1
|
Han R, Pareja F, Ross DS, Grabenstetter A, Wen HY, Brogi E. Frank Invasion in Tall Cell Carcinoma With Reversed Polarity of the Breast: Report of Two Cases. Mod Pathol 2025; 38:100714. [PMID: 39828059 DOI: 10.1016/j.modpat.2025.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Tall cell carcinoma with reversed polarity (TCCRP) is a rare neoplasm of the breast composed of columnar tumor cells arranged in solid and solid-papillary nests with evidence of apical nuclear polarity. No frank invasion is evident despite the lack of a myoepithelial cell layer throughout the tumor. TCCRP has a triple-negative or hormone receptor-low immunophenotype. Recurrent IDH2 R172 hotspot mutation coexisting with genetic alterations in the PI3K pathway characterizes this tumor. Here, we report on 2 postmenopausal patients with TCCRP with frank stromal invasion. IDH2 R172 mutations were detected in both tumors by immunohistochemistry. Targeted sequencing of case 2 demonstrated the presence of IDH2 R172T and RTEL1 E839K mutations. Both patients underwent breast conservation surgery, radiation therapy, and adjuvant endocrine therapy with anastrozole and demonstrated no evidence of disease at 65 and 25 months, respectively. This study suggests that TCCRP may give rise to frank invasive carcinoma, the prognostic significance of which is yet unknown.
Collapse
Affiliation(s)
- Rachel Han
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York; Sunnybrook Health Sciences Centre, Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Toronto, Ontario, Canada
| | - Fresia Pareja
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Dara S Ross
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Anne Grabenstetter
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Hannah Y Wen
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Edi Brogi
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York.
| |
Collapse
|
2
|
García-Simón N, Valentín F, Romero A. Genetic predisposition to polyposis syndromes. Clin Transl Oncol 2025:10.1007/s12094-024-03825-6. [PMID: 39794684 DOI: 10.1007/s12094-024-03825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/07/2024] [Indexed: 01/13/2025]
Abstract
Hereditary polyposis syndromes are significant contributors to colorectal cancer (CRC). These syndromes are characterized by the development of various types and numbers of polyps, distinct inheritance patterns, and extracolonic manifestations. This review explores these syndromes with a focus on their genetic characteristics. Advances in diagnostics, particularly the identification of pathogenic germline variants through massive sequencing technologies, have enhanced our understanding of the genetic alterations associated with polyp formation and CRC risk. Identifying pathogenic variants beyond traditional diagnostic criteria improves the management and surveillance of these syndromes. Genetic diagnosis not only refines patient treatment and surveillance, but also informs relatives of potential risks, enabling appropriate management. However, challenges persist in determining the pathogenicity of newly discovered mutations due to their low prevalence. This review covers hereditary polyposis syndromes, from well-established to newly recognized types, providing insights into their genetic landscapes and highlighting the need for tailored surveillance based on genotype.
Collapse
Affiliation(s)
- Natalia García-Simón
- Hereditary Cancer Unit, Medical Oncology Department, Puerta de Hierro University Hospital, Majadahonda, 28222, Madrid, Spain
| | - Fátima Valentín
- Gastroenterology Department, Biomedical Research Institute (IDIPHISA), Puerta de Hierro University Hospital, Majadahonda, 28222, Madrid, Spain
| | - Atocha Romero
- Hereditary Cancer Unit, Medical Oncology Department, Puerta de Hierro University Hospital, Majadahonda, 28222, Madrid, Spain.
| |
Collapse
|
3
|
Rodrigues LM, Maistro S, Katayama MLH, Rocha VM, Lopez RVM, Lopes EFDT, Gonçalves FT, Fridman C, Serio PADMP, Barros LRC, Leite LAS, Segatelli V, Estevez-Diz MDP, Guindalini RSC, Ribeiro Junior U, Folgueira MAAK. Prevalence of germline variants in Brazilian pancreatic carcinoma patients. Sci Rep 2024; 14:21083. [PMID: 39256447 PMCID: PMC11387492 DOI: 10.1038/s41598-024-71884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
We evaluated the prevalence of pathogenic/likely pathogenic germline variants (PGV) in Brazilian pancreatic adenocarcinoma (PC) patients, that represent a multiethnic population, in a cross-sectional study. We included 192 PC patients unselected for family history of cancer. We evaluated a panel of 113 cancer genes, through genomic DNA sequencing and 46 ancestry-informative markers, through multiplex PCR. The median age was 61 years; 63.5% of the patients presented disease clinical stages III or IV; 8.3% reported personal history of cancer; 4.7% and 16.1% reported first-degree relatives with PC or breast and/or prostate cancer, respectively. Although the main ancestry was European, there was considerable genetic composition admixture. Twelve patients (6.25%) were PGV carriers in PC predisposition genes (ATM, BRCA1, BRCA2, CDKN2A, MSH2, PALB2) and another 25 (13.0%) were PGV carriers in genes with a limited association or not previously associated with PC (ACD, BLM, BRIP1, CHEK2, ERCC4, FANCA, FANCE, FANCM, GALNT12, MITF, MRE11, MUTYH, POLE, RAD51B, RAD51C, RECQL4, SDHA, TERF2IP). The most frequently affected genes were CHEK2, ATM and FANC. In tumor samples from PGV carriers in ACD, BRIP1, MRE11, POLE, SDHA, TERF2IP, which were examined through exome sequencing, the main single base substitutions (SBS) mutational signature was SBS1+5+18, probably associated with age, tobacco smoking and reactive oxygen species. SBS3 associated with homologous repair deficiency was also represented, but on a lower scale. There was no difference in the frequency of PGV carriers between: (a) patients with or without first-degree relatives with cancer; and (b) patients with admixed ancestry versus those with predominantly European ancestry. Furthermore, there was no difference in overall survival between PGV carriers and non-carriers. Therefore, genetic testing should be offered to all Brazilian pancreatic cancer patients, regardless of their ancestry. Genes with limited or previously unrecognized associations with pancreatic cancer should be further investigated to clarify their role in cancer risk.
Collapse
Affiliation(s)
- Lívia Munhoz Rodrigues
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Simone Maistro
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Maria Lucia Hirata Katayama
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Vinícius Marques Rocha
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Rossana Veronica Mendoza Lopez
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Edia Filomena di Tullio Lopes
- Registro Hospitalar de Cancer, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, São Paulo, SP, Brazil
| | - Fernanda Toledo Gonçalves
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Cintia Fridman
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Luciana Rodrigues Carvalho Barros
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Luiz Antonio Senna Leite
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Vanderlei Segatelli
- Departamento de Patologia Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Maria Del Pilar Estevez-Diz
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Ulysses Ribeiro Junior
- Division of Digestive Surgery, Department of Gastroenterology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo FMUSP, Sao Paulo, SP, Brazil
| | - Maria Aparecida Azevedo Koike Folgueira
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
4
|
Paller CJ, Tukachinsky H, Maertens A, Decker B, Sampson JR, Cheadle JP, Antonarakis ES. Pan-Cancer Interrogation of MUTYH Variants Reveals Biallelic Inactivation and Defective Base Excision Repair Across a Spectrum of Solid Tumors. JCO Precis Oncol 2024; 8:e2300251. [PMID: 38394468 PMCID: PMC10901435 DOI: 10.1200/po.23.00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Biallelic germline pathogenic variants of the base excision repair (BER) pathway gene MUTYH predispose to colorectal cancer (CRC) and other cancers. The possible association of heterozygous variants with broader cancer susceptibility remains uncertain. This study investigated the prevalence and consequences of pathogenic MUTYH variants and MUTYH loss of heterozygosity (LOH) in a large pan-cancer analysis. MATERIALS AND METHODS Data from 354,366 solid tumor biopsies that were sequenced as part of routine clinical care were analyzed using a validated algorithm to distinguish germline from somatic MUTYH variants. RESULTS Biallelic germline pathogenic MUTYH variants were identified in 119 tissue biopsies. Most were CRCs and showed increased tumor mutational burden (TMB) and a mutational signature consistent with defective BER (COSMIC Signature SBS18). Germline heterozygous pathogenic variants were identified in 5,991 biopsies and their prevalence was modestly elevated in some cancer types. About 12% of these cancers (738 samples: including adrenal gland cancers, pancreatic islet cell tumors, nonglioma CNS tumors, GI stromal tumors, and thyroid cancers) showed somatic LOH for MUTYH, higher rates of chromosome 1p loss (where MUTYH is located), elevated genomic LOH, and higher COSMIC SBS18 signature scores, consistent with BER deficiency. CONCLUSION This analysis of MUTYH alterations in a large set of solid cancers suggests that in addition to the established role of biallelic pathogenic MUTYH variants in cancer predisposition, a broader range of cancers may possibly arise in MUTYH heterozygotes via a mechanism involving somatic LOH at the MUTYH locus and defective BER. However, the effect is modest and requires confirmation in additional studies before being clinically actionable.
Collapse
Affiliation(s)
- Channing J Paller
- Johns Hopkins University School of Medicine, Oncology, Baltimore, MD
| | | | - Alexandra Maertens
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD
| | | | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jeremy P Cheadle
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Emmanuel S Antonarakis
- University of Minnesota Masonic Cancer Center, Division of Hematology, Oncology and Transplantation, Minneapolis, MN
| |
Collapse
|
5
|
San-Román-Gil M, Martínez-Delfrade I, Albarrán-Fernández V, Guerrero-Serrano P, Pozas-Pérez J, Chamorro-Pérez J, Rosero-Rodríguez D, Sotoca-Rubio P, Barrill-Corpa AM, Alia-Navarro V, González-Merino C, García-de-Quevedo-Suero C, López V, Ruz-Caracuel I, Perna-Monroy C, Ferreiro-Monteagudo R. Case report: Efficacy of immunotherapy as conversion therapy in dMMR/MSI-H colorectal cancer: a case series and review of the literature. Front Immunol 2024; 15:1352262. [PMID: 38361927 PMCID: PMC10867218 DOI: 10.3389/fimmu.2024.1352262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Immunotherapy has demonstrated a role in the therapeutic landscape of a small subset of patients with colorectal carcinoma (CRC) that harbor a microsatellite instability (MSI-H) status due to a deficient DNA mismatch repair (dMMR) system. The remarkable responses to immune checkpoint inhibitors (ICIs) are now being tested in the neoadjuvant setting in localized CRC, where the dMMR/MSI-H status can be found in up to 15% of patients, with remarkable results obtained in NICHE2 and 3 trials, among others. This case series aims to report our experience at a tertiary center and provide a comprehensive analysis of the possible questions and challenges to overcome if ICIs were established as standard of care in a neoadjuvant setting, as well as the potential role they may have as conversion therapy not only in locoregional advanced CRC but also in oligometastatic disease.
Collapse
Affiliation(s)
- María San-Román-Gil
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | | | | | - Javier Pozas-Pérez
- Medical Oncology Department, Royal Marsden Hospital, London, United Kingdom
| | - Jesús Chamorro-Pérez
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | - Pilar Sotoca-Rubio
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | - Víctor Alia-Navarro
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | | | - Victoria López
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Peña-López J, Jiménez-Bou D, Ruíz-Gutiérrez I, Martín-Montalvo G, Alameda-Guijarro M, Rueda-Lara A, Ruíz-Giménez L, Higuera-Gómez O, Gallego A, Pertejo-Fernández A, Sánchez-Cabrero D, Feliu J, Rodríguez-Salas N. Prevalence and Distribution of MUTYH Pathogenic Variants, Is There a Relation with an Increased Risk of Breast Cancer? Cancers (Basel) 2024; 16:315. [PMID: 38254803 PMCID: PMC10813893 DOI: 10.3390/cancers16020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND MUTYH has been implicated in hereditary colonic polyposis and colorectal carcinoma. However, there are conflicting data refgarding its relationship to hereditary breast cancer. Therefore, we aimed to assess if MUTYH mutations contribute to breast cancer susceptibility. METHODS We retrospectively reviewed 3598 patients evaluated from June 2018 to June 2023 at the Hereditary Cancer Unit of La Paz University Hospital, focusing on those with detected MUTYH variants. RESULTS Variants of MUTYH were detected in 56 patients (1.6%, 95%CI: 1.2-2.0). Of the 766 patients with breast cancer, 14 patients were carriers of MUTYH mutations (1.8%, 95%CI: 0.5-3.0). The prevalence of MUTYH mutation was significantly higher in the subpopulation with colonic polyposis (11.3% vs. 1.1%, p < 0.00001, OR = 11.2, 95%CI: 6.2-22.3). However, there was no significant difference in the prevalence within the subpopulation with breast cancer (1.8% vs. 1.5%, p = 0.49, OR = 1.2, 95%CI: 0.7-2.3). CONCLUSION In our population, we could not establish a relationship between MUTYH and breast cancer. These findings highlight the necessity for a careful interpretation when assessing the role of MUTYH mutations in breast cancer risk.
Collapse
Affiliation(s)
- Jesús Peña-López
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Diego Jiménez-Bou
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Icíar Ruíz-Gutiérrez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Gema Martín-Montalvo
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | | - Antonio Rueda-Lara
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Leticia Ruíz-Giménez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Oliver Higuera-Gómez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Alejandro Gallego
- Department of Medical Oncology, Clínica Universidad de Navarra, 28027 Madrid, Spain
| | | | | | - Jaime Feliu
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | |
Collapse
|
7
|
Agaoglu NB, Ng OH, Unal B, Dogan OA, Amanvermez U, Yildiz J, Doganay L, Ghazani AA, Rana HQ. Concurrent Pathogenic Variants of BRCA1, MUTYH and CHEK2 in a Hereditary Cancer Family. Cancer Genet 2022; 268-269:128-136. [PMID: 36368126 DOI: 10.1016/j.cancergen.2022.10.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/04/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Concurrent pathogenic variants (PVs) in cancer predisposition genes have been reported in 0.1-2% of hereditary cancer (HC) patients. Determining concurrent PVs is crucial for the diagnosis, treatment, and risk assessment of unaffected family members. Next generation sequencing based diagnostic tests, which are widely used in HCs, enable the evaluation of multiple genes in parallel. We have screened the family members of a patient with bilateral breast cancer who was found to have concurrent PVs in BRCA1 (NM_007294.3;c.5102_5103del, p.Leu1701Glnfs*14) and MUTYH (NM_001128425.1;c.884C>T, p.Pro295Leu). Further analysis revealed concurrent PVs in CHEK2 (NM_007194.4;c.1427C>T, p.Thr476Met) and MUTYH (NM_001128425.1;c.884C>T, p.Pro295Leu) in the maternal uncle of the index case. Eight additional family members were found to have PVs in BRCA1 and MUTYH among 26 tested relatives. The sister and the brother of the index case who were diagnosed with breast and colon cancers, respectively, presented with the same genotype as the index case. Each family member was evaluated individually for clinical care and surveillance. This is the first report describing a family with BRCA1, MUTYH and CHEK2 concurrent PVs. Our findings provide valuable information for the assessment and management considerations for families with concurrent PVs.
Collapse
Affiliation(s)
- Nihat Bugra Agaoglu
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey; Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Ozden Hatirnaz Ng
- Department of Medical Biology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Acibadem University Rare Diseases and Orphan Drugs Application and Research Center, Istanbul, Turkey
| | - Busra Unal
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Ozlem Akgun Dogan
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ufuk Amanvermez
- Department of Genome Studies, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Jale Yildiz
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Levent Doganay
- Department of Gastroenterology and Hepatology, Umraniye Training and Research Hospital, Umraniye, Istanbul, Turkey
| | - Arezou A Ghazani
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, United States; Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Huma Q Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States.
| |
Collapse
|
8
|
Thompson AB, Sutcliffe EG, Arvai K, Roberts ME, Susswein LR, Marshall ML, Torene R, Postula KJV, Hruska KS, Bai S. Monoallelic MUTYH pathogenic variants ascertained via multi-gene hereditary cancer panels are not associated with colorectal, endometrial, or breast cancer. Fam Cancer 2022; 21:415-422. [PMID: 34981295 DOI: 10.1007/s10689-021-00285-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/21/2021] [Indexed: 01/27/2023]
Abstract
We aimed to determine whether monoallelic MUTYH pathogenic and likely pathogenic variants (PVs) are associated with colorectal, breast, and endometrial cancer. Cases were individuals with colorectal, female breast, or endometrial cancer who reported European ancestry alone and underwent a multi-gene hereditary cancer panel at a large reference laboratory. Controls were individuals of European (non-Finnish) descent from GnomAD with cancer cohorts removed. We performed a Fisher's exact test to generate odds ratios (ORs) with 95% confidence intervals (CI). Prevalence of single MUTYH PVs in cancer cohorts versus controls, respectively, was: colorectal cancer, 2.1% vs. 1.8% (OR 1.2, 95% CI 0.99-1.5, p = 0.064); breast cancer 1.9% vs. 1.7% (OR 1.1, 95% CI 0.96-1.3, p = 0.15); and endometrial cancer, 1.7% vs. 1.7% (OR 0.98; 95% CI 0.70-1.3, p = 0.94). Using the largest colorectal and endometrial cancer cohorts and one of the largest breast cancer cohorts from a single case-control study, we did not observe a significant difference in the prevalence of monoallelic MUTYH PVs in these cohorts compared to controls. Additionally, frequencies among cancer cohorts were consistent with the published MUTYH carrier frequency of 1-2%. These findings suggest there is no association between colorectal, endometrial, or breast cancer and MUTYH heterozygosity in individuals of European ancestry.
Collapse
Affiliation(s)
| | | | - Kevin Arvai
- GeneDx, 207 Perry Pkwy, Gaithersburg, MD, 20877, USA
- DataRobot, Boston, MA, USA
| | | | | | | | | | | | | | - Shaochun Bai
- GeneDx, 207 Perry Pkwy, Gaithersburg, MD, 20877, USA
| |
Collapse
|
9
|
Paixão D, Torrezan GT, Santiago KM, Formiga MN, Ahuno ST, Dias-Neto E, Tojal da Silva I, Foulkes WD, Polak P, Carraro DM. Characterization of genetic predisposition to molecular subtypes of breast cancer in Brazilian patients. Front Oncol 2022; 12:976959. [PMID: 36119527 PMCID: PMC9472814 DOI: 10.3389/fonc.2022.976959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction BRCA1 and BRCA2 germline pathogenic variants (GPVs) account for most of the 5-10% of breast cancer (BC) that is attributable to inherited genetic variants. BRCA1 GPVs are associated with the triple negative subtype, whereas BRCA2 GPVs are likely to result in higher grade, estrogen-receptor positive BCs. The contribution of other genes of high and moderate risk for BC has not been well defined and risk estimates to specific BC subtypes is lacking, especially for an admixed population like Brazilian. Objective The aim of this study is to evaluate the value of a multigene panel in detecting germline mutations in cancer-predisposing genes for Brazilian BC patients and its relation with molecular subtypes and the predominant molecular ancestry. Patients and methods A total of 321 unrelated BC patients who fulfilled NCCN criteria for BRCA1/2 testing between 2016-2018 were investigated with a 94-genes panel. Molecular subtypes were retrieved from medical records and ancestry-specific variants were obtained from off-target reads obtained from the sequencing data. Results We detected 83 GPVs in 81 patients (positivity rate of 25.2%). Among GPVs, 47% (39/83) were identified in high-risk BC genes (BRCA1/2, PALB2 and TP53) and 18% (15/83) in moderate-penetrance genes (ATM, CHEK2 and RAD51C). The remainder of the GPVs (35% - 29/83), were identified in lower-risk genes. As for the molecular subtypes, triple negative BC had a mutation frequency of 31.6% (25/79), with predominance in BRCA1 (12.6%; 10/79). Among the luminal subtypes, except Luminal B HER2-positive, 18.7% (29/155) had GPV with BRCA1/2 genes contributing 7.1% (11/155) and non-BRCA1/2 genes, 12.9% (20/155). For Luminal B HER2-positive subtype, 40% (16/40) had GPVs, with a predominance of ATM gene (15% - 6/40) and BRCA2 with only 2.5% (1/40). Finally, HER2-enriched subtype presented a mutation rate of 30.8% (4/13) with contribution of BRCA2 of 7.5% (1/13) and non-BRCA1/2 of 23% (3/13). Variants of uncertain significance (VUS) were identified in 77.6% (249/321) of the patients and the number of VUS was increased in patients with Asian and Native American ancestry. Conclusion The multigene panel contributed to identify GPVs in genes other than BRCA1/2, increasing the positivity of the genetic test from 9.6% (BRCA1/2) to 25.2% and, considering only the most clinically relevant BC predisposing genes, to 16.2%. These results indicate that women with clinical criteria for hereditary BC may benefit from a multigene panel testing, as it allows identifying GPVs in genes that directly impact the clinical management of these patients and family members.
Collapse
Affiliation(s)
- Daniele Paixão
- Oncogenetics Department, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Giovana Tardin Torrezan
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, SP, Brazil
| | - Karina Miranda Santiago
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Samuel Terkper Ahuno
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Emmanuel Dias-Neto
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, SP, Brazil
- Genomic Medicine Group, - International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Israel Tojal da Silva
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, SP, Brazil
- Bioinformatics and Computational Biology Group, - International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - William D. Foulkes
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montreal, QC, Canada
| | - Paz Polak
- Computational Biology, C2i Genomics, New York, NY, United States
| | - Dirce Maria Carraro
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, SP, Brazil
| |
Collapse
|
10
|
Nunziato M, Di Maggio F, Pensabene M, Esposito MV, Starnone F, De Angelis C, Calabrese A, D’Aiuto M, Botti G, De Placido S, D’Argenio V, Salvatore F. Multi-gene panel testing increases germline predisposing mutations’ detection in a cohort of breast/ovarian cancer patients from Southern Italy. Front Med (Lausanne) 2022; 9:894358. [PMID: 36035419 PMCID: PMC9403188 DOI: 10.3389/fmed.2022.894358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most common neoplasia in females worldwide, about 10% being hereditary/familial and due to DNA variants in cancer-predisposing genes, such as the highly penetrant BRCA1/BRCA2 genes. However, their variants explain up to 25% of the suspected hereditary/familial cases. The availability of NGS methodologies has prompted research in this field. With the aim to improve the diagnostic sensitivity of molecular testing, a custom designed panel of 44 genes, including also non-coding regions and 5’ and 3’ UTR regions, was set up. Here, are reported the results obtained in a cohort of 64 patients, including also few males, from Southern Italy. All patients had a positive personal and/or familial history for breast and other cancers, but tested negative to routine BRCA analysis. After obtaining their written informed consent, a genomic DNA sample/patient was used to obtain an enriched DNA library, then analyzed by NGS. Sequencing data analysis allowed the identification of pathogenic variants in 12 of tested patients (19%). Interestingly, MUTYH was the most frequently altered gene, followed by RNASEL, ATM, MSH6, MRE11A, and PALB2 genes. The reported resultsreinforce the need for enlarged molecular testing beyond BRCA genes, at least in patients with a personal and familial history, strongly suggestive for a hereditary/familial form. This gives also a hint to pursue more specific precision oncology therapy.
Collapse
Affiliation(s)
- Marcella Nunziato
- CEINGE–Biotecnologie Avanzate, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Federica Di Maggio
- CEINGE–Biotecnologie Avanzate, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Matilde Pensabene
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Valeria Esposito
- CEINGE–Biotecnologie Avanzate, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Flavio Starnone
- CEINGE–Biotecnologie Avanzate, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Department of Oncology and Hematology, Regional Reference Center for Rare Tumors, Azienda Ospedaliera Universitaria (AOU) Federico II of Naples, Naples, Italy
| | - Alessandra Calabrese
- Division of Breast Surgery, Department of Breast Disease, National Cancer Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) “Fondazione G. Pascale,”Naples, Italy
| | - Massimiliano D’Aiuto
- Clinica Villa Fiorita, Aversa, Italy
- Division of Breast Oncology, National Cancer Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) “Fondazione G. Pascale,”Naples, Italy
| | - Gerardo Botti
- Scientific Directorate, National Cancer Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) “Fondazione G. Pascale,”Naples, Italy
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Department of Oncology and Hematology, Regional Reference Center for Rare Tumors, Azienda Ospedaliera Universitaria (AOU) Federico II of Naples, Naples, Italy
| | - Valeria D’Argenio
- CEINGE–Biotecnologie Avanzate, Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
- *Correspondence: Valeria D’Argenio,
| | - Francesco Salvatore
- CEINGE–Biotecnologie Avanzate, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- Francesco Salvatore,
| |
Collapse
|
11
|
Zografos E, Andrikopoulou A, Papatheodoridi AM, Kaparelou M, Bletsa G, Liontos M, Dimopoulos MA, Zagouri F. Multi-Gene Mutation Profiling by Targeted Next-Generation Sequencing in Premenopausal Breast Cancer. Genes (Basel) 2022; 13:genes13081362. [PMID: 36011273 PMCID: PMC9407588 DOI: 10.3390/genes13081362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer has distinct etiology, prognoses, and clinical outcomes at premenopausal ages. Determination of the frequency of germline and somatic mutations will refine our understanding of the genetic contribution to premenopausal breast cancer susceptibility. We applied a comprehensive next generation sequencing-based approach to analyze blood and/or tissue samples of 54 premenopausal breast cancer patients treated in our clinic. Genetic testing results were descriptively analyzed in correlation with clinicopathological data. In the present study, 42.5% of premenopausal breast cancer patients tested carried pathogenic mutations in cancer predisposition genes (CHEK2, BRCA1, TP53, and MUTYH). Germline variants of unknown/uncertain significance (VUSs) in eight different cancer susceptibility genes, namely BRCA1, BRCA2, CHEK2, RAD51C, RAD51D, ATM, BRIP1, and PMS2, were also identified in 14 premenopausal patients (35%). Of the breast tumors tested, 61.8% harbored pathogenic somatic variants in tumor suppressor genes (TP53, NF1, RB), genes involved in DNA repair (BRCA1, BRCA2, ATM, RAD50), cell proliferation (PTEN, PIK3C FGFR3, AKT1, ROS1, ERBB2, NOTCH1), and cell adhesion (CTNNB1). This descriptive study employs the powerful NGS technology to highlight the high frequency of premenopausal cases attributable to genetic predisposition. Mutation identification in a larger cohort may further ensure that these patients receive tailored treatment according to their menopausal status.
Collapse
Affiliation(s)
- Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (E.Z.); (A.A.); (A.M.P.); (M.K.); (M.L.); (M.-A.D.)
| | - Angeliki Andrikopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (E.Z.); (A.A.); (A.M.P.); (M.K.); (M.L.); (M.-A.D.)
| | - Alkistis Maria Papatheodoridi
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (E.Z.); (A.A.); (A.M.P.); (M.K.); (M.L.); (M.-A.D.)
| | - Maria Kaparelou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (E.Z.); (A.A.); (A.M.P.); (M.K.); (M.L.); (M.-A.D.)
| | | | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (E.Z.); (A.A.); (A.M.P.); (M.K.); (M.L.); (M.-A.D.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (E.Z.); (A.A.); (A.M.P.); (M.K.); (M.L.); (M.-A.D.)
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (E.Z.); (A.A.); (A.M.P.); (M.K.); (M.L.); (M.-A.D.)
- Correspondence:
| |
Collapse
|
12
|
Ossa Gomez CA, Achatz MI, Hurtado M, Sanabria-Salas MC, Sullcahuaman Y, Chávarri-Guerra Y, Dutil J, Nielsen SM, Esplin ED, Michalski ST, Bristow SL, Hatchell KE, Nussbaum RL, Pineda-Alvarez DE, Ashton-Prolla P. Germline Pathogenic Variant Prevalence Among Latin American and US Hispanic Individuals Undergoing Testing for Hereditary Breast and Ovarian Cancer: A Cross-Sectional Study. JCO Glob Oncol 2022; 8:e2200104. [PMID: 35867948 PMCID: PMC9812461 DOI: 10.1200/go.22.00104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To report on pathogenic germline variants detected among individuals undergoing genetic testing for hereditary breast and/or ovarian cancer (HBOC) from Latin America and compare them with self-reported Hispanic individuals from the United States. METHODS In this cross-sectional study, unrelated individuals with a personal/family history suggestive of HBOC who received clinician-ordered germline multigene sequencing were grouped according to the location of the ordering physician: group A, Mexico, Central America, and the Caribbean; group B, South America; and group C, United States with individuals who self-reported Hispanic ethnicity. Relatives who underwent cascade testing were analyzed separately. RESULTS Among 24,075 unrelated probands across all regions, most were female (94.9%) and reported a personal history suggestive of HBOC (range, 65.0%-80.6%); the mean age at testing was 49.1 ± 13.1 years. The average number of genes analyzed per patient was highest in group A (A 63 ± 28, B 56 ± 29, and C 40 ± 28). Between 9.1% and 18.7% of patients had pathogenic germline variants in HBOC genes (highest yield in group A), with the majority associated with high HBOC risk. Compared with US Hispanics individuals the overall yield was significantly higher in both Latin American regions (A v C P = 1.64×10-9, B v C P < 2.2×10-16). Rates of variants of uncertain significance were similar across all three regions (33.7%-42.6%). Cascade testing uptake was low in all regions (A 6.6%, B 4.5%, and C 1.9%). CONCLUSION This study highlights the importance of multigene panel testing in Latin American individuals with newly diagnosed or history of HBOC, who can benefit from medical management changes including targeted therapies, eligibility to clinical trials, risk-reducing surgeries, surveillance and prevention of secondary malignancy, and genetic counseling and subsequent cascade testing of at-risk relatives.
Collapse
Affiliation(s)
| | - Maria Isabel Achatz
- Department of Oncology, Hospital Sírio-Libanês, Brasília, Distrito Federal, Brazil
| | - Mabel Hurtado
- Instituto Oncológico, Fundación Arturo López Pérez, Santiago, Chile
| | | | - Yasser Sullcahuaman
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Instituto de Investigación Genomica, Lima, Peru
| | - Yanin Chávarri-Guerra
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Pone, Puerto Rico
| | | | | | | | | | | | | | | | - Patricia Ashton-Prolla
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica e Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
13
|
Andoni T, Wiggins J, Robinson R, Charlton R, Sandberg M, Eeles R. Half of germline pathogenic and likely pathogenic variants found on panel tests do not fulfil NHS testing criteria. Sci Rep 2022; 12:2507. [PMID: 35190596 PMCID: PMC8861039 DOI: 10.1038/s41598-022-06376-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Genetic testing for cancer predisposition has been curtailed by the cost of sequencing, and testing has been restricted by eligibility criteria. As the cost of sequencing decreases, the question of expanding multi-gene cancer panels to a broader population arises. We evaluated how many additional actionable genetic variants are returned by unrestricted panel testing in the private sector compared to those which would be returned by adhering to current NHS eligibility criteria. We reviewed 152 patients referred for multi-gene cancer panels in the private sector between 2014 and 2016. Genetic counselling and disclosure of all results was standard of care provided by the Consultant. Every panel conducted was compared to current eligibility criteria. A germline pathogenic / likely pathogenic variant (P/LP), in a gene relevant to the personal or family history of cancer, was detected in 15 patients (detection rate of 10%). 46.7% of those found to have the P/LP variants (7 of 15), or 4.6% of the entire set (7 of 152), did not fulfil NHS eligibility criteria. 46.7% of P/LP variants in this study would have been missed by national testing guidelines, all of which were actionable. However, patients who do not fulfil eligibility criteria have a higher Variant of Uncertain Significance (VUS) burden. We demonstrated that the current England NHS threshold for genetic testing is missing pathogenic variants which would alter management in 4.6%, nearly 1 in 20 individuals. However, the clinical service burden that would ensue is a detection of VUS of 34%.
Collapse
Affiliation(s)
- Tala Andoni
- The Institute of Cancer Research, London, UK.
| | | | - Rachel Robinson
- Leeds Genetics Laboratory, St James's University Hospital, Leeds, UK
| | - Ruth Charlton
- Leeds Genetics Laboratory, St James's University Hospital, Leeds, UK
| | | | | |
Collapse
|
14
|
Huang Y, Liu S, Shan M, Hagenaars SC, Mesker WE, Cohen D, Wang L, Zheng Z, Devilee P, Tollenaar RAEM, Li Z, Song Y, Zhang L, Li D, Ten Dijke P. RNF12 is regulated by AKT phosphorylation and promotes TGF-β driven breast cancer metastasis. Cell Death Dis 2022; 13:44. [PMID: 35013159 PMCID: PMC8748510 DOI: 10.1038/s41419-021-04493-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Transforming growth factor-β (TGF-β) acts as a pro-metastatic factor in advanced breast cancer. RNF12, an E3 ubiquitin ligase, stimulates TGF-β signaling by binding to the inhibitory SMAD7 and inducing its proteasomal degradation. How RNF12 activity is regulated and its exact role in cancer is incompletely understood. Here we report that RNF12 was overexpressed in invasive breast cancers and its high expression correlated with poor prognosis. RNF12 promoted breast cancer cell migration, invasion, and experimental metastasis in zebrafish and murine xenograft models. RNF12 levels were positively associated with the phosphorylated AKT/protein kinase B (PKB) levels, and both displayed significant higher levels in the basal-like subtype compared with the levels in luminal-like subtype of breast cancer cells. Mechanistically, AKT-mediated phosphorylation induced the nuclear localization of RNF12, maintained its stability, and accelerated the degradation of SMAD7 mediated by RNF12. Furthermore, we demonstrated that RNF12 and AKT cooperated functionally in breast cancer cell migration. Notably, RNF12 expression strongly correlated with both phosphorylated AKT and phosphorylated SMAD2 levels in breast cancer tissues. Thus, our results uncovered RNF12 as an important determinant in the crosstalk between the TGF-β and AKT signaling pathways during breast cancer progression.
Collapse
Affiliation(s)
- Yongsheng Huang
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Sijia Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mengjie Shan
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sophie C Hagenaars
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Danielle Cohen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lin Wang
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Zheng
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Zhangfu Li
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongmei Song
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Long Zhang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands. .,Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Dan Li
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Moscatello C, Di Nicola M, Veschi S, Di Gregorio P, Cianchetti E, Stuppia L, Battista P, Cama A, Curia MC, Aceto GM. Relationship between MUTYH, OGG1 and BRCA1 mutations and mRNA expression in breast and ovarian cancer predisposition. Mol Clin Oncol 2021; 14:15. [PMID: 33343895 PMCID: PMC7725208 DOI: 10.3892/mco.2020.2177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
The aetiology of breast and ovarian cancer (BC/OC) is multi-factorial. At present, the involvement of base excision repair (BER) glycosylases (MUTYH and OGG1) in BC/OC predisposition is controversial. The present study investigated whether germline mutation status and mRNA expression of two BER genes, MUTHY and OGG1, were correlated with BRCA1 in 59 patients with BC/OC and 50 matched population controls. In addition, to evaluate the relationship between MUTYH, OGG1 and BRCA1, their possible mutual modulation and correlation among mutational spectrum, gene expression and demographic characteristics were evaluated. The results identified 18 MUTYH and OGG1 variants, of which 4 were novel (2 MUTYH and 2 OGG1) in 44 of the 59 patients. In addition, two pathogenic mutations were identified: OGG1 p.Arg46Gln, detected in a patient with BC and a family history of cancer, and MUTYH p.Val234Gly in a patient with OC, also with a family history of cancer. A significant reduced transcript expression in MUTYH was observed (P=0.033) in cases, and in association with the presence of rare variants in the same gene (P=0.030). A significant correlation in the expression of the two BER genes was observed in cases (P=0.004), whereas OGG1 and BRCA1 was significantly correlated in cases (P=0.001) compared with controls (P=0.010). The results of the present study indicated that the relationship among mutational spectrum, gene expression and demographic characteristics may improve the genetic diagnosis and primary prevention of at-risk individuals belonging to families with reduced mRNA expression, regardless of mutation presence.
Collapse
Affiliation(s)
- Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, ‘G. d'Annunzio’ University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, ‘G. d'Annunzio’ University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, ‘G. d'Annunzio’ University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Patrizia Di Gregorio
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, ‘G. d'Annunzio’ University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Ettore Cianchetti
- Department of Medical, Oral and Biotechnological Sciences, ‘G. d'Annunzio’ University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Liborio Stuppia
- Immunohaematology and Transfusional Medicine Service, ‘SS. Annunziata’ Hospital, I-66100 Chieti, Italy
| | - Pasquale Battista
- Department of Medical, Oral and Biotechnological Sciences, ‘G. d'Annunzio’ University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, ‘G. d'Annunzio’ University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, ‘G. d'Annunzio’ University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, ‘G. d'Annunzio’ University of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
16
|
MUTYH-associated polyposis: Review and update of the French recommendations established in 2012 under the auspices of the National Cancer institute (INCa). Eur J Med Genet 2020; 63:104078. [DOI: 10.1016/j.ejmg.2020.104078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
|
17
|
Ryu JS, Lee HY, Cho EH, Yoon KA, Kim MK, Joo J, Lee ES, Kang HS, Lee S, Lee DO, Lim MC, Kong SY. Exon splicing analysis of intronic variants in multigene cancer panel testing for hereditary breast/ovarian cancer. Cancer Sci 2020; 111:3912-3925. [PMID: 32761968 PMCID: PMC7540976 DOI: 10.1111/cas.14600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
The use of multigene panel testing for patients with a predisposition to breast/ovarian cancer is increasing as the identification of variants is useful for diagnosis and disease management. We identified pathogenic and likely pathogenic (P/LP) variants of high-and moderate-risk genes using a 23-gene germline cancer panel in 518 patients with hereditary breast and ovarian cancers (HBOC). The frequency of P/LP variants was 12.4% (64/518) for high- and moderate-penetrant genes, namely, BRCA2 (5.6%), BRCA1 (3.3%), CHEK2 (1.2%), MUTYH (0.8%), PALB2 (0.8%), MLH1 (0.4%), ATM (0.4%), BRIP1 (0.4%), TP53 (0.2%), and PMS2 (0.2%). Five patients possessed two P/LP variants in BRCA1/2 and other genes. We also compared the results from in silico splicing predictive tools and exon splicing patterns from patient samples by analyzing RT-PCR product sequences in six P/LP intronic variants and two intronic variants of unknown significance (VUS). Altered transcriptional fragments were detected for P/LP intronic variants in BRCA1, BRIP1, CHEK2, PARB2, and PMS2. Notably, we identified an in-frame deletion of the BRCA1 C-terminal (BRCT) domain by exon skipping in BRCA1 c.5152+6T>C-as known VUS-indicating a risk for HBOC. Thus, exon splicing analysis can improve the identification of veiled intronic variants that would aid decision making and determination of hereditary cancer risk.
Collapse
Affiliation(s)
- Jin-Sun Ryu
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
| | - Hye-Young Lee
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea
| | - Eun Hae Cho
- Genomic research center, Green Cross Genome, Yongin, Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Min-Kyeong Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
| | - Jungnam Joo
- Division of Cancer Epidemiology and Management, Research Institute, National Cancer Center, Goyang, Korea
| | - Eun-Sook Lee
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Han-Sung Kang
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Seeyoun Lee
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Dong Ock Lee
- Center for Gynecologic Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, Hospital, National Cancer Center, Goyang, Korea.,Division of Tumor Immunology and Center for Clinical Trial, Research Institute, National Cancer Center, Goyang, Korea
| | - Sun-Young Kong
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea.,Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| |
Collapse
|
18
|
Curia MC, Catalano T, Aceto GM. MUTYH: Not just polyposis. World J Clin Oncol 2020; 11:428-449. [PMID: 32821650 PMCID: PMC7407923 DOI: 10.5306/wjco.v11.i7.428] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
MUTYH is a base excision repair enzyme, it plays a crucial role in the correction of DNA errors from guanine oxidation and may be considered a cell protective factor. In humans it is an adenine DNA glycosylase that removes adenine misincorporated in 7,8-dihydro-8-oxoguanine (8-oxoG) pairs, inducing G:C to T:A transversions. MUTYH functionally cooperates with OGG1 that eliminates 8-oxodG derived from excessive reactive oxygen species production. MUTYH mutations have been linked to MUTYH associated polyposis syndrome (MAP), an autosomal recessive disorder characterized by multiple colorectal adenomas. MAP patients show a greatly increased lifetime risk for gastrointestinal cancers. The cancer risk in mono-allelic carriers associated with one MUTYH mutant allele is controversial and it remains to be clarified whether the altered functions of this protein may have a pathophysiological involvement in other diseases besides familial gastrointestinal diseases. This review evaluates the role of MUTYH, focusing on current studies of human neoplastic and non-neoplastic diseases different to colon polyposis and colorectal cancer. This will provide novel insights into the understanding of the molecular basis underlying MUTYH-related pathogenesis. Furthermore, we describe the association between MUTYH single nucleotide polymorphisms (SNPs) and different cancer and non-cancer diseases. We address the utility to increase our knowledge regarding MUTYH in the light of recent advances in the literature with the aim of a better understanding of the potential for identifying new therapeutic targets. Considering the multiple functions and interactions of MUTYH protein, its involvement in pathologies based on oxidative stress damage could be hypothesized. Although the development of extraintestinal cancer in MUTYH heterozygotes is not completely defined, the risk for malignancies of the duodenum, ovary, and bladder is also increased as well as the onset of benign and malignant endocrine tumors. The presence of MUTYH pathogenic variants is an independent predictor of poor prognosis in sporadic gastric cancer and in salivary gland secretory carcinoma, while its inhibition has been shown to reduce the survival of pancreatic ductal adenocarcinoma cells. Furthermore, some MUTYH SNPs have been associated with lung, hepatocellular and cervical cancer risk. An additional role of MUTYH seems to contribute to the prevention of numerous other disorders with an inflammatory/degenerative basis, including neurological and ocular diseases. Finally, it is interesting to note that MUTYH could be a new therapeutic target and future studies will shed light on its specific functions in the prevention of diseases and in the improvement of the chemo-sensitivity of cancer cells.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Via Consolare Valeria 98125, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| |
Collapse
|
19
|
[MUTYH-associated polyposis: Review and update of the French recommendations established in 2012 under the auspices of the National Cancer Institute (INCa)]. Bull Cancer 2020; 107:586-600. [PMID: 32362383 DOI: 10.1016/j.bulcan.2020.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
Abstract
MUTYH-associated polyposis (MUTYH-associated polyposis, MAP) is an autosomal recessive inheritance disorder related to bi-allelic constitutional pathogenic variants of the MUTYH gene which was first described in 2002. In 2011, a group of French experts composed of clinicians and biologists, performed a summary of the available data on this condition and drew up recommendations concerning the indications and the modalities of molecular analysis of the MUTYH gene in index cases and their relatives, as well as the management of affected individuals. In view of recent developments, some recommendations have become obsolete, in particular with regard to the molecular analysis strategy since MUTYH gene has been recently included in a consensus panel of 14 genes predisposing to colorectal cancer. This led us to revise all the points of the previous expertise. We report here the revised version of this work which successively considers the phenotype and the tumor risks associated with this genotype, the differential diagnoses, the indication criteria and the strategy of the molecular analysis and the recommendations for the management of affected individuals. We also discuss the phenotype and the tumor risks associated with mono-allelic pathogenic variants of MUTYH gene.
Collapse
|
20
|
McVeigh ÚM, McVeigh TP, Curran C, Miller N, Morris DW, Kerin MJ. Diagnostic yield of a custom-designed multi-gene cancer panel in Irish patients with breast cancer. Ir J Med Sci 2020; 189:849-864. [PMID: 32008151 DOI: 10.1007/s11845-020-02174-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Breast cancer is genetically heterogeneous, and parellel multi-gene sequencing is the most cost- and time-efficient manner to investigate breast cancer predisposition. Numerous multi-gene panels (MGPs) are commercially available, but many include genes with weak/unproven associaton with breast cancer, or with predisposition to cancer of other types. This study investigates the utility of a custom-designed multi-gene panel in an Irish cohort with breast cancer. METHODS A custom panel comprising 83 genes offered by 19 clinical "breast cancer predisposition" MGPs was designed and applied to germline DNA from 91 patients with breast cancer and 77 unaffected ethnicially matched controls. Variants were identified and classified using a custom pipeline. RESULTS Nineteen loss-of-function (LOF) and 334 missense variants were identified. After removing common and/or benign variants, 15 LOF and 30 missense variants were analysed. Variants in known breast cancer susceptibility genes were identified, including in BRCA1 and ATM in cases, and in NF1 and CHEK2 in controls. Most variants identified were in genes associated with predisposition to cancers other than breast cancer (BRIP1, RAD50, MUTYH, and mismatch repair genes), or in genes with unknown or unproven association with cancer. CONCLUSION Using multi-gene panels enables rapid, cost-effective identification of individuals with high-risk cancer predisposition syndromes. However, this approach also leads to an increased amount of uncertain results. Clinical management of individuals with particular genetic variants in the absence of a matching phenotype/family history is challenging. Further population and functional evidence is required to fully elucidate the clinical relevance of variants in genes of uncertain significance.
Collapse
Affiliation(s)
- Úna M McVeigh
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland.
| | - Terri P McVeigh
- Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Catherine Curran
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Nicola Miller
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Derek W Morris
- Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Micheal J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
21
|
Dominguez-Valentin M, Nakken S, Tubeuf H, Vodak D, Ekstrøm PO, Nissen AM, Morak M, Holinski-Feder E, Holth A, Capella G, Davidson B, Evans DG, Martins A, Møller P, Hovig E. Results of multigene panel testing in familial cancer cases without genetic cause demonstrated by single gene testing. Sci Rep 2019; 9:18555. [PMID: 31811167 PMCID: PMC6898579 DOI: 10.1038/s41598-019-54517-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
We have surveyed 191 prospectively sampled familial cancer patients with no previously detected pathogenic variant in the BRCA1/2, PTEN, TP53 or DNA mismatch repair genes. In all, 138 breast cancer (BC) cases, 34 colorectal cancer (CRC) and 19 multiple early-onset cancers were included. A panel of 44 cancer-predisposing genes identified 5% (9/191) pathogenic or likely pathogenic variants and 87 variants of uncertain significance (VUS). Pathogenic or likely pathogenic variants were identified mostly in familial BC individuals (7/9) and were located in 5 genes: ATM (3), BRCA2 (1), CHEK2 (1), MSH6 (1) and MUTYH (1), followed by multiple early-onset (2/9) individuals, affecting the CHEK2 and ATM genes. Eleven of the 87 VUS were tested, and 4/11 were found to have an impact on splicing by using a minigene splicing assay. We here report for the first time the splicing anomalies using this assay for the variants ATM c.3806A > G and BUB1 c.677C > T, whereas CHEK1 c.61G > A did not result in any detectable splicing anomaly. Our study confirms the presence of pathogenic or likely pathogenic variants in genes that are not routinely tested in the context of the above-mentioned clinical phenotypes. Interestingly, more than half of the pathogenic germline variants were found in the moderately penetrant ATM and CHEK2 genes, where only truncating variants from these genes are recommended to be reported in clinical genetic testing practice.
Collapse
Affiliation(s)
- Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hélène Tubeuf
- Inserm-U1245, UNIROUEN, Normandie Univ, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Daniel Vodak
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Per Olaf Ekstrøm
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anke M Nissen
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Ziemssenstr. 1, Munich, Germany.,MGZ-Medizinisch Genetisches Zentrum, Munich, Germany
| | - Monika Morak
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Ziemssenstr. 1, Munich, Germany.,MGZ-Medizinisch Genetisches Zentrum, Munich, Germany
| | - Elke Holinski-Feder
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Ziemssenstr. 1, Munich, Germany.,MGZ-Medizinisch Genetisches Zentrum, Munich, Germany
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Gabriel Capella
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-, 0316, Oslo, Norway
| | - D Gareth Evans
- Department of Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, United Kingdom.,Prevent Breast Cancer Centre, Wythenshawe Hospital, Southmoor Road, Manchester, United Kingdom
| | - Alexandra Martins
- Inserm-U1245, UNIROUEN, Normandie Univ, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pål Møller
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Human Medicine, Universität Witten/Herdecke, Wuppertal, Germany
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Fulk K, LaDuca H, Black MH, Qian D, Tian Y, Yussuf A, Espenschied C, Jasperson K. Monoallelic MUTYH carrier status is not associated with increased breast cancer risk in a multigene panel cohort. Fam Cancer 2019; 18:197-201. [PMID: 30582135 DOI: 10.1007/s10689-018-00114-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Whether monoallelic MUTYH mutations increase female breast cancer risk remains controversial. This study aimed to determine if monoallelic MUTYH mutations are associated with increased breast cancer risk in women undergoing multigene panel testing (MGPT). The prevalence of monoallelic MUTYH mutations was compared between Non-Hispanic white female breast cancer cases (n = 30,456) and cancer-free controls (n = 12,289), all of whom underwent MGPT that included MUTYH. We tested breast cancer associations with MUTYH alleles using Fisher's exact test, followed by multivariate logistic regression adjusted for age at testing and MGPT type ordered. Frequencies of the two most common MUTYH founder mutations, p.G396D and p.Y179C, were compared independently between the breast cancer cases and MGPT controls, as well as the healthy UK10K control population (n = 2640). Comparing cases to MGPT controls, no association was observed between female breast cancer and any monoallelic MUTYH carrier status (OR 0.86-1.36, p = 0.21-0.96). Similarly, comparisons to UK10K controls revealed no significant increase in breast cancer risk associated with p.G396D (OR 1.20, p = 0.44) or p.Y179C (OR 1.71, p = 0.24). This study did not find a significant increase in breast cancer risk associated with monoallelic MUTYH mutations.
Collapse
Affiliation(s)
- Kelly Fulk
- Ambry Genetics, 92656, Aliso Viejo, CA, USA.
| | | | | | - Dajun Qian
- Ambry Genetics, 92656, Aliso Viejo, CA, USA
| | - Yuan Tian
- Ambry Genetics, 92656, Aliso Viejo, CA, USA
| | | | - Carin Espenschied
- Ambry Genetics, 92656, Aliso Viejo, CA, USA
- Guardant Health, 94063, Redwood City, CA, USA
| | | |
Collapse
|
23
|
Köger N, Brieger A, Hinrichsen IM, Zeuzem S, Plotz G. Analysis of MUTYH alternative transcript expression, promoter function, and the effect of human genetic variants. Hum Mutat 2019; 40:472-482. [PMID: 30653782 DOI: 10.1002/humu.23709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/14/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023]
Abstract
The human DNA repair gene MUTYH, whose mutational loss causes a colorectal polyposis and cancer predisposition, contains three alternative first exons. In order to analyze alternative transcription and the effect of genetic alterations found in humans, we established a cell-based minigene experimental model supporting transcription and splicing and thoroughly verified its functionality. We identified highly conserved promoter areas and inactivated them in the minigene, and also introduced six human variants. Moreover, the potential contribution of CpG island methylation and specific transcription factors on MUTYH transcription was addressed. The findings allowed to attribute regulatory roles to three conserved motifs in the promoter: an M4 motif, a transcription factor IIB recognition element, and a GC box. Moreover, the data showed that three patient variants compromised MUTYH expression and therefore have the potential to cause pathogenic effects. We did not find evidence for a biologically relevant contribution of CpG island methylation or a direct transcriptional activation by DNA damage. Besides insight into the regulation of MUTYH transcription, the work therefore provides a functional MUTYH minigene experimental system suitable as a diagnostic tool for analyzing patient variants, and a functional map of the promotor that also can facilitate pathogenicity classifications of human variants.
Collapse
Affiliation(s)
- Nicole Köger
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinikum, Frankfurt, Germany
| | - Angela Brieger
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinikum, Frankfurt, Germany
| | - Inga M Hinrichsen
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinikum, Frankfurt, Germany
| | - Stefan Zeuzem
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinikum, Frankfurt, Germany
| | - Guido Plotz
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinikum, Frankfurt, Germany
| |
Collapse
|
24
|
Rizzolo P, Silvestri V, Bucalo A, Zelli V, Valentini V, Catucci I, Zanna I, Masala G, Bianchi S, Spinelli AM, Tommasi S, Tibiletti MG, Russo A, Varesco L, Coppa A, Calistri D, Cortesi L, Viel A, Bonanni B, Azzollini J, Manoukian S, Montagna M, Radice P, Palli D, Peterlongo P, Ottini L. Contribution of MUTYH Variants to Male Breast Cancer Risk: Results From a Multicenter Study in Italy. Front Oncol 2018; 8:583. [PMID: 30564557 PMCID: PMC6288482 DOI: 10.3389/fonc.2018.00583] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Inherited mutations in BRCA1, and, mainly, BRCA2 genes are associated with increased risk of male breast cancer (MBC). Mutations in PALB2 and CHEK2 genes may also increase MBC risk. Overall, these genes are functionally linked to DNA repair pathways, highlighting the central role of genome maintenance in MBC genetic predisposition. MUTYH is a DNA repair gene whose biallelic germline variants cause MUTYH-associated polyposis (MAP) syndrome. Monoallelic MUTYH variants have been reported in families with both colorectal and breast cancer and there is some evidence on increased breast cancer risk in women with monoallelic variants. In this study, we aimed to investigate whether MUTYH germline variants may contribute to MBC susceptibility. To this aim, we screened the entire coding region of MUTYH in 503 BRCA1/2 mutation negative MBC cases by multigene panel analysis. Moreover, we genotyped selected variants, including p.Tyr179Cys, p.Gly396Asp, p.Arg245His, p.Gly264Trpfs*7, and p.Gln338His, in a total of 560 MBC cases and 1,540 male controls. Biallelic MUTYH pathogenic variants (p.Tyr179Cys/p.Arg241Trp) were identified in one MBC patient with phenotypic manifestation of adenomatous polyposis. Monoallelic pathogenic variants were identified in 14 (2.5%) MBC patients, in particular, p.Tyr179Cys was detected in seven cases, p.Gly396Asp in five cases, p.Arg245His and p.Gly264Trpfs*7 in one case each. The majority of MBC cases with MUTYH pathogenic variants had family history of cancer including breast, colorectal, and gastric cancers. In the case-control study, an association between the variant p.Tyr179Cys and increased MBC risk emerged by multivariate analysis [odds ratio (OR) = 4.54; 95% confidence interval (CI): 1.17-17.58; p = 0.028]. Overall, our study suggests that MUTYH pathogenic variants may have a role in MBC and, in particular, the p.Tyr179Cys variant may be a low/moderate penetrance risk allele for MBC. Moreover, our results suggest that MBC may be part of the tumor spectrum associated with MAP syndrome, with implication in the clinical management of patients and their relatives. Large-scale collaborative studies are needed to validate these findings.
Collapse
Affiliation(s)
- Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Zelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Irene Catucci
- Genome Diagnostics Program, IFOM - The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Ines Zanna
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | | | - Stefania Tommasi
- Molecular Genetics Laboratory, Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Maria Grazia Tibiletti
- Dipartimento di Patologia, ASST Settelaghi and Centro di Ricerca per lo studio dei tumori eredo-familiari, Università dell'Insubria, Varese, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | | | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Calistri
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| | - Laura Cortesi
- Department of Oncology and Haematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Viel
- Unità di Oncogenetica e Oncogenomica Funzionale, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Jacopo Azzollini
- Unità di Genetica Medica, Dipartimento di Oncologia Medica ed Ematologia, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Siranoush Manoukian
- Unità di Genetica Medica, Dipartimento di Oncologia Medica ed Ematologia, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Paolo Radice
- Unità di Ricerca Medicina Predittiva: Basi molecolari Rischio genetico e Test genetici, Dipartimento di Ricerca, Fondazione IRCCS Istituto Nazionale Tumori (INT), Milan, Italy
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Gao Q, Liu Y, Xie H, Zhong Y, Liao X, Zhan H, Zhou Q, Ding M, Yang K, Li A, Liu Y, Mei H, Cai Z. Lentivirus-mediated shRNA targeting MUTYH inhibits malignant phenotypes of bladder cancer SW780 cells. Onco Targets Ther 2018; 11:6101-6109. [PMID: 30275714 PMCID: PMC6157993 DOI: 10.2147/ott.s174223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives MUTYH is a protein-coding gene that takes part in base excision repair. Many previous studies have reported that MUTYH is directly related to hereditary adenomatous polyposis and colorectal cancer and is also associated with other cancers. However, the relationship between MUTYH and bladder cancer (BC) is unknown. Materials and methods The expression of MUTYH and clinical characteristics of BC were collected from databases including The Cancer Genome Atlas and Cancer Cell Line Encyclopedia. RNA sequencing and quantitative real-time PCR were used to detect MUTYH expression in SW780 BC cells. The level of MUTYH was stably downregulated by lentivirus-mediated vector in SW780 cells. Cell proliferation was evaluated using Cell Counting Kit-8 assay and 5-ethynyl-20-deoxyuridine assay, migration was detected using scratch assay and Transwell assay, and apoptosis was determined using ELISA. Results MUTYH was upregulated in BC tissues and SW780 cells and its expression level was positively associated with the stage and grade of carcinomas. MUTYH was successfully downregulated in SW780 cells by transducing with a lentivirus-mediated shRNA targeting MUTYH. MUTYH knockdown inhibited the proliferation and migration and induced apoptosis in SW780 cells. Conclusion Our data suggest that MUTYH is a new participant in bladder urothelial carcinoma. MUTYH may play a role as a biomarker and therapeutic target in BC.
Collapse
Affiliation(s)
- Qunjun Gao
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou 511436, China, .,Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, , .,Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Yuhan Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, , .,Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Haibiao Xie
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, , .,Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Yucheng Zhong
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, , .,Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Xinhui Liao
- Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Hengji Zhan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, , .,Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Qun Zhou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, , .,Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Mengting Ding
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, , .,Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Kang Yang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, , .,Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Aolin Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, , .,Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, , .,Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Hongbing Mei
- Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou 511436, China, .,Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, , .,Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China, ,
| |
Collapse
|
26
|
Goidescu IG, Caracostea G, Eniu DT, Stamatian FV. Prevalence of deleterious mutations among patients with breast cancer referred for multigene panel testing in a Romanian population. ACTA ACUST UNITED AC 2018; 91:157-165. [PMID: 29785153 PMCID: PMC5958980 DOI: 10.15386/cjmed-894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/27/2017] [Indexed: 01/30/2023]
Abstract
Aim Multigene panel testing for Hereditary Breast and Ovarian Cancer (HBOC) using next generation sequencing is becoming more common in medical care. We report our experience regarding deleterious mutations of high and moderate-risk breast cancer genes (BRCA1/2, TP53, STK11, CDH1, PTEN, PALB2, CHEK2, ATM), as well as more recently identified cancer genes, many of which have increased risk but less well-defined penetrance. Methods Genetic testing was performed in 130 consecutive cases with breast cancer referred to our clinic for surgical evaluation and who met the 2016 National Comprehensive Cancer Network (NCCN) criteria for genetic testing. Results 82 patients had pathogenic/likely pathogenic mutations and VUS mutations, and 48 were negative; 36 of the pathogenic mutations were in the high-risk genes and 16 were in the moderate risk genes and only 5 cases in the intermediary risk group. From the VUS mutation group 21 cases were in the intermediary risk group, 9 cases were in the moderate risk group and only 7 cases in high risk group. The most frequent BRCA1 variant was c.3607C>T (7 cases) followed by c.5266dupC and c.4035delA (each in 4 cases). Regarding BRCA-2 mutations we identified c.9371A>T and c.8755-1G>A in 6 cases and we diagnosed VUS mutations in 3 cases. Conclusion Our study identified 2 mutations in the BRCA1 gene that are less common in the Romanian population, c.3607C>T and c.4035delA. Both variants had particular molecular phenotypes, c.3607C>T variant respecting the triple negative pattern of BRCA1 breast cancer while c.4035delA were Luminal B HER positive.
Collapse
Affiliation(s)
- Iulian Gabriel Goidescu
- Department of Obstetrics and Gynecology I, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,IMOGEN Research Center Institute, Cluj-Napoca, Romania
| | - Gabriela Caracostea
- Department of Obstetrics and Gynecology I, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Tudor Eniu
- Department of Oncological Surgery and Oncological Gynecology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Vasile Stamatian
- Department of Obstetrics and Gynecology I, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
27
|
Jian W, Shao K, Qin Q, Wang X, Song S, Wang X. Clinical and genetic characterization of hereditary breast cancer in a Chinese population. Hered Cancer Clin Pract 2017; 15:19. [PMID: 29093764 PMCID: PMC5663067 DOI: 10.1186/s13053-017-0079-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/12/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Breast cancer develops as a result of multiple gene mutations in combination with environmental risk factors. Causative variants in genes such as BRCA1 and/or BRCA2 have been shown to account for hereditary nature of certain breast cancers. However,other genes, such as ATM, PALB2, BRIP1, CHEK, BARD1, while lower in frequency, may also increase breast cancer risk. There are few studies examining the role of these causative variants. Our study aimed to examine the clinical and genetic characterization of hereditary breast cancer in a Chinese population. METHODS We tested a panel of 27 genes implicated in breast cancer risk in 240 participants using Next-Generation Sequencing. The prevalence of genetic causative variants was determined and the association between causative variants and clinico-pathological characteristics was analyzed. RESULTS Causative variant rate was 19.2% in the breast cancer (case) group and 12.5% in the high-risk group. In the case group 2.5% of patients carried BRCA1 causative variant, 7.5% BRCA2 variants, 1.7% patients had MUTYH, CHEK or PALB2 variants, and 0.8% patients carried ATM, BARD1, NBN, RAD51C or TP53 variants. In the high-risk group 5.8% women carried MUTYH causative variants, 2.5% had causative variants in ATM, 1.7% patients had variants in BRCA2 and 0.8% in BARD1, BRIP1 or CDH1. There was no significant difference in the presence of causative variants among clinical stages of breast cancer, tumor size and lymph nodes status. However, eight of the 12 BRCA1/2 causative variants were found in the TNBC group. CONCLUSIONS We found increased genetic causative variants in the familial breast cancer group and in high-risk women with a family history of breast cancer. However, the variant MUTYH c.892-2A > G may not be directly associated with hereditary breast carcinoma.
Collapse
Affiliation(s)
- Wenjing Jian
- Department of Breast and Thyroid Surgery, Shenzhen Second people’s Hospital, Shenzhen, 518035 China
- Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 China
| | - Kang Shao
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Qi Qin
- Department of Breast and Thyroid Surgery, Shenzhen Second people’s Hospital, Shenzhen, 518035 China
| | | | - Shufen Song
- Department of Breast and Thyroid Surgery, Shenzhen Second people’s Hospital, Shenzhen, 518035 China
| | - Xianming Wang
- Department of Breast and Thyroid Surgery, Shenzhen Second people’s Hospital, Shenzhen, 518035 China
| |
Collapse
|
28
|
Romero-Laorden N, Castro E. Inherited mutations in DNA repair genes and cancer risk. Curr Probl Cancer 2017; 41:251-264. [PMID: 28454847 DOI: 10.1016/j.currproblcancer.2017.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/07/2017] [Accepted: 02/21/2017] [Indexed: 02/09/2023]
Abstract
Although most cancer cases are due to somatic mutations, up to 10% of cases are attributable to germline mutations. This inherited cancer predisposition is mostly due to the loss of function of suppressor genes rather than the activation of oncogenes. Defects in DNA repair genes are the genetic events most commonly involved in hereditary cancers. The implementation of high-throughput sequencing in diagnostic testing has uncovered new predisposition genes. Furthermore, for some tumor types these sequencing techniques have also unveiled a prevalence of germline mutations significantly higher than previous estimations. The clinical implications of many of these repair defects are yet to be defined. Further studies will need to be conducted to establish the most appropriated management of unaffected carriers that are likely to grow in numbers. On the contrary, the presence of DNA repair defects provides a unique opportunity for the development of treatments that take advantage of a tumor feature. In this review article, we summarize not only the most common syndromes linked to DNA repair defects but also less known entities. We address the underlying genetics and the clinical implications of each DNA repair defect as well as the current recommendations for cancer surveillance.
Collapse
Affiliation(s)
| | - Elena Castro
- HM Hospitales, Centro Integral Oncológico HM Clara Campal, Madrid, Spain.
| |
Collapse
|
29
|
Cobain EF, Milliron KJ, Merajver SD. Updates on breast cancer genetics: Clinical implications of detecting syndromes of inherited increased susceptibility to breast cancer. Semin Oncol 2016; 43:528-535. [DOI: 10.1053/j.seminoncol.2016.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Win AK, Reece JC, Dowty JG, Buchanan DD, Clendenning M, Rosty C, Southey MC, Young JP, Cleary SP, Kim H, Cotterchio M, Macrae FA, Tucker KM, Baron JA, Burnett T, Le Marchand L, Casey G, Haile RW, Newcomb PA, Thibodeau SN, Hopper JL, Gallinger S, Winship IM, Lindor NM, Jenkins MA. Risk of extracolonic cancers for people with biallelic and monoallelic mutations in MUTYH. Int J Cancer 2016; 139:1557-63. [PMID: 27194394 PMCID: PMC5094810 DOI: 10.1002/ijc.30197] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 01/07/2023]
Abstract
Germline mutations in the DNA base excision repair gene MUTYH are known to increase a carrier's risk of colorectal cancer. However, the risks of other (extracolonic) cancers for MUTYH mutation carriers are not well defined. We identified 266 probands (91% Caucasians) with a MUTYH mutation (41 biallelic and 225 monoallelic) from the Colon Cancer Family Registry. Mutation status, sex, age and histories of cancer from their 1,903 first- and 3,255 second-degree relatives were analyzed using modified segregation analysis conditioned on the ascertainment criteria. Compared with incidences for the general population, hazard ratios (HRs) (95% confidence intervals [CIs]) for biallelic MUTYH mutation carriers were: urinary bladder cancer 19 (3.7-97) and ovarian cancer 17 (2.4-115). The HRs (95% CI) for monoallelic MUTYH mutation carriers were: gastric cancer 9.3 (6.7-13); hepatobiliary cancer 4.5 (2.7-7.5); endometrial cancer 2.1 (1.1-3.9) and breast cancer 1.4 (1.0-2.0). There was no evidence for an increased risk of cancers at the other sites examined (brain, pancreas, kidney or prostate). Based on the USA population incidences, the estimated cumulative risks (95% CI) to age 70 years for biallelic mutation carriers were: bladder cancer 25% (5-77%) for males and 8% (2-33%) for females and ovarian cancer 14% (2-65%). The cumulative risks (95% CI) for monoallelic mutation carriers were: gastric cancer 5% (4-7%) for males and 2.3% (1.7-3.3%) for females; hepatobiliary cancer 3% (2-5%) for males and 1.4% (0.8-2.3%) for females; endometrial cancer 3% (2%-6%) and breast cancer 11% (8-16%). These unbiased estimates of both relative and absolute risks of extracolonic cancers for people, mostly Caucasians, with MUTYH mutations will be important for their clinical management.
Collapse
Affiliation(s)
- Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeanette C. Reece
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - James G. Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D. Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Melissa C. Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Joanne P. Young
- Departments of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
- SAHMRI Colorectal Node, Basil Hetzel Institute for Translational Research, Woodville, South Australia, Australia
- School of Medicine, University of Adelaide, South Australia, Australia
| | - Sean P. Cleary
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Hyeja Kim
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Cotterchio
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Finlay A. Macrae
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Katherine M. Tucker
- Hereditary Cancer Clinic, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - John A. Baron
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | - Graham Casey
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Robert W. Haile
- Department of Medicine, Division of Oncology, Stanford University, California, USA
| | - Polly A. Newcomb
- School of Public Health, University of Washington, Seattle, Washington, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stephen N. Thibodeau
- Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Epidemiology and Institute of Health and Environment, School of Public Health, Seoul National University, Seoul, Korea
| | - Steven Gallinger
- SAHMRI Colorectal Node, Basil Hetzel Institute for Translational Research, Woodville, South Australia, Australia
| | - Ingrid M. Winship
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Noralane M. Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Ganesan S, Hirshfield KM. Next-Generation Sequencing Based Testing for Breast Cancer. MOLECULAR PATHOLOGY OF BREAST CANCER 2016:299-328. [DOI: 10.1007/978-3-319-41761-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Easton DF, Pharoah PDP, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, Devilee P, Meindl A, Couch FJ, Southey M, Goldgar DE, Evans DGR, Chenevix-Trench G, Rahman N, Robson M, Domchek SM, Foulkes WD. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 2015; 372:2243-57. [PMID: 26014596 PMCID: PMC4610139 DOI: 10.1056/nejmsr1501341] [Citation(s) in RCA: 668] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Douglas F Easton
- From the Departments of Public Health and Primary Care (D.F.E., P.D.P.P., A.C.A.), Oncology (D.F.E., P.D.P.P.), and Medical Genetics (M.T.), University of Cambridge, Cambridge, the Centre for Genomic Medicine, Institute of Human Development, Manchester Academic Health Science Centre, University of Manchester and St. Mary's Hospital, Manchester (D.G.R.E.), and the Division of Genetics and Epidemiology, Institute of Cancer Research, London (N.R.) - all in the United Kingdom; the Departments of Oncological Sciences (S.V.T.) and Dermatology (D.E.G.), Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City; the Basser Research Center for BRCA and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (K.L.N., S.M.D.); the Department of Human Genetics and Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands (P.D.); the Department of Obstetrics and Gynecology, Division of Tumor Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (A.M.); the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN (F.J.C.); the Department of Pathology, School of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences at the University of Melbourne, Parkville, VIC (M.S.), and the QIMR Berghofer Medical Research Institute, Herston, QLD (G.C.-T.) - both in Australia; the Clinical Genetics Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York (M.R.); and the Program in Cancer Genetics, Departments of Human Genetics and Oncology, the Lady Davis Institute for Medical Research, and the Research Institute of the McGill University Health Center, McGill University, Montreal (W.D.F.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hereditary colorectal cancer: more common than you think. Curr Probl Cancer 2014; 38:249-61. [PMID: 25497411 DOI: 10.1016/j.currproblcancer.2014.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Boesaard EP, Vogelaar IP, Bult P, Wauters CA, van Krieken JHJ, Ligtenberg MJ, van der Post RS, Hoogerbrugge N. Germline MUTYH gene mutations are not frequently found in unselected patients with papillary breast carcinoma. Hered Cancer Clin Pract 2014; 12:21. [PMID: 25937855 PMCID: PMC4416291 DOI: 10.1186/1897-4287-12-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022] Open
Abstract
MUTYH-associated polyposis (MAP) is an autosomal recessive disease, which predisposes to polyposis and colorectal cancer. There is a trend towards an increased risk of breast cancer in MAP patients, with a remarkable proportion of papillary breast cancers. To determine whether MUTYH mutations are associated with this specific and rare type of breast cancer, 53 unselected patients with papillary breast cancer were analyzed for founder mutations in the MUTYH gene. No germline mutations were identified, indicating that biallelic MUTYH mutations are not a frequent underlying cause for the development of papillary carcinomas of the breast.
Collapse
Affiliation(s)
- Ewout P Boesaard
- Department of Human Genetics, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ingrid P Vogelaar
- Department of Human Genetics, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter Bult
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Carla Ap Wauters
- Department of Pathology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - J Han Jm van Krieken
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolijn Jl Ligtenberg
- Department of Human Genetics, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands ; Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
35
|
Rainville IR, Rana HQ. Next-generation sequencing for inherited breast cancer risk: counseling through the complexity. Curr Oncol Rep 2014; 16:371. [PMID: 24488544 DOI: 10.1007/s11912-013-0371-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing technology affords an unprecedented opportunity to analyze multiple breast cancer susceptibility genes simultaneously. With the incarnation of gene panels that combine testing for moderate- and high-penetrance genes, this technology has given birth to a paradigm shift in clinical genetic test offerings. A transformation in genetic counseling for cancer susceptibility will necessarily follow, with a shift from the traditional approach of single-gene testing to considerations of testing by multi-gene panels. At the same time, however, the opportunity to identify rare lesions underlying hereditary susceptibility has introduced new challenges. Available cancer risk estimates for genes included in panel tests may not be supported by evidence, and there is increased risk of identifying variants of uncertain significance (VUS). Management of individuals with rare pathogenic mutations may be unclear. We provide a summary of available evidence for breast cancer risks conferred by pathogenic mutations in genes commonly included in breast cancer susceptibility panels, as well as a review of limitations and counseling points.
Collapse
|
36
|
Selkirk CG, Vogel KJ, Newlin AC, Weissman SM, Weiss SM, Wang CH, Hulick PJ. Cancer genetic testing panels for inherited cancer susceptibility: the clinical experience of a large adult genetics practice. Fam Cancer 2014; 13:527-36. [DOI: 10.1007/s10689-014-9741-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
MUTYH-associated colorectal cancer and adenomatous polyposis. Surg Today 2013; 44:593-600. [PMID: 23605219 DOI: 10.1007/s00595-013-0592-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/04/2013] [Indexed: 12/28/2022]
Abstract
MUTYH-associated polyposis (MAP) was first described in 2002. MUTYH is a component of a base excision repair system that protects the genomic information from oxidative damage. When the MUTYH gene product is impaired by bi-allelic germline mutation, it leads to the mutation of cancer-related genes, such as the APC and/or the KRAS genes, via G to T transversion. MAP is a hereditary colorectal cancer syndrome inherited in an autosomal-recessive fashion. The clinical features of MAP include the presence of 10-100 adenomatous polyps in the colon, and early onset of colorectal cancer. Ethnic and geographical differences in the pattern of the MUTYH gene mutations have been suggested. In Caucasian patients, c.536A>G (Y179C) and c.1187G>A (G396D) mutations are frequently detected. In the Asian population, Y179C and G396D are uncommon, whereas other variants are suggested to be the major causes of MAP. We herein review the literature on MUTYH-associated colorectal cancer and adenomatous polyposis.
Collapse
|
38
|
Mazzei F, Viel A, Bignami M. Role of MUTYH in human cancer. Mutat Res 2013; 743-744:33-43. [PMID: 23507534 DOI: 10.1016/j.mrfmmm.2013.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/06/2013] [Accepted: 03/09/2013] [Indexed: 06/01/2023]
Abstract
MUTYH, a human ortholog of MutY, is a post-replicative DNA glycosylase, highly conserved throughout evolution, involved in the correction of mismatches resulting from a faulty replication of the oxidized base 8-hydroxyguanine (8-oxodG). In particular removal of adenine from A:8-oxodG mispairs by MUTYH activity is followed by error-free base excision repair (BER) events, leading to the formation of C:8-oxodG base pairs. These are the substrate of another BER enzyme, the OGG1 DNA glycosylase, which then removes 8-oxodG from DNA. Thus the combined action of OGG1 and MUTYH prevents oxidative damage-induced mutations, i.e. GC->TA transversions. Germline mutations in MUTYH are associated with a recessively heritable colorectal polyposis, now referred to as MUTYH-associated polyposis (MAP). Here we will review the phenotype(s) associated with MUTYH inactivation from bacteria to mammals, the structure of the MUTYH protein, the molecular mechanisms of its enzymatic activity and the functional characterization of MUTYH variants. The relevance of these results will be discussed to define the role of specific human mutations in colorectal cancer risk together with the possible role of MUTYH inactivation in sporadic cancer.
Collapse
Affiliation(s)
- Filomena Mazzei
- Department of Environment, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Alessandra Viel
- Experimental Oncology 1, Centro di Riferimento Oncologico, IRCCS, Via F.Gallini 2, 33081 Aviano, PN, Italy
| | - Margherita Bignami
- Department of Environment, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| |
Collapse
|
39
|
Kashfi SMH, Golmohammadi M, Behboudi F, Nazemalhosseini-Mojarad E, Zali MR. MUTYH the base excision repair gene family member associated with colorectal cancer polyposis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2013; 6:S1-S10. [PMID: 24834277 PMCID: PMC4017534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/18/2013] [Indexed: 12/02/2022]
Abstract
COLORECTAL CANCER IS CLASSIFIED IN TO THREE FORMS sporadic (70-75%), familial (20-25%) and hereditary (5-10%). hereditary colorectal cancer syndromes classified into two different subtypes: polyposis and non polyposis. Familial Adenomatous polyposis (FAP; OMIM #175100) is the most common polyposis syndrome, account for <1% of colorectal cancer incidence and characterized by germline mutations in the Adenomatous polyposis coli (APC, 5q21- q22; OMIM #175100). FAP is a dominant cancer predisposing syndrome which 20-25% cases are de novo. There is also another polyposis syndrome; MUTYH associated polyposis (MAP, OMIM 608456) which it is caused by mutation in human Mut Y homologue MUTYH (MUTYH; OMIM 604933) and it is associated with multiple (15-100) colonic adenomas. In this paper we discuss MUTYH mechanism as an important member of Base Excision Repair (BER) family and its important role in polyposis condition.
Collapse
Affiliation(s)
- Seyed Mohammad Hossein Kashfi
- Basic and molecular epidemiology of Gastroenterology disorders Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Golmohammadi
- Basic and molecular epidemiology of Gastroenterology disorders Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faeghe Behboudi
- Basic and molecular epidemiology of Gastroenterology disorders Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|