1
|
Ciupak O, Daśko M, Biernacki K, Rachon J, Masłyk M, Kubiński K, Martyna A, Demkowicz S. New potent steroid sulphatase inhibitors based on 6-(1-phenyl-1 H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. J Enzyme Inhib Med Chem 2021; 36:238-247. [PMID: 33322953 PMCID: PMC7744152 DOI: 10.1080/14756366.2020.1858820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the present work, we report a new class of potent steroid sulphatase (STS) inhibitors based on 6-(1-phenyl-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. Within the set of new STS inhibitors, 6-(1-(1,2,3-trifluorophenyl)-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate 3L demonstrated the highest activity in the enzymatic assay inhibiting the STS activity to 7.98% at 0.5 µM concentration. Furthermore, to verify whether the obtained STS inhibitors are able to pass through the cellular membrane effectively, cell line experiments have been carried out. We found that the lowest STS activities were measured in the presence of compound 3L (remaining STS activity of 5.22%, 27.48% and 99.0% at 100, 10 and 1 nM concentrations, respectively). The measured STS activities for Irosustat (used as a reference) were 5.72%, 12.93% and 16.83% in the same concentration range. Moreover, a determined IC50 value of 15.97 nM for 3L showed that this compound is a very promising candidate for further preclinical investigations.
Collapse
Affiliation(s)
- Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
2
|
Lee SR, Yang H, Jo SL, Lee YH, Lee HW, Park BK, Hong EJ. Suppressed estrogen supply via extra-ovarian progesterone receptor membrane component 1 in menopause. J Biomed Res 2021; 35:228-237. [PMID: 33911053 PMCID: PMC8193715 DOI: 10.7555/jbr.35.20200172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In post-menopausal women, intra-mammary estrogen, which is converted from extra-ovarian estrone (E1), promotes the growth of breast cancer. Since the aromatase inhibitor letrozole does not suppress 17β-estradiol (E2) production from E1, high intra-mammary E1 concentrations impair letrozole's therapeutic efficacy. Progesterone receptor membrane component 1 (Pgrmc1) is a non-classical progesterone receptor associated with breast cancer progression. In the present study, we introduced a Pgrmc1 heterozygous knockout (hetero KO) murine model exhibiting low Pgrmc1 expression, and observed estrogen levels and steroidogenic gene expression. Naïve Pgrmc1 hetero KO mice exhibited low estrogen (E2 and E1) levels and low progesterone receptor (PR) expression, compared to wild-type mice. In contrast, Pgrmc1 hetero KO mice that have been ovariectomized (OVX), including letrozole-treated OVX mice (OVX-letrozole), exhibited high estrogen levels and PR expression. Increased extra-ovarian estrogen production in Pgrmc1 hetero KO mice was observed with the induction of steroid sulfatase (STS). In MCF-7 cell, letrozole suppressed PR expression, but PGRMC1 knockdown increased PR and STS expression. Our presented results highlight the important role of Pgrmc1 in modulating estrogen production when ovary-derived estrogen is limited, thereby suggesting a potential therapeutic approach for letrozole resistance.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seong Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young Ho Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Bae-Keun Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Bahrami N, Chang G, Kanaya N, Sauer T, Park D, Loeng M, Gravdehaug B, Chen S, Geisler J. Changes in serum estrogenic activity during neoadjuvant therapy with letrozole and exemestane. J Steroid Biochem Mol Biol 2020; 200:105641. [PMID: 32151708 DOI: 10.1016/j.jsbmb.2020.105641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/29/2022]
Abstract
The aromatase inhibitors (AIs), letrozole (Femar®/Femara®) and exemestane (Aromasin®), are widely used to treat estrogen receptor (ER) positive breast cancer in postmenopausal patients. In the setting of metastatic breast cancer, these drugs may be used after another causing new responses in selected patients after progressing on the first choice. The precise explanation for this "lack of cross resistance" is still missing. NEOLETEXE is a neoadjuvant, randomized, open-label, cross-over trial. Postmenopausal patients with ER-positive, HER-2 negative, locally advanced breast cancer were enrolled. All patients were randomized to treatment starting with either letrozole or exemestane for at least 2 months followed by another 2 months on the alternative AI. The total estrogenic activities in blood samples were determined using the AroER tri-screen assay developed in the Chen laboratory. Using this highly sensitive assay, estrogenic activity was detected at three time points for all patients. Importantly, a significantly higher total estrogenic activity was found during therapy with exemestane compared to letrozole in 21 out of 26 patients. When letrozole was included in the AroER tri-screen assay, the estrogenic activities in most samples collected during exemestane treatment were further reduced, suggesting that low levels of androgens remained in specimens obtained after exemestane treatment. Our results suggest the AroER tri-screen to be a very sensitive method to estimate the overall estrogen-mediated activity in human samples even during therapy with highly potent aromatase inhibitors. In the present study, serum estrogen activity was significantly higher during exemestane therapy when compared to letrozole therapy.
Collapse
Affiliation(s)
- Nazli Bahrami
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway; Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus AHUS, Norway
| | - Daehoon Park
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Marie Loeng
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
| | - Berit Gravdehaug
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus AHUS, Norway.
| |
Collapse
|
4
|
McNamara KM, Sasano H. The role of 17βHSDs in breast tissue and breast cancers. Mol Cell Endocrinol 2019; 489:32-44. [PMID: 30408503 DOI: 10.1016/j.mce.2018.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
The family of seventeen beta hydroxysteroid dehydrogenase enzymes has a long and diverse history in breast and breast cancer research. Given the known dependence of the breast on steroid signalling and intracrine steroid metabolism these enzymes are considered to be essential local fine tuners of overall steroid balance in the tissue. This review will cover the current state of knowledge regarding the expression, clinical effect and biological regulation of enzymes in both cancerous and normal states. In addition we will also cover the current state of knowledge regarding 17βHSD actions in the often neglected adipose and stromal components of tumours.
Collapse
Affiliation(s)
- Keely May McNamara
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University, Japan.
| | - Hironobu Sasano
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University, Japan
| |
Collapse
|
5
|
Heinosalo T, Saarinen N, Poutanen M. Role of hydroxysteroid (17beta) dehydrogenase type 1 in reproductive tissues and hormone-dependent diseases. Mol Cell Endocrinol 2019; 489:9-31. [PMID: 30149044 DOI: 10.1016/j.mce.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Abnormal synthesis and metabolism of sex steroids is involved in the pathogenesis of various human diseases, such as endometriosis and cancers arising from the breast and uterus. Steroid biosynthesis is a multistep enzymatic process proceeding from cholesterol to highly active sex steroids via different intermediates. Human Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) enzyme shows a high capacity to produce the highly active estrogen, estradiol, from a precursor hormone, estrone. However, the enzyme may also play a role in other steps of the steroid biosynthesis pathway. In this article, we have reviewed the literature on HSD17B1, and summarize the role of the enzyme in hormone-dependent diseases in women as evidenced by preclinical studies.
Collapse
Affiliation(s)
- Taija Heinosalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| | - Niina Saarinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland; Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, 413 45, Gothenburg, Sweden
| |
Collapse
|
6
|
Ganeshapillai D, Woo LWL, Thomas MP, Purohit A, Potter BVL. C-3- and C-4-Substituted Bicyclic Coumarin Sulfamates as Potent Steroid Sulfatase Inhibitors. ACS OMEGA 2018; 3:10748-10772. [PMID: 30320251 PMCID: PMC6173509 DOI: 10.1021/acsomega.8b01383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Synthetic routes to potent bicyclic nonsteroidal sulfamate-based active-site-directed inhibitors of the enzyme steroid sulfatase (STS), an emerging target in the treatment of postmenopausal hormone-dependent diseases, including breast cancer, are described. Sulfamate analogs 9-27 and 28-46 of the core in vivo active two-ring coumarin template, modified at the 4- and 3-positions, respectively, were synthesized to expand structure-activity relationships. α-Alkylacetoacetates were used to synthesize coumarin sulfamate derivatives with 3-position modifications, and the bicyclic ring of other parent coumarins was primarily constructed via the Pechmann synthesis of hydroxyl coumarins. Compounds were examined for STS inhibition in intact MCF-7 breast cancer cells and in placental microsomes. Low nanomolar potency STS inhibitors were achieved, and some were found to inhibit the enzyme in MCF-7 cells ca. 100-500 more potently than the parent 4-methylcoumarin-7-O-sulfamate 3, with the best compounds close in potency to the tricyclic clinical drug Irosustat. 3-Hexyl-4-methylcoumarin-7-O-sulfamate 29 and 3-benzyl-4-methylcoumarin-7-O-sulfamate 41 were particularly effective inhibitors with IC50 values of 0.68 and 1 nM in intact MCF-7 cells and 8 and 32 nM for placental microsomal STS, respectively. They were docked into the STS active site for comparison with estrone 3-O-sulfamate and Irosustat, showing their sulfamate group close to the catalytic hydrated formylglycine residue and their pendant group lying between the hydrophobic sidechains of L103, F178, and F488. Such highly potent STS inhibitors expand the structure-activity relationship for these coumarin sulfamate-based agents that possess therapeutic potential and may be worthy of further development.
Collapse
Affiliation(s)
- Dharshini Ganeshapillai
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - L. W. Lawrence Woo
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Mark P. Thomas
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Atul Purohit
- Section
of Investigative Medicine, Diabetes, Endocrinology & Metabolism, Imperial College London, 6th Floor, Commonwealth Building (6N2B), Hammersmith
Hospital, Du Cane Road, London W12 0NN, U.K.
| | - Barry V. L. Potter
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
7
|
Potter BVL. SULFATION PATHWAYS: Steroid sulphatase inhibition via aryl sulphamates: clinical progress, mechanism and future prospects. J Mol Endocrinol 2018; 61:T233-T252. [PMID: 29618488 DOI: 10.1530/jme-18-0045] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
Steroid sulphatase is an emerging drug target for the endocrine therapy of hormone-dependent diseases, catalysing oestrogen sulphate hydrolysis to oestrogen. Drug discovery, developing the core aryl O-sulphamate pharmacophore, has led to steroidal and non-steroidal drugs entering numerous clinical trials, with promising results in oncology and women's health. Steroidal oestrogen sulphamate derivatives were the first irreversible active-site-directed inhibitors and one was developed clinically as an oral oestradiol pro-drug and for endometriosis applications. This review summarizes work leading to the therapeutic concept of sulphatase inhibition, clinical trials executed to date and new insights into the mechanism of inhibition of steroid sulphatase. To date, the non-steroidal sulphatase inhibitor Irosustat has been evaluated clinically in breast cancer, alone and in combination, in endometrial cancer and in prostate cancer. The versatile core pharmacophore both imbues attractive pharmaceutical properties and functions via three distinct mechanisms of action, as a pro-drug, an enzyme active-site-modifying motif, likely through direct sulphamoyl group transfer, and as a structural component augmenting activity, for example by enhancing interactions at the colchicine binding site of tubulin. Preliminary new structural data on the Pseudomonas aeruginosa arylsulphatase enzyme suggest two possible sulphamate-based adducts with the active site formylglycine as candidates for the inhibition end product via sulphamoyl or sulphonylamine transfer, and a speculative choice is suggested. The clinical status of sulphatase inhibition is surveyed and how it might develop in the future. Also discussed are dual-targeting approaches, development of 2-substituted steroidal sulphamates and non-steroidal derivatives as multi-targeting agents for hormone-independent tumours, with other emerging directions.
Collapse
Affiliation(s)
- Barry V L Potter
- Medicinal Chemistry & Drug DiscoveryDepartment of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Africander D, Storbeck KH. Steroid metabolism in breast cancer: Where are we and what are we missing? Mol Cell Endocrinol 2018; 466:86-97. [PMID: 28527781 DOI: 10.1016/j.mce.2017.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
It is well-known that breast cancer is hormone-dependent and that steroid hormones exert their mitogenic effects by binding to estrogen, progesterone and androgen receptors. Vital to our understanding and treatment of this malignancy, is the local metabolism of steroid hormones in breast cancer tissue. This review summarises our current knowledge on steroid producing pathways in the adrenal, ovary and breast, while focussing on the availability of specific circulating hormone precursors and steroidogenic enzymes involved in the local synthesis and metabolism of steroid hormones in the breast. Consequently, we highlight alternate pathways that may be instrumental in the etiology of breast cancer.
Collapse
Affiliation(s)
- Donita Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
9
|
Hilborn E, Stål O, Jansson A. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget 2018; 8:30552-30562. [PMID: 28430630 PMCID: PMC5444764 DOI: 10.18632/oncotarget.15547] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Sex steroid hormones such as estrogens and androgens are involved in the development and differentiation of the breast tissue. The activity and concentration of sex steroids is determined by the availability from the circulation, and on local conversion. This conversion is primarily mediated by aromatase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenases. In postmenopausal women, this is the primary source of estrogens in the breast. Up to 70-80% of all breast cancers express the estrogen receptor-α, responsible for promoting the growth of the tissue. Further, 60-80% express the androgen receptor, which has been shown to have tissue protective effects in estrogen receptor positive breast cancer, and a more ambiguous response in estrogen receptor negative breast cancers. In this review, we summarize the function and clinical relevance in cancer for 17β-hydroxysteroid dehydrogenases 1, which facilitates the reduction of estrone to estradiol, dehydroepiandrosterone to androstendiol and dihydrotestosterone to 3α- and 3β-diol as well as 17β-hydroxysteroid dehydrogenases 2 which mediates the oxidation of estradiol to estrone, testosterone to androstenedione and androstendiol to dehydroepiandrosterone. The expression of 17β-hydroxysteroid dehydrogenases 1 and 2 alone and in combination has been shown to predict patient outcome, and inhibition of 17β-hydroxysteroid dehydrogenases 1 has been proposed to be a prime candidate for inhibition in patients who develop aromatase inhibitor resistance or in combination with aromatase inhibitors as a first line treatment. Here we review the status of inhibitors against 17β-hydroxysteroid dehydrogenases 1. In addition, we review the involvement of 17β-hydroxysteroid dehydrogenases 4, 5, 7, and 14 in breast cancer.
Collapse
Affiliation(s)
- Erik Hilborn
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Agneta Jansson
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Changes of tumor infiltrating lymphocyte subtypes before and after neoadjuvant endocrine therapy in estrogen receptor-positive breast cancer patients – an immunohistochemical study of cd8+ and foxp3+ using double immunostaining with correlation to the pathobiological response of the patients. Int J Biol Markers 2018; 27:e295-304. [DOI: 10.5301/jbm.2012.10439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 01/29/2023]
Abstract
Tumor-stromal interactions involve continuous crosstalk and interactions among different cell types and play pivotal roles in tumorigenesis, tumor development, disease progression, subsequent metastasis, and also tumor response to therapeutic agents. Tumor infiltrating lymphocytes (TILs) are important components of these tumor-stromal interactions. Specific TIL subtypes are known to be involved in the clinical course of individual patients. However, the status of TILs following endocrine therapy has not been studied in breast cancer patients. We evaluated the alterations of TIL subtypes in a cohort of East Asian patients with estrogen receptor-positive breast cancer during the course of neoadjuvant steroidal aromatase inhibitor (AI) therapy, using double immunohistochemical staining of CD8+ and T regulatory cells (Treg) or Foxp3+, yielding the CD8+/Treg ratio in individual patients. Changes in CD8+/Treg ratio before and after therapy were then correlated with pathobiological responses of individual patients based upon alterations of the Ki-67 labeling index (LI). A significant increase in the CD8+/Treg ratio was detected in responders (p=0.028) but not in non-responders, which may reflect the dynamic process in which the host immune response to tumor antigens changed in consequence of an interaction between tumor and stromal cells in its microenvironment following estrogen depletion caused by the AI. The CD8+/Treg ratio in breast cancer tissue can be a potential surrogate marker in surgical pathology specimens for predicting responses to neoadjuvant endocrine therapy, not only incorporating features of carcinoma cells as in Ki-67 LI but also those of adjacent stromal cells in the tumor microenvironment, especially in the early stage of treatment prior to any detectable clinical and/or histopathological changes.
Collapse
|
11
|
Palmieri C, Szydlo R, Miller M, Barker L, Patel NH, Sasano H, Barwick T, Tam H, Hadjiminas D, Lee J, Shaaban A, Nicholas H, Coombes RC, Kenny LM. IPET study: an FLT-PET window study to assess the activity of the steroid sulfatase inhibitor irosustat in early breast cancer. Breast Cancer Res Treat 2017; 166:527-539. [PMID: 28795252 PMCID: PMC5668341 DOI: 10.1007/s10549-017-4427-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/26/2017] [Indexed: 10/24/2022]
Abstract
BACKGROUND Steroid sulfatase (STS) is involved in oestrogen biosynthesis and irosustat is a first generation, irreversible steroid sulfatase inhibitor. A pre-surgical window-of-opportunity study with irosustat was undertaken in estrogen receptor-positive (ER+) breast cancer to assess the effect of irosustat on tumour cell proliferation as measured by 3'-deoxy-3'-[18F] fluorothymidine uptake measured by PET scanning (FLT-PET) and Ki67. METHODS Postmenopausal women with untreated ER+ early breast cancer were recruited, and imaged with FLT-PET at baseline and after at least 2 weeks treatment with irosustat, 40 mg once daily orally. The primary endpoint was changed in FLT uptake; secondary endpoints included safety and tolerability of irosustat, changes in tumoral Ki67 and steroidogenic enzymes expression and circulating steroid hormone levels. RESULTS Thirteen women were recruited, and ten started irosustat for 2 weeks, followed by repeat FLT-PET scans in eight. Defining response as decreases of ≥20% in standardized uptake value (SUV) or ≥30% in Ki, 1 (12.5% (95% CI 2-47%, p = 0.001)) and 3 (43% (95% CI 16-75%, p = <0.001) patients, respectively, responded. 6 out of 7 patients had a Ki67 reduction (range = -19.3 to 76.4%), and median percentage difference in Ki67 was 52.3% (p = 0.028). In one patient with a low baseline STS expression, a 19.7% increase in Ki67 was recorded. STS decreases were seen in tumours with high basal STS expression, significant decreases were also noted in aromatase, and 17β-hydroxysteroid dehydrogenase type 1 and 2. Irosustat was generally well tolerated with all adverse event CTCAE Grade ≤2. CONCLUSIONS Irosustat resulted in a significant reduction in FLT uptake and Ki67, and is well tolerated. These data are the first demonstrating clinical activity of irosustat in early breast cancer. Baseline expression of STS may be a biomarker of sensitivity to irosustat.
Collapse
Affiliation(s)
- Carlo Palmieri
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 3BX, UK.
- Liverpool & Merseyside Breast Academic Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK.
- Academic Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, CH63 4JY, UK.
| | - Richard Szydlo
- Centre for Haematology, Imperial College London, London, W12 0NN, UK
| | - Marie Miller
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Laura Barker
- Department of Medical Oncology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Neva H Patel
- Radiological Sciences Unit and Department of Nuclear Medicine, Imperial College Healthcare NHS Trust, London, W6 8RF, UK
- Department of Nuclear Medicine, Imperial College Healthcare NHS Trust, London, W6 8RF, UK
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Tara Barwick
- Department of Radiology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Henry Tam
- Department of Radiology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Dimitri Hadjiminas
- Department of Surgery, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Jasmin Lee
- Department of Pathology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Abeer Shaaban
- Department of Histopathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Hanna Nicholas
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - R Charles Coombes
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
- Department of Medical Oncology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Laura M Kenny
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
- Department of Medical Oncology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| |
Collapse
|
12
|
Hilborn E, Stål O, Alexeyenko A, Jansson A. The regulation of hydroxysteroid 17β-dehydrogenase type 1 and 2 gene expression in breast cancer cell lines by estradiol, dihydrotestosterone, microRNAs, and genes related to breast cancer. Oncotarget 2017; 8:62183-62194. [PMID: 28977936 PMCID: PMC5617496 DOI: 10.18632/oncotarget.19136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/01/2017] [Indexed: 12/29/2022] Open
Abstract
AIM To investigate the influence of estrogen, androgen, microRNAs, and genes implicated in breast cancer on the expression of HSD17B1 and HSD17B2. MATERIALS Breast cancer cell lines ZR-75-1, MCF7, T47D, SK-BR-3, and the immortalized epithelial cell line MCF10A were used. Cells were treated either with estradiol or dihydrotestosterone for 6, 24, 48 hours, or 7 days or treated with miRNAs or siRNAs predicted to influence HSD17B expression Results and discussion. Estradiol treatment decreased HSD17B1 expression and had a time-dependent effect on HSD17B2 expression. This effect was lost in estrogen receptor-α down-regulated or negative cell lines. Dihydrotestosterone treatment increased HSD17B2 expression, with limited effect on HSD17B1 expression. No effect was seen in cells without AR or in combination with the AR inhibitor hydroxyflutamide. The miRNA-17 up-regulated HSD17B1, while miRNA-210 and miRNA-7-5p had up- and down-regulatory effect and miRNA-1304-3p reduced HSD17B1 expression. The miRNA-204-5p, 498, 205-3p and 579-3p reduced HSD17B2 expression. Downregulation of CX3CL1, EPHB6, and TP63 increased HSD17B1 and HSD17B2 expression, while GREB1 downregulation suppressed HSD17B1 and promoted HSD17B2 expression. CONCLUSION We show that HSD17B1 and HSD17B2 are controlled by estradiol, dihydrotestosterone, and miRNAs, as well as modulated by several breast cancer-related genes, which could have future clinical applications.
Collapse
Affiliation(s)
- Erik Hilborn
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Solna, Sweden
| | - Agneta Jansson
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Beck KR, Kaserer T, Schuster D, Odermatt A. Virtual screening applications in short-chain dehydrogenase/reductase research. J Steroid Biochem Mol Biol 2017; 171:157-177. [PMID: 28286207 PMCID: PMC6831487 DOI: 10.1016/j.jsbmb.2017.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
Several members of the short-chain dehydrogenase/reductase (SDR) enzyme family play fundamental roles in adrenal and gonadal steroidogenesis as well as in the metabolism of steroids, oxysterols, bile acids, and retinoids in peripheral tissues, thereby controlling the local activation of their cognate receptors. Some of these SDRs are considered as promising therapeutic targets, for example to treat estrogen-/androgen-dependent and corticosteroid-related diseases, whereas others are considered as anti-targets as their inhibition may lead to disturbances of endocrine functions, thereby contributing to the development and progression of diseases. Nevertheless, the physiological functions of about half of all SDR members are still unknown. In this respect, in silico tools are highly valuable in drug discovery for lead molecule identification, in toxicology screenings to facilitate the identification of hazardous chemicals, and in fundamental research for substrate identification and enzyme characterization. Regarding SDRs, computational methods have been employed for a variety of applications including drug discovery, enzyme characterization and substrate identification, as well as identification of potential endocrine disrupting chemicals (EDC). This review provides an overview of the efforts undertaken in the field of virtual screening supported identification of bioactive molecules in SDR research. In addition, it presents an outlook and addresses the opportunities and limitations of computational modeling and in vitro validation methods.
Collapse
Affiliation(s)
- Katharina R Beck
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Computer Aided Molecular Design Group, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Computer Aided Molecular Design Group, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Alex Odermatt
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
14
|
Palmieri C, Stein RC, Liu X, Hudson E, Nicholas H, Sasano H, Guestini F, Holcombe C, Barrett S, Kenny L, Reed S, Lim A, Hayward L, Howell S, Coombes RC. IRIS study: a phase II study of the steroid sulfatase inhibitor Irosustat when added to an aromatase inhibitor in ER-positive breast cancer patients. Breast Cancer Res Treat 2017; 165:343-353. [PMID: 28612226 PMCID: PMC5543190 DOI: 10.1007/s10549-017-4328-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Irosustat is a first-generation, orally active, irreversible steroid sulfatase inhibitor. We performed a multicentre, open label phase II trial of the addition of Irosustat to a first-line aromatase inhibitor (AI) in patients with advanced BC to evaluate the safety of the combination and to test the hypothesis that the addition of Irosustat to AI may further suppress estradiol levels and result in clinical benefit. EXPERIMENTAL DESIGN Postmenopausal women with ER-positive locally advanced or metastatic breast cancer who had derived clinical benefit from a first-line AI and who subsequently progressed were enrolled. The first-line AI was continued and Irosustat (40 mg orally daily) added. The primary endpoint was clinical benefit rate (CBR). Secondary endpoints included safety, tolerability, and pharmacodynamic end points. RESULTS Twenty-seven women were recruited, four discontinued treatment without response assessment. Based on local reporting, the CBR was 18.5% (95% CI 6.3-38.1%) on an intent to treat basis, increasing to 21.7% (95% CI 7.4-43.7%) by per-protocol analysis. In those patients that achieved clinical benefit (n = 5), the median (interquartile range) duration was 9.4 months (8.1-11.3) months. The median progression-free survival time was 2.7 months (95% CI 2.5-4.6) in both the ITT and per-protocol analyses. The most frequently reported grade 3/4 toxicities were dry skin (28%), nausea (13%), fatigue (13%), diarrhoea (8%), headache (7%), anorexia (7%) and lethargy (7%). CONCLUSIONS The addition of Irosustat to aromatase inhibitor therapy resulted in clinical benefit with an acceptable safety profile. The study met its pre-defined success criterion by both local and central radiological assessments.
Collapse
Affiliation(s)
- Carlo Palmieri
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 3BX, UK. .,Academic Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, CH63 4JY, UK. .,Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK.
| | - Rob C Stein
- NIHR University College London Hospitals Biomedical Research Centre, London, NW1 2PG, UK
| | - Xinxue Liu
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Emma Hudson
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Hanna Nicholas
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Fouzia Guestini
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Chris Holcombe
- Breast Unit, The Linda McCartney Centre, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - Sophie Barrett
- Beatson West of Scotland Cancer Centre, Glasgow, G12 0YN, UK
| | - Laura Kenny
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Sadie Reed
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Adrian Lim
- Department of Radiology, Imperial College NHS Foundation Trust, London, W8 6RF, UK
| | - Larry Hayward
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Sacha Howell
- Department of Medical Oncology, The University of Manchester, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - R Charles Coombes
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | | |
Collapse
|
15
|
Salah M, Abdelsamie AS, Frotscher M. First Dual Inhibitors of Steroid Sulfatase (STS) and 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1): Designed Multiple Ligands as Novel Potential Therapeutics for Estrogen-Dependent Diseases. J Med Chem 2017; 60:4086-4092. [PMID: 28406629 DOI: 10.1021/acs.jmedchem.7b00062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
STS and 17β-HSD1 are attractive targets for the treatment of estrogen-dependent diseases like endometriosis and breast cancer. The simultaneous inhibition of both enzymes appears more promising than blockage of either protein alone. We describe a designed multiple ligand approach resulting in highly potent dual inhibitors. The most interesting compound 9 showed nanomolar IC50 values for both proteins, membrane permeability, and no interference with estrogen receptors. It efficiently reversed E1S- and E1-induced T47D cell proliferation.
Collapse
Affiliation(s)
- Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C23, D-66123 Saarbrücken, Germany
| | - Ahmed S Abdelsamie
- Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C23, D-66123 Saarbrücken, Germany.,Chemistry of Natural and Microbial Products Department, National Research Centre , Dokki, 12622 Cairo, Egypt
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C23, D-66123 Saarbrücken, Germany
| |
Collapse
|
16
|
Mungenast F, Aust S, Vergote I, Vanderstichele A, Sehouli J, Braicu E, Mahner S, Castillo-Tong DC, Zeillinger R, Thalhammer T. Clinical significance of the estrogen-modifying enzymes steroid sulfatase and estrogen sulfotransferase in epithelial ovarian cancer. Oncol Lett 2017; 13:4047-4054. [PMID: 28588698 PMCID: PMC5452883 DOI: 10.3892/ol.2017.5969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/13/2017] [Indexed: 12/04/2022] Open
Abstract
17β-estradiol (E2) can contribute to the progression of epithelial ovarian cancer (EOC). Although the majority of patients with EOC are postmenopausal woman, when de novo estrogen production in the ovary has ceased, ovarian cancer cells remain exposed to estrogens synthesized locally in the cancer cells from inactive sulfonated steroid hormone precursors-such as estrone sulfate taken up from the circulation via the sulfatase pathway. An abundance of the estrogen-modifying enzymes, including estrogen-activating steroid sulfatase (STS) and estrogen-inactivating estrogen-sulfotransferase (SULT1E1), is important for providing active estrogen to EOC cells. Therefore, the present study determined the levels of SULT1E1, STS and estrogen receptor α (ERα) protein in paraffin-embedded specimens from 206 patients with Federation of Gynecology and Obstetrics stage II–IV EOC treated with debulking surgery and standard platinum-based adjuvant chemotherapy. The levels of STS, SULT1E1 and ERα were assessed by automated quantitative microscopy-based image analysis subsequent to immunohistochemical staining. Significantly higher SULT1E1 levels were observed in better differentiated EOC tumors compared to grade 3 EOC tumors (P=0.001). STS and SULT1E1 levels were positively associated with ERα abundance (P<0.001 and P=0.001, respectively). In advanced stage high-grade serous EOC (HGSOC; n=132), the most frequent and lethal type of ovarian cancer, SULT1E1 expression was significantly associated with a better overall survival rate (hazard ratio 0.66, 95% confidence interval, 0.45–0.94; P=0.005). These results highlight the importance of SULT1E1-mediated estrogen inactivation in EOC, particularly HGSOC. Therefore, targeting the sulfatase pathway is a potential endocrine therapeutic intervention for certain patients with estrogen-responsive EOC.
Collapse
Affiliation(s)
- Felicitas Mungenast
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Stefanie Aust
- Department of Gynaecology and Gynaecological Oncology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ignace Vergote
- Division of Gynaecological Oncology, Department of Obstetrics and Gynaecology, Catholic University of Leuven, University Hospital, B-3000 Leuven, Belgium
| | - Adriaan Vanderstichele
- Division of Gynaecological Oncology, Department of Obstetrics and Gynaecology, Catholic University of Leuven, University Hospital, B-3000 Leuven, Belgium
| | - Jalid Sehouli
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Virchow Clinic Campus, Medical University of Berlin, D-13353 Berlin, Germany
| | - Elena Braicu
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Virchow Clinic Campus, Medical University of Berlin, D-13353 Berlin, Germany
| | - Sven Mahner
- Department of Gynaecology and Obstetrics, University of Munich, D-80539 Munich, Germany
| | - Dan Cacsire Castillo-Tong
- Translational Gynaecology Group, Department of Obstetrics and Gynaecology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynaecology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
17
|
McNamara KM, Guestini F, Sakurai M, Kikuchi K, Sasano H. How far have we come in terms of estrogens in breast cancer? [Review]. Endocr J 2016; 63:413-24. [PMID: 27020038 DOI: 10.1507/endocrj.ej16-0022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Major advances in breast cancer treatment have almost always been linked to the actions of estrogen. Therefore, this review focused on estrogen actions in the breast, particularly the developments of the past 20 years, the present understanding of disease biology and possible future developments. Within these areas have focused on what is known about the underlying molecular biology and in particular integration of the bioinformatics revolution of the last 15 years with other facets of research. In addition, there will be an emphasis on the understanding brought about by a greater appreciation for the intracrinology of the breast.
Collapse
Affiliation(s)
- Keely May McNamara
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | |
Collapse
|
18
|
Thomas MP, Potter BVL. Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women's Health. J Med Chem 2015; 58:7634-58. [PMID: 25992880 PMCID: PMC5159624 DOI: 10.1021/acs.jmedchem.5b00386] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1994, following work from this laboratory, it was reported that estrone-3-O-sulfamate irreversibly inhibits a new potential hormone-dependent cancer target steroid sulfatase (STS). Subsequent drug discovery projects were initiated to develop the core aryl O-sulfamate pharmacophore that, over some 20 years, have led to steroidal and nonsteroidal drugs in numerous preclinical and clinical trials, with promising results in oncology and women's health, including endometriosis. Drugs have been designed to inhibit STS, e.g., Irosustat, as innovative dual-targeting aromatase-steroid sulfatase inhibitors (DASIs) and as multitargeting agents for hormone-independent tumors, such as the steroidal STX140 and nonsteroidal counterparts, acting inter alia through microtubule disruption. The aryl sulfamate pharmacophore is highly versatile, operating via three distinct mechanisms of action, and imbues attractive pharmaceutical properties. This Perspective gives a personal view of the work leading both to the therapeutic concepts and these drugs, their current status, and how they might develop in the future.
Collapse
Affiliation(s)
- Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Barry V. L. Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
19
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
20
|
Thomas MP, Potter BVL. Estrogen O-sulfamates and their analogues: Clinical steroid sulfatase inhibitors with broad potential. J Steroid Biochem Mol Biol 2015; 153:160-9. [PMID: 25843211 DOI: 10.1016/j.jsbmb.2015.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 01/20/2023]
Abstract
Estrogen sulfamate derivatives were the first irreversible active-site-directed inhibitors of steroid sulfatase (STS), an emerging drug target for endocrine therapy of hormone dependent diseases that catalyzes inter alia the hydrolysis of estrone sulfate to estrone. In recent years this has stimulated clinical investigation of the estradiol derivative both as an oral prodrug and its currently ongoing exploration in endometriosis. 2-Substituted steroid sulfamate derivatives show considerable potential as multi-targeting agents for hormone-independent disease, but are also potent STS inhibitors. The steroidal template has spawned nonsteroidal STS inhibitors one of which, Irosustat, has been evaluated clinically in breast cancer, endometrial cancer and prostate cancer and there is potential for innovative dual-targeting approaches. This review surveys the role of estrogen sulfamates, their analogues and current status.
Collapse
Affiliation(s)
- Mark P Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom.
| |
Collapse
|
21
|
Vincze B, Kapuvári B, Udvarhelyi N, Horváth Z, Mátrai Z, Czeyda-Pommersheim F, Kőhalmy K, Kovács J, Boldizsár M, Láng I, Kásler M. Serum estrone concentration, estrone sulfate/estrone ratio and BMI are associated with human epidermal growth factor receptor 2 and progesterone receptor status in postmenopausal primary breast cancer patients suffering invasive ductal carcinoma. SPRINGERPLUS 2015; 4:387. [PMID: 26240785 PMCID: PMC4520825 DOI: 10.1186/s40064-015-1171-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 12/30/2022]
Abstract
Background We investigated in postmenopausal women with primary breast cancer prior to surgical intervention whether, serum levels of different steroid hormones and hormonal precursors associated with tumor tissue estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) status. Methods We enrolled 1,042 patients suffering invasive ductal carcinoma undergoing surgical resection in the National Institute of Oncology, Hungary between 2003 and 2011. Serum parameters were measured by RIA/IRMA assays; tumor tissue ER, PR and HER2 status was assessed histologically. Patients were classified according to tumor receptor status. Case–case analysis subjects were categorized into four subgroups based on serum hormone concentrations in ER, PR and HER2 receptor-negative cases, respectively. Results Serum estrone sulfate and dehydroepiandrosterone sulfate levels correlated with each other and also with serum estrone and estradiol levels. According to case–case study the odds ratios in the highest quartile were 1.517 (p = 0.0305, Ptrend = 0.0394) for androstenedione, 1.495 (p = 0.0317, Ptrend < 0.0105) for estrone and 0.654 (p = 0.0273, Ptrend < 0.0151) for estrone sulfate/estrone ratio in PR+ vs. PR− tumors. Regarding HER2 status (HER2+ vs. HER2−), the odds ratios for estrone, estrone sulfate and estrone sulfate/estrone ratio were 0.530 (p = 0.0234, Ptrend = 0.0595), 2.438 (p = 0.0042, Ptrend < 0.0066) and 3.118 (p = 0.0001, Ptrend < 0.0001) in the highest quartile, respectively. Of note significantly increased BMI associates with PR+ and ER +/PR+ status while significantly decreased BMI was observed in HER2+ cases. Conclusions Taken together, measurement of serum estrone and estrone sulfate concentrations prior to surgical intervention might support the individualization of regime in postmenopausal primary breast cancer patients.
Collapse
Affiliation(s)
- Borbála Vincze
- Department of Biochemistry, National Institute of Oncology, 1122 Budapest, Ráth György u. 7-9., Hungary
| | - Bence Kapuvári
- Department of Biochemistry, National Institute of Oncology, 1122 Budapest, Ráth György u. 7-9., Hungary
| | - Nóra Udvarhelyi
- Surgical and Molecular Tumor Pathology Centre, National Institute of Oncology, Budapest, Hungary
| | - Zsolt Horváth
- Clinic of Oncology, Centre of Clinics, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Hungary
| | - Zoltán Mátrai
- Department of General and Thoracic Surgery, National Institute of Oncology, Budapest, Hungary
| | | | - Krisztina Kőhalmy
- Department of Biochemistry, National Institute of Oncology, 1122 Budapest, Ráth György u. 7-9., Hungary
| | - Judit Kovács
- Department of Biochemistry, National Institute of Oncology, 1122 Budapest, Ráth György u. 7-9., Hungary
| | - Mariann Boldizsár
- Department of Biochemistry, National Institute of Oncology, 1122 Budapest, Ráth György u. 7-9., Hungary
| | - István Láng
- Medical Oncology and Clinical Pharmacology "B", National Institute of Oncology, Budapest, Hungary
| | | |
Collapse
|
22
|
Identification of fused 16β,17β-oxazinone-estradiol derivatives as a new family of non-estrogenic 17β-hydroxysteroid dehydrogenase type 1 inhibitors. Eur J Med Chem 2015; 93:470-80. [DOI: 10.1016/j.ejmech.2015.01.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 01/19/2023]
|
23
|
McNamara KM, Sasano H. The intracrinology of breast cancer. J Steroid Biochem Mol Biol 2015; 145:172-8. [PMID: 24751707 DOI: 10.1016/j.jsbmb.2014.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 02/01/2023]
Abstract
The importance of intracrinology, or in situ production of steroids from circulating precursors, in breast cancer has been firmly established in estrogen actions on postmenopausal patients. Expression levels of various steroid synthesizing and/or metabolizing enzymes have been examined in human breast cancer tissues by a number of groups. The enzymes examined include those capable of converting circulating DHEA-S to sex steroids (STS and 3βHSDΔ4-5 isomerase), the group of enzymes that modulate the strength of both androgens and estrogens (17βHSD family) as well as the androgenic 5αR enzymes and the estrogenic aromatase enzyme. In addition to these DHEA-related metabolism pathways, other intracrine pathways involving progesterone and cholesterol have also been examined. Some risk factors of breast cancer development, including obesity, have also been postulated to interact with steroid metabolising pathways. In this review, we aimed to summarise the current state of knowledge regarding intracrine metabolism including expression levels of various enzymes and receptors, focusing particularly upon the importance of the production of biologically potent steroids from circulating sulfated precursors such as DHEA-S. In addition, we attempted to summarise the factors, both steroidal and non-steroidal, involved in the regulation of these enzymes and propose future directions for research in this particular field. The concept of intracrinology was first proposed over 20 years ago but there still remain many unanswered questions which could open new horizons for the understanding of intracrine metabolism in the breast. This article is part of a Special Issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Keely May McNamara
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, Japan.
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
24
|
McNamara KM, Moore NL, Hickey TE, Sasano H, Tilley WD. Complexities of androgen receptor signalling in breast cancer. Endocr Relat Cancer 2014; 21:T161-81. [PMID: 24951107 DOI: 10.1530/erc-14-0243] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the clinical benefit of androgen-based therapeutics in breast cancer has been known since the 1940s, we have only recently begun to fully understand the mechanisms of androgen action in breast cancer. Androgen signalling pathways can have either beneficial or deleterious effects in breast cancer depending on the breast cancer subtype and intracellular context. This review discusses our current knowledge of androgen signalling in breast cancer, including the relationship between serum androgens and breast cancer risk, the prognostic significance of androgen receptor (AR) expression in different breast cancer subtypes and the downstream molecular pathways mediating androgen action in breast cancer cells. Intracrine androgen metabolism has also been discussed and proposed as a potential mechanism that may explain some of the reported differences regarding dichotomous androgen actions in breast cancers. A better understanding of AR signalling in this disease is critical given the current resurgence in interest in utilising contemporary AR-directed therapies for breast cancer and the need for biomarkers that will accurately predict clinical response.
Collapse
Affiliation(s)
- Keely M McNamara
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Nicole L Moore
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Theresa E Hickey
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Hironobu Sasano
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Wayne D Tilley
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| |
Collapse
|
25
|
Palmieri C, Patten DK, Januszewski A, Zucchini G, Howell SJ. Breast cancer: current and future endocrine therapies. Mol Cell Endocrinol 2014; 382:695-723. [PMID: 23933149 DOI: 10.1016/j.mce.2013.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 12/29/2022]
Abstract
Endocrine therapy forms a central modality in the treatment of estrogen receptor positive breast cancer. The routine use of 5 years of adjuvant tamoxifen has improved survival rates for early breast cancer, and more recently has evolved in the postmenopausal setting to include aromatase inhibitors. The optimal duration of adjuvant endocrine therapy remains an active area of clinical study with recent data supporting 10 years rather than 5 years of adjuvant tamoxifen. However, endocrine therapy is limited by the development of resistance, this can occur by a number of possible mechanisms and numerous studies have been performed which combine endocrine therapy with agents that modulate these mechanisms with the aim of preventing or delaying the emergence of resistance. Recent trial data regarding the combination of the mammalian target of rapamycin (mTOR) inhibitor, everolimus with endocrine therapy have resulted in a redefinition of the clinical treatment pathway in the metastatic setting. This review details the current endocrine therapy utilized in both early and advanced disease, as well as exploring potential new targets which modulate pathways of resistance, as well as agents which aim to modulate adrenal derived steroidogenic hormones.
Collapse
Affiliation(s)
- Carlo Palmieri
- The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, Liverpool L69 3GA, UK; Liverpool & Merseyside Breast Academic Unit, The Linda McCartney Centre, Royal Liverpool University Hospital, Liverpool L7 8XP, UK; Academic Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Wiral CH63 4JY, UK.
| | - Darren K Patten
- Department of Surgery, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, UK
| | - Adam Januszewski
- Department of Medical Oncology, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, UK
| | - Giorgia Zucchini
- The University of Manchester, Institute of Cancer Studies, Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Sacha J Howell
- The University of Manchester, Institute of Cancer Studies, Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
26
|
Maltais R, Ayan D, Trottier A, Barbeau X, Lagüe P, Bouchard JE, Poirier D. Discovery of a Non-Estrogenic Irreversible Inhibitor of 17β-Hydroxysteroid Dehydrogenase Type 1 from 3-Substituted-16β-(m-carbamoylbenzyl)-estradiol Derivatives. J Med Chem 2013; 57:204-22. [DOI: 10.1021/jm401639v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- René Maltais
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Diana Ayan
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Alexandre Trottier
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Xavier Barbeau
- Département
de Chimie, Institut de Biologie Intégrative et Des Systèmes
(IBIS), and Centre de Recherche sur la Fonction, la Structure et l’Ingénierie
des Protéines (PROTEO), Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Patrick Lagüe
- Département
de Biochimie Microbiologie et Bio-informatique, Institut de Biologie
Intégrative et des Systèmes (IBIS), and Centre de Recherche
sur la Fonction, la Structure et l’Ingénierie des Protéines
(PROTEO), Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Jean-Emmanuel Bouchard
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Donald Poirier
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| |
Collapse
|
27
|
Hanamura T, Niwa T, Gohno T, Kurosumi M, Takei H, Yamaguchi Y, Ito KI, Hayashi SI. Possible role of the aromatase-independent steroid metabolism pathways in hormone responsive primary breast cancers. Breast Cancer Res Treat 2013; 143:69-80. [PMID: 24292869 DOI: 10.1007/s10549-013-2788-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Aromatase inhibitors (AIs) exert antiproliferative effects by reducing local estrogen production from androgens in postmenopausal women with hormone-responsive breast cancer. Previous reports have shown that androgen metabolites generated by the aromatase-independent enzymes, 5α-androstane-3β, 17β-diol (3β-diol), androst-5-ene-3β, and 17β-diol (A-diol), also activate estrogen receptor (ER) α. Estradiol (E2) can also reportedly be generated from estrone sulfate (E1S) pooled in the plasma. Estrogenic steroid-producing aromatase-independent pathways have thus been proposed as a mechanism of AI resistance. However, it is unclear whether these pathways are functional in clinical breast cancer. To investigate this issue, we assessed the transcriptional activities of ER in 45 ER-positive human breast cancers using the adenovirus estrogen-response element-green fluorescent protein assay and mRNA expression levels of the ER target gene, progesterone receptor, as indicators of ex vivo and in vivo ER activity, respectively. We also determined mRNA expression levels of 5α-reductase type 1 (SRD5A1) and 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD type 1; HSD3B1), which produce 3β-diol from androgens, and of steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD type 1; HSD17B1), which produce E2 or A-diol from E1S or dehydroepiandrosterone sulfate. SRD5A1 and HSD3B1 expression levels were positively correlated with ex vivo and in vivo ER activities. STS and HSD17B1 expression levels were positively correlated with in vivo ER activity alone. Elevated expression levels of these steroid-metabolizing enzymes in association with high in vivo ER activity were particularly notable in postmenopausal patients. Analysis of the expression levels of steroid-metabolizing enzymes revealed positive correlations between SRD5A1 and HSD3B1, and STS and HSD17B1. These findings suggest that the SRD5A1-HSD3B1 as well as the STS-HSD17B pathways, could contributes to ER activation, especially postmenopause. These pathways might function as an alternative estrogenic steroid-producing, aromatase-independent pathways.
Collapse
Affiliation(s)
- Toru Hanamura
- Department of Molecular and Functional Dynamics Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
28
|
McNamara KM, Nakamura Y, Miki Y, Sasano H. Phase two steroid metabolism and its roles in breast and prostate cancer patients. Front Endocrinol (Lausanne) 2013; 4:116. [PMID: 24027559 PMCID: PMC3761226 DOI: 10.3389/fendo.2013.00116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022] Open
Abstract
Breast and prostate cancer are diseases in which steroids and steroid metabolism could markedly influence clinical outcomes for patients. In both malignancies the modification of ketone and hydroxyl groups attached to the steroid backbone (phase one metabolism) has been examined in detail but the conjugation reactions (phase two metabolism) have not been extensively studied. Therefore, in this review we aim to summarize phase two metabolism in breast and prostate cancers from a number of perspectives, including the impact of variation in serum levels of conjugated steroids, tissue, and pathology specific expression of phase two enzymes, and consequences of genetic variations of these conjugation enzymes. In addition to this biological perspective, we will also address current pharmacological efforts to manipulate phase two metabolism as a potential therapy for hormone dependent cancers, including clinical trials of STS inhibitors and preclinical STS inhibitor development. While this review is not intended to cover any one particular area in great technical depth, it is intended as an introduction to and/or update on the importance of variance in phase two metabolic pathways in breast and prostate cancers.
Collapse
Affiliation(s)
- Keely M. McNamara
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Sendai, Japan
- *Correspondence: Keely M. McNamara, Department of Anatomical Pathology, Tohoku University School of Graduate Medicine, 2-1 Seiryo-Machi Aoba-Ku, Miyagi, Sendai 980-8575, Japan e-mail:
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Sendai, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Sendai, Japan
| |
Collapse
|
29
|
Stebbing J, Filipovic A, Lit LC, Blighe K, Grothey A, Xu Y, Miki Y, Chow LW, Coombes RC, Sasano H, Shaw JA, Giamas G. LMTK3 is implicated in endocrine resistance via multiple signaling pathways. Oncogene 2013; 32:3371-80. [PMID: 22869149 DOI: 10.1038/onc.2012.343] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 02/07/2023]
Abstract
Resistance to endocrine therapy in breast cancer is common. With the aim of discovering new molecular targets for breast cancer therapy, we have recently identified LMTK3 as a regulator of the estrogen receptor-alpha (ERα) and wished to understand its role in endocrine resistance. We find that inhibition of LMTK3 in a xenograft tamoxifen (Tam)-resistant (BT474) breast cancer mouse model results in re-sensitization to Tam as demonstrated by a reduction in tumor volume. A whole genome microarray analysis, using a BT474 cell line, reveals genes significantly modulated (positively or negatively) after LMTK3 silencing, including some that are known to be implicated in Tam resistance, notably c-MYC, HSPB8 and SIAH2. We show that LMTK3 is able to increase the levels of HSPB8 at a transcriptional and translational level thereby protecting MCF7 cells from Tam-induced cell death, by reducing autophagy. Finally, high LMTK3 levels at baseline in tumors are predictive for endocrine resistance; therapy does not lead to alteration in levels, whereas in patient's plasma samples, acquired LMTK3 gene amplification (copy number variation) was associated with relapse while receiving Tam. In aggregate, these data support a role for LMTK3 in both innate (intrinsic) and acquired (adaptive) endocrine resistance in breast cancer.
Collapse
Affiliation(s)
- J Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Verma MK, Miki Y, Abe K, Suzuki T, Niikawa H, Suzuki S, Kondo T, Sasano H. Intratumoral localization and activity of 17β-hydroxysteroid dehydrogenase type 1 in non-small cell lung cancer: a potent prognostic factor. J Transl Med 2013; 11:167. [PMID: 23837683 PMCID: PMC3724709 DOI: 10.1186/1479-5876-11-167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Estrogens were recently demonstrated to be synthesized in non-small cell lung carcinomas (NSCLCs) via aromatase activity and aromatase inhibitor (AI) did suppressed estrogen receptor (ER) positive NSCLC growth. However, other enzymes involved in intratumoral production and metabolism of estrogens, i.e. 17β-hydroxysteroid dehydrogenases (i.e. 17βHSD1 and 17βHSD2) and others have not been studied. Therefore, in this study, we examined the clinical/ biological significance of 17β-hydroxysteroid dehydrogenases in NSCLCs. METHODOLOGY Archival materials obtained from 103 NSCLC patients were immunohistochemically evaluated using anti-17βHSD1 and anti-17βHSD2 antibodies. The findings of immunohistochemistry were then correlated with intratumoral estrone (E1) and estradiol (E2) concentration, clinicopathological factors and overall survival of the patients. We further employed NSCLC cell lines, A549 and LK87 to study the functional significance of 17βHSD1, in vitro. RESULTS A higher 17βHSD1 immunoreactivity tended to be positively associated with aromatase (p=0.057) and tumor stage (p=0.055) whereas a higher 17βHSD2 immunoreactivity was positively associated with a squamous cell and adenosquamous cell carcinomas subtypes (p=0.031), tumor stage (p=0.004), T factor of TNM classification (p=0.010), maximum tumor diameter (p=0.002) and tended to be associated with N factor of TMN classification (p=0.065). A higher 17βHSD1 immunoreactivity was also significantly associated with lower intratumoral E1 concentration (p=0.040) and a higher intratumoral E2/E1 concentration ratio (p=0.028). On the other hand a higher 17βHSD2 immunoreactivity was significantly associated with higher intratumoral E1 concentration (p=0.035). Results of multivariate regression analysis demonstrated an increased 17βHSD1 immunoreactivity in tumor cells as an independent negative prognostic factor (HR= 2.83, p=0.007). E1 treatment in 17βHSD1 positive NSCLC cells, A549 and LK87, resulted in E2 production (p<0.0001) and enhanced cell proliferation, which was abrogated effectively by 17βHSD1 siRNA knockdown (p<0.0001). In addition, aromatase inhibitor treatment resulted in 17βHSD1 up regulation in both A549 and LK87 cells. CONCLUSION Results of our present study suggest that 17βHSD1 may be considered an important prognostic factor in NSCLC patients and targeting 17βHSD1 activity may further improve the clinical response in estrogen responsive NSCLC patients.
Collapse
Affiliation(s)
- Mohit K Verma
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Coombes RC, Cardoso F, Isambert N, Lesimple T, Soulié P, Peraire C, Fohanno V, Kornowski A, Ali T, Schmid P. A phase I dose escalation study to determine the optimal biological dose of irosustat, an oral steroid sulfatase inhibitor, in postmenopausal women with estrogen receptor-positive breast cancer. Breast Cancer Res Treat 2013; 140:73-82. [PMID: 23797179 DOI: 10.1007/s10549-013-2597-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 11/26/2022]
Abstract
Steroid sulfatase (STS) inhibition may have a therapeutic role in suppression of endocrine-responsive breast cancer. This study aimed to determine the optimal biological dose and recommended dose (RD) of the STS inhibitor irosustat. A three-part, open-label, multicenter, dose escalation study of irosustat in estrogen receptor-positive breast cancer patients involved administration of a single dose of irosustat with a 7-day observation period; followed by a daily oral dose of irosustat for 28 days; and an extension phase, in which the daily oral dose of irosustat was continued at the discretion of the investigator and as long as the patient was benefitting from the treatment. Five doses of irosustat were tested (1, 5, 20, 40, and 80 mg) in 50 patients. After 28 days of daily administration of irosustat, all the evaluated patients in the 5, 20, 40, and 80 mg cohorts achieved ≥95 % STS inhibition in peripheral blood mononuclear cells and corresponding endocrine suppression. The maximum tolerated dose was not reached, and the 40 mg dose was established as the RD. The median time to disease progression in the 40 mg cohort was 11.2 weeks. Disease stabilization was achieved in 10 % of patients potentially indicative of drug activity. Dry skin was the most frequent adverse event. The RD of irosustat is 40 mg. Disease stabilization occurred in 10 % of this heavily pretreated patient population. A larger study is required to define an accurate response rate to irosustat as a single agent and whether co-administration with an aromatase inhibitor is needed.
Collapse
Affiliation(s)
- R Charles Coombes
- Department of Cancer and Surgery, Faculty of Medicine, ICTEM, Imperial College London, Room 145, Du Cane Road, London, W12 0NN, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Barrios CH, Fay AP, Debiasi M, Werutsky G. Endocrine resistance in advanced breast cancer: current evidence and future directions. BREAST CANCER MANAGEMENT 2012. [DOI: 10.2217/bmt.12.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Hormone receptor-positive breast cancer constitutes a heterogeneous group representing the majority (60–75%) of patients with the disease. Hormonal approaches interfering with receptor signaling represents an established treatment strategy with demonstrated efficacy and favorable toxicity profile. However, due to either primary or acquired resistance, metastatic hormone receptor-positive breast cancer remains incurable. Mechanisms of resistance are complex and still poorly understood. Estrogen receptor signaling interactions with critical growth factor pathways and various downstream kinases have been implicated. Available evidence recommends a sequential single-agent approach to advanced hormone receptor-positive disease as a preferred therapeutic alternative. Recent information suggests that rational mTOR inhibition modulates hormonal resistance. Further advances in this field will require analysis of biopsies from metastatic sites at the time of progression.
Collapse
Affiliation(s)
- Carlos H Barrios
- Hospital São Lucas, PUCRS, School of Medicine, Porto Alegre, Brazil
| | - André P Fay
- Hospital São Lucas, PUCRS, School of Medicine, Porto Alegre, Brazil
| | - Marcio Debiasi
- Hospital São Lucas, PUCRS, School of Medicine, Porto Alegre, Brazil
| | - Gustavo Werutsky
- Latin American Cooperative Oncology Group, Padre Chagas 35, 503, Porto Alegre, RS 90 570 080, Brazil
| |
Collapse
|
33
|
Chan MSM, Wang L, Chanplakorn N, Tamaki K, Ueno T, Toi M, Loo WTY, Chow LWC, Suzuki T, Sasano H. Effects of estrogen depletion on angiogenesis in estrogen-receptor-positive breast carcinoma – an immunohistochemical study of vasohibin-1 and CD31 with correlation to pathobiological response of the patients in neoadjuvant aromatase inhibitor therapy. Expert Opin Ther Targets 2012; 16 Suppl 1:S69-78. [DOI: 10.1517/14728222.2011.628938] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Abstract
Estrogens and androgens are instrumental in the maturation of many hormone-dependent cancers. Consequently, the enzymes involved in their synthesis are cancer therapy targets. One such enzyme, steroid sulfatase (STS), hydrolyses estrone sulfate, and dehydroepiandrosterone sulfate to estrone and dehydroepiandrosterone respectively. These are the precursors to the formation of biologically active estradiol and androstenediol. This review focuses on three aspects of STS inhibitors: 1) chemical development, 2) biological activity, and 3) clinical trials. The aim is to discuss the importance of estrogens and androgens in many cancers, the developmental history of STS inhibitor synthesis, the potency of these compounds in vitro and in vivo and where we currently stand in regards to clinical trials for these drugs. STS inhibitors are likely to play an important future role in the treatment of hormone-dependent cancers. Novel in vivo models have been developed that allow pre-clinical testing of inhibitors and the identification of lead clinical candidates. Phase I/II clinical trials in postmenopausal women with breast cancer have been completed and other trials in patients with hormone-dependent prostate and endometrial cancer are currently active. Potent STS inhibitors should become therapeutically valuable in hormone-dependent cancers and other non-oncological conditions.
Collapse
Affiliation(s)
- Atul Purohit
- Oncology Drug Discovery Group, Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | | |
Collapse
|
35
|
Palmieri C, Januszewski A, Stanway S, Coombes RC. Irosustat: a first-generation steroid sulfatase inhibitor in breast cancer. Expert Rev Anticancer Ther 2011; 11:179-83. [PMID: 21342037 DOI: 10.1586/era.10.201] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endocrine therapy is a key modality in the management of breast cancer, with current options for postmenopausal women including tamoxifen, aromatase inhibitors and fulvestrant. Unfortunately, in spite of these advances, many women still relapse or progress on endocrine therapy. Given that resistance (de novo or acquired resistance) is a major limiting factor in the use of endocrine therapy, additional endocrine therapies with novel methods of action are required. Steroid sulfatase, which is responsible for the conversion of estrone sulfate to estrone, as well as dehydroepiandrosterone sulfate to dehydroepiandrosterone, has been implicated in endocrine resistance. In this article, we summarize the preclinical and clinical data to support the potential role of steroid sulfatase in breast cancer, as well as the current data on the first available steroid sulfatase inhibitor named irosustat (STX64; 667 Coumate; BN83495), and discuss its potential clinical development.
Collapse
Affiliation(s)
- Carlo Palmieri
- Cancer Research UK Laboratories, Division of Cancer, Imperial College, Du Cane Road, London W12 0NN, UK.
| | | | | | | |
Collapse
|
36
|
Purohit A, Woo LWL, Potter BVL. Steroid sulfatase: a pivotal player in estrogen synthesis and metabolism. Mol Cell Endocrinol 2011; 340:154-60. [PMID: 21693170 DOI: 10.1016/j.mce.2011.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 02/07/2023]
Abstract
Steroid sulfatase plays a pivotal role in regulating the formation of biologically active steroids from inactive steroid sulfates. It is responsible for the hydrolysis of estrone sulfate and dehydroepiandrosterone sulfate to estrone and dehydroepiandrosterone, respectively, both of which can be subsequently reduced to steroids with estrogenic properties (i.e. estradiol and androstenediol) that can stimulate the growth of tumors in hormone-responsive tissues of the breast, endometrium and prostate. Hence, the action of steroid sulfatase is implicated in physiological processes and pathological conditions. It has been five years since our group last reviewed the important role of this enzyme in steroid synthesis and the progress made in the development of potent inhibitors of this important enzyme target. This timely review therefore concentrates on recent advances in steroid sulfatase research, and summarises the findings of clinical trials with Irosustat (BN83495), the only steroid sulfatase inhibitor that is being trialed in postmenopausal women with breast or endometrial cancer.
Collapse
Affiliation(s)
- Atul Purohit
- Oncology Drug Discovery Group, Section of Investigative Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, UK.
| | | | | |
Collapse
|
37
|
Geisler J, Sasano H, Chen S, Purohit A. Steroid sulfatase inhibitors: promising new tools for breast cancer therapy? J Steroid Biochem Mol Biol 2011; 125:39-45. [PMID: 21356310 DOI: 10.1016/j.jsbmb.2011.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 02/05/2011] [Accepted: 02/07/2011] [Indexed: 12/18/2022]
Abstract
Inhibition of aromatase is currently well-established as the major treatment option of hormone-dependent breast cancer in postmenopausal women. However, despite the effects of aromatase inhibitors in both early and metastatic breast cancer, endocrine resistance may cause relapses of the disease and progression of metastasis. Thus, driven by the success of manipulating the steroidogenic enzyme aromatase, several alternative enzymes involved in steroid synthesis and metabolism have recently been investigated as possible drug targets. One of the most promising targets is the steroid sulfatase (STS) which converts steroid sulfates like estrone sulfate (E1S) and dehydroepiandrosterone sulfate (DHEAS) to estrone (E1) and dehydroepiandrosterone (DHEA), respectively. Estrone and DHEA may thereafter be used for the synthesis of more potent estrogens and androgens that may eventually fuel hormone-sensitive breast cancer cells. The present review summarizes the biology behind steroid sulfatase and its inhibition, the currently available information derived from basic and early clinical trials in breast cancer patients, as well as ongoing research. Article from the Special Issue on Targeted Inhibitors.
Collapse
Affiliation(s)
- Jürgen Geisler
- Institute of Clinical Medicine, Division of Clinical Medicine and Laboratory Sciences, University of Oslo, Norway.
| | | | | | | |
Collapse
|
38
|
Verma MK, Miki Y, Sasano H. Endocrine therapy after aromatase inhibitor therapy in breast cancer. Expert Rev Endocrinol Metab 2011; 6:309-312. [PMID: 30754118 DOI: 10.1586/eem.11.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohit K Verma
- a Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seriyo-machi, Aoba-ku, Sendai, Miyagi-ken 980-8575, Japan
| | - Yasuhiro Miki
- a Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seriyo-machi, Aoba-ku, Sendai, Miyagi-ken 980-8575, Japan
| | - Hironobu Sasano
- b Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seriyo-machi, Aoba-ku, Sendai, Miyagi-ken 980-8575, Japan.
| |
Collapse
|
39
|
|