 16:e1008470. [PMID: 32203506 PMCID: PMC7117773 DOI: 10.1371/journal.pgen.1008470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/02/2020] [Accepted: 02/27/2020] [Indexed: 11/30/2022] Open
Abstract
Cell invasion allows cells to migrate across compartment boundaries formed by basement membranes. Aberrant cell invasion is a first step during the formation of metastases by malignant cancer cells. Anchor cell (AC) invasion in C. elegans is an excellent in vivo model to study the regulation of cell invasion during development. Here, we have examined the function of egl-43, the homolog of the human Evi1 proto-oncogene (also called MECOM), in the invading AC. egl-43 plays a dual role in this process, firstly by imposing a G1 cell cycle arrest to prevent AC proliferation, and secondly, by activating pro-invasive gene expression. We have identified the AP-1 transcription factor fos-1 and the Notch homolog lin-12 as critical egl-43 targets. A positive feedback loop between fos-1 and egl-43 induces pro-invasive gene expression in the AC, while repression of lin-12 Notch expression by egl-43 ensures the G1 cell cycle arrest necessary for invasion. Reducing lin-12 levels in egl-43 depleted animals restored the G1 arrest, while hyperactivation of lin-12 signaling in the differentiated AC was sufficient to induce proliferation. Taken together, our data have identified egl-43 Evi1 as an important factor coordinating cell invasion with cell cycle arrest. Cells invasion is a fundamental biological process that allows cells to cross compartment boundaries and migrate to new locations. Aberrant cell invasion is a first step during the formation of metastases by malignant cancer cells. We have investigated how a specialized cell in the Nematode C. elegans, the so-called anchor cell, can invade into the adjacent epithelium during normal development. Our work has identified an oncogenic transcription factor that controls the expression of specific target genes necessary for cell invasion, and at the same time inhibits the proliferation of the invading anchor cell. These findings shed light on the mechanisms, by which cells decide whether to proliferate or invade.
Collapse
|
47
|
Piwarski SA, Thompson C, Chaudhry AR, Denvir J, Primerano DA, Fan J, Salisbury TB. The putative endogenous AHR ligand ITE reduces JAG1 and associated NOTCH1 signaling in triple negative breast cancer cells. Biochem Pharmacol 2020; 174:113845. [PMID: 32032581 DOI: 10.1016/j.bcp.2020.113845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor. Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. TNBC expresses AHR and AHR ligands have anti-cancer activity in TNBC. The aggressiveness of TNBC is due in part to JAG1-NOTCH1 signaling. ITE is a putative endogenous AHR ligand. We show that ITE reduces the expression of JAG1 the amount of Notch 1 intracellular domain (NICD1) and the phosphorylation of STAT3 (at tyrosine 705) in TNBC MDA-MB-231 cells. The STAT3 inhibitor STATTIC also reduced JAG1. STAT3, thus, mediates regulation of JAG1 in MDA-MB-231 cells. Reducing the expression of JAG1 with short interfering RNA decreases the growth, migration and invasiveness of MDA-MB-231 cells. JAG1, therefore, has cellular effects in MDA-MB-231 cells under basal conditions. We consequently evaluated if exposing cells to greater amounts of JAG1 would counteract ITE cellular effects in MDA-MB-231 cells. The results show that JAG1 does not counteract the cellular effects of ITE. JAG1, thus, has no effect on growth or invasiveness in MDA-MB-231 cells treated with ITE. JAG1, therefore, has context dependent roles in MDA-MB-231 cells (basal versus ITE treatment). The results also show that other pathways, not inhibition of the JAG1-NOTCH1 pathway, are important for mediating the growth and invasive inhibitory effect of ITE on MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sean A Piwarski
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Chelsea Thompson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Ateeq R Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - James Denvir
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Donald A Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
48
|
Accialini P, Bechis A, Irusta G, Bianchi MS, Parborell F, Abramovich D, Tesone M. Modulation of the Notch System in Response to Wnt Inhibition Induces Restoration of the Rat Luteal Function. Reprod Sci 2020; 27:503-512. [PMID: 32046463 DOI: 10.1007/s43032-019-00043-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate whether the Notch pathway is modulated in response to the downregulation of the Wnt/Β-catenin system in corpora lutea (CLs) from superovulated rats. To this end, we analyzed the effect of in vitro CL Wnt/Β-catenin inhibition on the expression of Notch members and on luteal function. Mechanically isolated rat CLs were cultured with ICG-001, a Wnt/B-catenin inhibitor. In this system, Wnt/B-catenin inhibition reduced progesterone production and decreased StAR protein levels. Besides, Wnt/B-catenin inhibition stimulated the Notch system, evidenced by an increase in Hes1 expression, and promoted the expression of selected Notch family members. At long incubation times, StAR levels and progesterone concentration reached the control values, effects probably mediated by the Notch pathway. These results provide the first evidence of a compensatory mechanism between Wnt/B-catenin signaling and the Notch system, which contributes to the homeostasis of luteal cells.
Collapse
Affiliation(s)
- Paula Accialini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Andrés Bechis
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Griselda Irusta
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Maria Silvia Bianchi
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Marta Tesone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
49
|
A "NOTCH" Deeper into the Epithelial-To-Mesenchymal Transition (EMT) Program in Breast Cancer. Genes (Basel) 2019; 10:genes10120961. [PMID: 31766724 PMCID: PMC6947643 DOI: 10.3390/genes10120961] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Notch signaling is a primitive signaling pathway having various roles in the normal origin and development of each multicellular organisms. Therefore, any aberration in the pathway will inevitably lead to deadly outcomes such as cancer. It has now been more than two decades since Notch was acknowledged as an oncogene in mouse mammary tumor virus-infected mice. Since that discovery, activated Notch signaling and consequent up-regulation of tumor-promoting Notch target genes have been observed in human breast cancer. Moreover, consistent over-expression of Notch ligands and receptors has been shown to correlate with poor prognosis in human breast cancer. Notch regulates a number of key processes during breast carcinogenesis, of which, one key phenomenon is epithelial-mesenchymal transition (EMT). EMT is a key process for large-scale cell movement during morphogenesis at the time of embryonic development. Cancer cells aided by transcription factors usurp this developmental program to execute the multi-step process of tumorigenesis and metastasis. In this review, we recapitulate recent progress in breast cancer research that has provided new perceptions into the molecular mechanisms behind Notch-mediated EMT regulation during breast tumorigenesis.
Collapse
|
50
|
Salama YA, El-karef A, El Gayyar AM, Abdel-Rahman N. Beyond its antioxidant properties: Quercetin targets multiple signalling pathways in hepatocellular carcinoma in rats. Life Sci 2019; 236:116933. [DOI: 10.1016/j.lfs.2019.116933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
|