1
|
Garrido-Castro AC, Graham N, Ali LR, Herold C, Desrosiers J, Do K, Parsons H, Li T, Goel S, DiLullo M, Wrabel E, Williams AJ, Liu JF, Mittendorf EA, Dougan SK, Tayob N, Shapiro GI, Tolaney SM. Phase I study of ribociclib (CDK4/6 inhibitor) with spartalizumab (PD-1 inhibitor) with and without fulvestrant in metastatic hormone receptor-positive breast cancer or advanced ovarian cancer. J Immunother Cancer 2025; 13:e010430. [PMID: 40010764 PMCID: PMC11865738 DOI: 10.1136/jitc-2024-010430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Preclinical evidence suggests that cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors enhance antitumor immunity. We conducted a phase I trial of ribociclib (CDK4/6 inhibitor) plus spartalizumab (PD-1 inhibitor) in patients with hormone receptor (HR)-positive/HER2-negative metastatic breast cancer (MBC) or advanced ovarian cancer (AOC). The combination was also evaluated with fulvestrant in MBC. METHODS In Cohort A, ribociclib was administered on Days 1-21 (28-day cycle) starting at 400 mg, and spartalizumab at 400 mg on Day 1. Dose escalation was followed by expansion in AOC. Fulvestrant was added (Cohort B) with a safety run-in followed by expansion in MBC. Primary objectives were to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D), and safety and tolerability of the combinations. RESULTS 33 patients enrolled (n=18, Cohort A; n=15, Cohort B). The RP2D of ribociclib in both cohorts was 600 mg. Treatment-related adverse events in >20% of patients in either cohort were neutropenia, fatigue, anemia, thrombocytopenia, hypertransaminasemia, maculopapular rash, fatigue, and nausea. Hypertransaminasemia occurred in 66.7% (AST) and 46.7% (ALT) of patients in Cohort B, including 46.7% and 40.0%, respectively, of grade 3 or 4 events. Two confirmed partial responses were observed (13.3%) in Cohort B, in patients with low baseline serum thymidine kinase activity, coupled with an increase on-treatment. Peripheral blood flow cytometry across patients demonstrated on-target drug binding with increases in PD-1 occupancy and activated CD8+ T cells during treatment, irrespective of response. PD-L1-positivity, tumor-infiltrating lymphocytes, or tumor mutational burden did not correlate with progression-free survival (PFS). Several copy-number variations detected with next-generation sequencing correlated with PFS. CONCLUSIONS Ribociclib with spartalizumab and fulvestrant showed limited efficacy and elevated hepatotoxicity, precluding further development. Correlative analyses revealed treatment-induced immunological effects, and genomic alterations associated with PFS.
Collapse
Affiliation(s)
- Ana C Garrido-Castro
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Noah Graham
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lestat R Ali
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Christina Herold
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Takeda Oncology, Cambridge, Massachusetts, USA
| | - Jennifer Desrosiers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Khanh Do
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Heather Parsons
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Tianyu Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shom Goel
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Molly DiLullo
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts, USA
| | - Eileen Wrabel
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts, USA
| | - Amy J Williams
- Biovica International AB, Uppsala, Uppsala County, Sweden
| | - Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth A Mittendorf
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Stephanie K Dougan
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nabihah Tayob
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sara M Tolaney
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
3
|
Sahoo G, Bandyopadhyay S, Tripathi E, Karyala P. Deubiquitinating enzymes in breast cancer: in silico analysis of gene expression and metastatic correlation. J Biomol Struct Dyn 2024:1-10. [PMID: 39671715 DOI: 10.1080/07391102.2024.2439046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/07/2024] [Indexed: 12/15/2024]
Abstract
Breast cancer, the most prevalent cancer in females, is a heterogeneous disease with various molecular subtypes, which presents challenges in diagnosis and treatment. Ubiquitination is one of the most critical post-translational protein modifications, that plays regulatory roles in numerous cellular processes including cell cycle progression, DNA replication & repair, apoptosis, transcription regulation, protein localization, trafficking and signal transduction. This modification can be reversed by deubiquitinases, or DUBs, a superfamily of cysteine proteases and metalloproteases that cleave ubiquitin-protein bonds. Dysregulation of DUBs has been associated to various diseases including cancer, making them promising targets for cancer therapy. We leveraged publicly available breast cancer datasets and employed various bioinformatics tools to identify differentially expressed DUBs in breast cancer. Our analysis identified six genes (COPS5, EIF3H, MINDY1, MINDY2, PSMD14 and USP26) with significant differential expression and survival implications. We further validated our findings experimentally and found upregulation of COPS5, EIF3H and MINDY 1 in MCF-7 and T47D breast cancer cell lines using qPCR analysis. To identify the role of these genes, EIF3H and COPS5, in disease progression, we constructed a protein-protein interaction (PPI) network with genes associated with metastasis and explored their correlation at the gene expression level in breast cancer patients. Together, this comprehensive study sheds light on DUB gene expression patterns in breast cancer with the potential to identify novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Gaurav Sahoo
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Shruti Bandyopadhyay
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Ekta Tripathi
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Prashanthi Karyala
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| |
Collapse
|
4
|
Wang J, Ye J, Liu R, Chen C, Wang W. TRIM47 drives gastric cancer cell proliferation and invasion by regulating CYLD protein stability. Biol Direct 2024; 19:106. [PMID: 39516831 PMCID: PMC11546413 DOI: 10.1186/s13062-024-00555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The expression of TRIM47, a member of the TRIM protein and E3 ubiquitin ligase families, is elevated in various cancers, such as non-small cell lung cancer and colorectal cancer, and is linked to poor prognosis. This study aimed to investigate the role of TRIM47 in gastric cancer development. Using The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset and analysis of 20 patient samples from our center, TRIM47 was found to be significantly up-regulated in gastric cancer tissues and associated with advanced N-stage and poor prognosis. We constructed stable TRIM47 knockdown and overexpressing gastric cancer cell lines. CCK8, EDU, colony formation, wound healing, and Transwell tests were used to evaluate the effects on cell proliferation, invasion, and migration. The results showed that TRIM47 knockdown inhibited the proliferation, migration and invasion of gastric cancer cells, while TRIM47 overexpression promoted these behaviors. These results were further confirmed in vivo. In the mechanism part, we found that TRIM47 interacts with CYLD protein. Moreover, TRIM47 promotes K48-linked ubiquitination, leading to the degradation of CYLD by the proteasome, thereby activating the NF-κB pathway and regulating the biological behavior of gastric cancer cells. Taken together, our study demonstrated that TRIM47 is involved in the proliferation and metastasis of gastric cancer through the CYLD/NF-κB pathway.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
| | - Rongqiang Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
5
|
Zhou G, Wang S. YTHDC2 Retards Cell Proliferation and Triggers Apoptosis in Papillary Thyroid Cancer by Regulating CYLD-Mediated Inactivation of Akt Signaling. Appl Biochem Biotechnol 2024; 196:588-603. [PMID: 37162682 DOI: 10.1007/s12010-023-04540-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
N6-Methyladenosine (m6A) mRNA methylation modification is regarded as an important mechanism involved in diverse physiological processes. YT521-B homology (YTH) domain family members are associated with the tumorigenesis of several cancers. However, the role of YTHDC2 in papillary thyroid cancer (PTC) progression remains unknown. Results showed that YTHDC1, YTHDF1, YTHDF2, and YTHDF3 showed no observable difference in thyroid cancer samples. YTHDC2 was significantly downregulated in thyroid cancer samples and cells. YTHDC2 inhibited cell proliferation in PTC cells. YTHDC2 elicited apoptosis in PTC cells, as demonstrated by the elevated expression of pro-apoptotic factors cl-caspase-3/caspase-3 and Bcl-2-associated (Bax), and the reduced anti-apoptotic B cell lymphoma-2 (Bcl-2) expression. There was a positive correlation between YTHDC2 and cylindromatosis (CYLD) expression based on GEPIA database. YTHDC2 increased CYLD expression in PTC cells. CYLD knockdown abolished the effects of YTHDC2 on PTC cell proliferation and apoptosis. Additionally, YTHDC2 inactivated the protein kinase B (Akt) pathway by increasing CYLD in PTC cells. Overall, YTHDC2 inhibited cell proliferation and induced apoptosis in PTC cells by regulating CYLD-mediated inactivation of Akt pathway.
Collapse
Affiliation(s)
- Guangying Zhou
- Department of Thyroid and Breast Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China
| | - Shasha Wang
- Department of Radiotherapy, the 960Th Hospital of Chinese PLA, No. 25 Shifan Road, Jinan, 250031, China.
| |
Collapse
|
6
|
Wang G, Liu X, Liu H, Zhang X, Shao Y, Jia X. A novel necroptosis related gene signature and regulatory network for overall survival prediction in lung adenocarcinoma. Sci Rep 2023; 13:15345. [PMID: 37714937 PMCID: PMC10504370 DOI: 10.1038/s41598-023-41998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
We downloaded the mRNA expression profiles of patients with LUAD and corresponding clinical data from The Cancer Genome Atlas (TCGA) database and used the Least Absolute Shrinkage and Selection Operator Cox regression model to construct a multigene signature in the TCGA cohort, which was validated with patient data from the GEO cohort. Results showed differences in the expression levels of 120 necroptosis-related genes between normal and tumor tissues. An eight-gene signature (CYLD, FADD, H2AX, RBCK1, PPIA, PPID, VDAC1, and VDAC2) was constructed through univariate Cox regression, and patients were divided into two risk groups. The overall survival of patients in the high-risk group was significantly lower than of the patients in the low-risk group in the TCGA and GEO cohorts, indicating that the signature has a good predictive effect. The time-ROC curves revealed that the signature had a reliable predictive role in both the TCGA and GEO cohorts. Enrichment analysis showed that differential genes in the risk subgroups were associated with tumor immunity and antitumor drug sensitivity. We then constructed an mRNA-miRNA-lncRNA regulatory network, which identified lncRNA AL590666. 2/let-7c-5p/PPIA as a regulatory axis for LUAD. Real-time quantitative PCR (RT-qPCR) was used to validate the expression of the 8-gene signature. In conclusion, necroptosis-related genes are important factors for predicting the prognosis of LUAD and potential therapeutic targets.
Collapse
Affiliation(s)
- Guoyu Wang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xue Liu
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaman Liu
- Department of General Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhua Jia
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
7
|
Clinical significance of cylindromatosis expression in primary hepatocellular carcinoma. Arab J Gastroenterol 2023; 24:58-64. [PMID: 36720665 DOI: 10.1016/j.ajg.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND STUDY AIM There is currently a lack of sensitive biomarkers for the diagnosis of hepatocellular carcinoma (HCC). Low expression of cylindromatosis (CYLD), a tumor suppressor gene that encodes a deubiquitinase, is associated with the development of HCC. The present study, therefore, aimed to determine the clinical utility of measuring CYLD expression in the early diagnosis of HCC. PATIENTS AND METHODS The present study comprised 257 patients from the Affiliated Hospital of Qingdao University including 90 patients with HCC, 41 patients with liver cirrhosis (LC), 46 patients with hepatitis B (HB), and 80 healthy controls. qPCR was used to measure the amounts of CYLD mRNA in stored blood samples. The sensitivity and specificity of CYLD mRNA in diagnosing HCC was analyzed using receiver operator characteristic (ROC) curves. We also obtained HCC data from the Oncomine database to further verify our results. RESULTS The relative levels of CYLD mRNA in peripheral blood from patients with HCC (median, 0.060; interquartile range [IQR], 0.019-0.260) was significantly lower than in blood from patients with LC (median, 3.732; IQR, 0.648-14.573), HB (median, 0.419; IQR, 0.255-1.809) and healthy controls (median, 1.262; IQR, 0.279-3.537; P < 0.05). CYLD mRNA levels in peripheral blood were significantly higher in patients with LC compared to healthy controls and patients with HB. Oncomine data demonstrated that CYLD mRNA expression levels in HCC tissues were significantly lower than in normal liver tissues. ROC analysis demonstrated that the combined use of peripheral blood levels of CYLD and AFP had the greatest diagnostic accuracy for HCC (area under the curve (AUC), 0.897; 95 % confidence interval [CI], 0.853-0.942). CYLD had utility as a supplementary marker to AFP for diagnosing HCC. CONCLUSION Circulating levels of CYLD mRNA are significantly decreased in patients with HCC, indicating CYLD may have utility as a biomarker of HCC. Combined measurement of CYLD mRNA and AFP protein had the greatest diagnostic accuracy.
Collapse
|
8
|
Yuan H, Wei S, Ren Z, Li F, Liu B, Liu R, Zhang X. KLHL21/CYLD signaling confers aggressiveness in bladder cancer through inactivating NF-κB signaling. Int Immunopharmacol 2023; 114:109202. [PMID: 36538852 DOI: 10.1016/j.intimp.2022.109202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/23/2022]
Abstract
Bladder carcinoma (BC) is one of the most commonly diagnosed malignant cancers worldwide. Kelch-like protein 21 (KLHL21) has been shown to be involved in a number of human tumors. The study aimed to investigate the effects and mechanism of KLHL21 on BC progression. We found that KLHL21 expression was significantly decreased in human BC tissues and cell lines compared with the paired normal samples, and patients with lower KLHL21 expression exhibited poorer overall survival. In vitro studies then showed that KLHL21 over-expression significantly reduced the proliferation, migration and invasion in BC cells, while KLHL21 knockdown markedly accelerated the proliferative, migratory and invasive properties of BC cells. Animal studies confirmed that KLHL21 exhibited anti-tumor function in the xenograft mouse models, as indicated by the reduced tumor growth rates, and mice with KLHL21 knockdown showed the opposite tumor growth profile. Additionally, we found that KLHL21 negatively mediated the nuclear factor-κB (NF-κB) signaling activation, as well as its down-streaming molecules involved in the biological regulation of cell survival, death and migratory processes. Mechanistically, cylindromatosis (CYLD) expression levels were significantly up-regulated in BC cells over-expressing KLHL21, but were down-regulated upon KLHL21 knockdown. We further uncovered that KLHL21 directly interacted with CYLD in BC cells. Of note, we found that KLHL21 mainly in cytoplasm could restrain CYLD degradation by prohibiting its ubiquitination in BC cells. More importantly, our in vitro experiments displayed that KLHL21-inhibited progression and NF-κB/p65 activation in BC cells were completely abolished by CYLD deletion, revealing that CYLD expression was required for KLHL21 to perform its anti-tumor function in BC. Collectively, all these findings uncovered that KLHL21/CYLD axis may be a promising therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Hongyi Yuan
- Department of Urology Surgery, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei Province 054000, China
| | - Shufei Wei
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Zongtao Ren
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Feng Li
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Bin Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Rui Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Xiaoyu Zhang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China.
| |
Collapse
|
9
|
Thakur B, Saha L, Bhatia A. Relative refractoriness of breast cancer cells to tumour necrosis factor-α induced necroptosis. Clin Exp Pharmacol Physiol 2022; 49:1294-1306. [PMID: 36054417 DOI: 10.1111/1440-1681.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 01/31/2023]
Abstract
Necroptosis, a recently identified programmed cell death pathway, has attracted attention as an alternative route to target apoptosis-resistant cancer cells. The status of the necroptosis pathway in different subtypes of breast cancer has not been well explored. Stimulating the cells by TNF-α can trigger cell survival or death depending on the combination of downstream players involved. In this work, we attempted to induce necroptosis in them using a combination of TNF-α and Z-VAD-FMK with and without chemotherapy. Cell viability, apoptosis, and necroptosis were assessed using MTT and Annexin-V/PI assays, respectively. Gene and protein expression was analysed by qPCR and immunophenotyping. Both the cell lines were resistant to induction of cell death by necroptosis. There was no enhancement in cell death when chemotherapeutic drugs were combined with necroptosis induction. Expression studies showed reduced translational expression of key necroptosis molecules like RIP kinases and MLKL in breast cancer cells compared to positive control cell line L929. Also, cell survival molecules were expressed more in MDA-MB-231 in contrast to death pathway molecules which were expressed more in T47D cells. In this work, the two breast cancer cell lines were observed to be resistant to TNF-α induced necroptosis with or without chemotherapy. Expression of key necroptosis players revealed relative insufficiency of the molecular machinery involved in the above pathway. In our opinion this may be the cause for resistance to necroptosis and novel strategies to upregulate these molecules need to be developed to sensitize the breast cancer cells towards cell death by necroptosis.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
10
|
Kanemaru A, Shinriki S, Kai M, Tsurekawa K, Ozeki K, Uchino S, Suenaga N, Yonemaru K, Miyake S, Masuda T, Kariya R, Okada S, Takeshita H, Seki Y, Yano H, Komohara Y, Yoshida R, Nakayama H, Li JD, Saito H, Jono H. Potential use of EGFR-targeted molecular therapies for tumor suppressor CYLD-negative and poor prognosis oral squamous cell carcinoma with chemoresistance. Cancer Cell Int 2022; 22:358. [PMID: 36376983 PMCID: PMC9664721 DOI: 10.1186/s12935-022-02781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tumor suppressor CYLD dysfunction by loss of its expression, triggers malignant transformation, especially drug resistance and tumor invasion/metastasis. Although loss of CYLD expression is significantly associated with poor prognosis in a large variety of tumors, no clinically-effective treatment for CYLD-negative cancer patients is available. METHODS We focused on oral squamous cell carcinoma (OSCC), and sought to develop novel therapeutic agents for CYLD-negative cancer patients with poor prognosis. CYLD-knockdown OSCC cells by using CYLD-specific siRNA, were used to elucidate and determine the efficacy of novel drug candidates by evaluating cell viability and epithelial-mesenchymal transition (EMT)-like change. Therapeutic effects of candidate drug on cell line-derived xenograft (CDX) model and usefulness of CYLD as a novel biomarker using patient-derived xenograft (PDX) model were further investigated. RESULTS CYLD-knockdown OSCC cells were resistant for all currently-available cytotoxic chemotherapeutic agents for OSCC, such as, cisplatin, 5-FU, carboplatin, docetaxel, and paclitaxel. By using comprehensive proteome analysis approach, we identified epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, played key roles in CYLD-knockdown OSCC cells. Indeed, cell survival rate in the cisplatin-resistant CYLD-knockdown OSCC cells was markedly inhibited by treatment with clinically available EGFR tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib. In addition, gefitinib was significantly effective for not only cell survival, but also EMT-like changes through inhibiting transforming growth factor-β (TGF-β) signaling in CYLD-knockdown OSCC cells. Thereby, overall survival of CYLD-knockdown CDX models was significantly prolonged by gefitinib treatment. Moreover, we found that CYLD expression was significantly associated with gefitinib response by using PDX models. CONCLUSIONS Our results first revealed that EGFR-targeted molecular therapies, such as EGFR-TKIs, could have potential to be novel therapeutic agents for the CYLD-negative OSCC patients with poor prognosis.
Collapse
Affiliation(s)
- Ayumi Kanemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mimi Kai
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kanae Tsurekawa
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kazuya Ozeki
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Shota Uchino
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Naoki Suenaga
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kou Yonemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Shunsuke Miyake
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe honmachi, Chuo-Ku, Kumamoto, 862-0973, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hisashi Takeshita
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuki Seki
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
11
|
LIU J, LEUNG CT, LIANG L, WANG Y, CHEN J, LAI KP, TSE WKF. Deubiquitinases in Cancers: Aspects of Proliferation, Metastasis, and Apoptosis. Cancers (Basel) 2022; 14:cancers14143547. [PMID: 35884607 PMCID: PMC9323628 DOI: 10.3390/cancers14143547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review summarizes the current DUBs findings that correlate with the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The DUBs were further classified by their biological functions in terms of proliferation, metastasis, and apoptosis. The work provides an updated of the current findings, and could be used as a quick guide for researchers to identify target DUBs in cancers. Abstract Deubiquitinases (DUBs) deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate its activity and stability. They are involved in several cellular functions. In addition to the general biological regulation of normal cells, studies have demonstrated their critical roles in various cancers. In this review, we evaluated and grouped the biological roles of DUBs, including proliferation, metastasis, and apoptosis, in the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The current findings in these cancers are summarized, and the relevant mechanisms and relationship between DUBs and cancers are discussed. In addition to highlighting the importance of DUBs in cancer biology, this study also provides updated information on the roles of DUBs in different types of cancers.
Collapse
Affiliation(s)
- Jiaqi LIU
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Chi Tim LEUNG
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China;
| | - Luyun LIANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Yuqin WANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Jian CHEN
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - Keng Po LAI
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - William Ka Fai TSE
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
12
|
Papadatou V, Tologkos S, Tsolou A, Deftereou TE, Liberis A, Trypsianis G, Alexiadis T, Georgiadi K, Alexiadi CA, Nikolaidou C, Lambropoulou M. CYLD expression in endometrial carcinoma and correlation with clinicohistopathological parameters. Taiwan J Obstet Gynecol 2022; 61:596-600. [PMID: 35779906 DOI: 10.1016/j.tjog.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Endometrial cancer is a threat to women health worldwide. Cylindromatosis (CYLD) enzyme is a tumour suppressor, considered an effective prognostic marker in various malignancies, but its role in endometrial carcinoma is not fully elucidated. Here, we sought to estimate the prognostic value of CYLD expression in endometrial carcinoma. MATERIALS AND METHODS CYLD levels were immunohistochemically evaluated in 65 patients with endometrial carcinoma and inferential statistics were applied. RESULTS Low or negative CYLD expression significantly correlates with older ages, non-endometrioid and invasive carcinomas, tumours with moderate or poor differentiation and advanced stages. Moreover, non-endometrioid and invasive carcinomas are independent risk factors for weaker CYLD expression. Kaplan-Meier analysis illustrated that negative or low CYLD expression is statistically significantly associated with increased death risk, compared to moderate or high expression. CONCLUSION This study demonstrates for the first time a clear correlation between CYLD expression and clinicohistopathological parameters of endometrial carcinoma patients, suggesting its use as a potential prognostic/predictive marker for Endometrial Carcinoma.
Collapse
Affiliation(s)
- Vasiliki Papadatou
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stylianos Tologkos
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Avgi Tsolou
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Theodora-Eleftheria Deftereou
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasios Liberis
- Second Department of Obstetrics & Gynecology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Grigorios Trypsianis
- Medical Statistics, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Triantafyllos Alexiadis
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Kyriaki Georgiadi
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina-Angelika Alexiadi
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Nikolaidou
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; Hippokration General Hospital, Thessaloniki, Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
13
|
Hosseini F, Shanehbandi D, Soleimanpour J, Yousefi B, Alemi F. Melatonin Increases the Sensitivity of Osteosarcoma Cells to
Chemotherapy Drug Cisplatin. Drug Res (Stuttg) 2022; 72:312-318. [DOI: 10.1055/a-1830-8716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractChemotherapy, which is one of the common treatments for osteosarcoma (OS), has
many side effects and in some cases has low effectiveness due to
chemoresistance, hence it is vital to study new therapies for OS. In this
regard, we combined melatonin with cisplatin and evaluate their effect on MG63
OS cells. Since melatonin has anti-cancer properties, we hypothesized that its
combination with cisplatin could increase the effectiveness of cisplatin.
Firstly, MTT assay was used to evaluate the cell viability and cytotoxicity of
cisplatin on MG63 cells and the results showed that melatonin in combination
with cisplatin increases the sensitivity of MG63 cells to cisplatin. In
addition, qRT-PCR results showed that the expressions of miR-181 and P53, CYLD,
CBX7 and BCL2 genes change in MG63 cells after treatment with the combination of
cisplatin and melatonin, so that the expression of P53, CYLD and CBX7 increased
and the expression of BCL2 and miR-181b decreases significantly. Furthermore,
analysis of Annexin V/FITC assay data revealed that the rate of
apoptosis in MG63 OS cell line remarkably promoted after treated with cisplatin
and melatonin combination. As a result, our findings show that melatonin in
combination with cisplatin increases the effectiveness of cisplatin in
osteosarcoma cells and this study provides a new therapeutic approach for
OS.
Collapse
Affiliation(s)
- Foroogh Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of
Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Molecular Medicine Research Center, Tabriz University of Medical
Sciences, Tabriz, Iran
| | - Jafar Soleimanpour
- Department of Orthopedics Surgery, Shohada Teaching Hospital, Tabriz
University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of
Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of
Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Mohammadi E, Alemi F, Maleki M, Malakoti F, Farsad-Akhtar N, Yousefi B. Quercetin and Methotrexate in Combination have Anticancer Activity in Osteosarcoma Cells and Repress Oncogenic MicroRNA-223. Drug Res (Stuttg) 2022; 72:226-233. [PMID: 35385884 DOI: 10.1055/a-1709-0658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Osteosarcoma (OS) is one of the most common bone neoplasms in adolescents. Notable short- and long-term toxic effects of OS chemotherapy regimens have been reported. Hence, new chemotherapeutic agents with the ability to potentiate OS chemotherapy drugs and protect non-tumorous tissues are required. METHODS Saos-2 cells were treated with Methotrexate (MTX) and Quercetin (Que) (a polyphenolic flavonoid with anti-tumor effects) alone and in combination. MTT assay was performed to investigate the cytotoxicity of the drugs. Moreover, apoptosis-involved genes, including miR-223, p53, BCL-2, CBX7, and CYLD expression were analyzed via qRT-PCR. Annexin V-FITC/PI kit was employed to assess the apoptosis rate. RESULTS The MTT results showed that Que increases MTX cytotoxicity on OS cells. The measured IC50s are 142.3 µM for QUE and 13.7 ng/ml for MTX. A decline in MTX IC50 value was observed from 13.7 ng/ml to 8.45 ng/ml in the presence of Que. Moreover, the mRNA expression outcomes indicated that the combination therapy significantly up-regulates the tumor suppressor genes, such as p53, CBX7, and CYLD, and declines anti-apoptotic genes BCL-2 and miR-223, which can lead to proliferation inhibition and apoptosis inducement. Furthermore, the apoptosis rate increased significantly from 6.03% in the control group to 38.35% in Saos-2 cells that were treated with the combination of MTX and Que. CONCLUSION Que, with the potential to boost the anticancer activity of MTX on Saos-2 cancer cells through proliferation inhibition and apoptosis induction, is a good candidate for combination therapy.
Collapse
Affiliation(s)
- Erfan Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhtar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
The Tumour Suppressor CYLD Is Required for Clathrin-Mediated Endocytosis of EGFR and Cetuximab-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 14:cancers14010173. [PMID: 35008337 PMCID: PMC8750287 DOI: 10.3390/cancers14010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC) and is a target for the therapeutic antibody cetuximab (CTX). However, because only some patients have a significant clinical response to CTX, identification of its predictive biomarkers and potentiation of CTX-based therapies are important. We have recently reported a frequent downregulation of cylindromatosis (CYLD) in primary HNSCC, which led to increased cell invasion and cisplatin resistance. Here, we show that CYLD located mainly in lipid rafts was required for clathrin-mediated endocytosis (CME) and degradation of the EGFR induced by EGF and CTX in HNSCC cells. The N-terminus containing the first cytoskeleton-associated protein-glycine domain of CYLD was responsible for this regulation. Loss of CYLD restricted EGFR to lipid rafts, which suppressed CTX-induced apoptosis without impeding CTX's inhibitory activity against downstream signalling pathways. Disruption of the lipid rafts with cholesterol-removing agents overcame this resistance by restoring CME and the degradation of EGFR. Regulation of EGFR trafficking by CYLD is thus critical for the antitumour activity of CTX. Our findings suggest the usefulness of a combination of cholesterol-lowering drugs with anti-EGFR antibody therapy in HNSCC.
Collapse
|
16
|
Li S, Zhang H, Wei X. Roles and Mechanisms of Deubiquitinases (DUBs) in Breast Cancer Progression and Targeted Drug Discovery. Life (Basel) 2021; 11:life11090965. [PMID: 34575114 PMCID: PMC8467271 DOI: 10.3390/life11090965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinase (DUB) is an essential component in the ubiquitin—proteasome system (UPS) by removing ubiquitin chains from substrates, thus modulating the expression, activity, and localization of many proteins that contribute to tumor development and progression. DUBs have emerged as promising prognostic indicators and drug targets. DUBs have shown significant roles in regulating breast cancer growth, metastasis, resistance to current therapies, and several canonical oncogenic signaling pathways. In addition, specific DUB inhibitors have been identified and are expected to benefit breast cancer patients in the future. Here, we review current knowledge about the effects and molecular mechanisms of DUBs in breast cancer, providing novel insight into treatments of breast cancer-targeting DUBs.
Collapse
|
17
|
TRIM47 activates NF-κB signaling via PKC-ε/PKD3 stabilization and contributes to endocrine therapy resistance in breast cancer. Proc Natl Acad Sci U S A 2021; 118:2100784118. [PMID: 34433666 DOI: 10.1073/pnas.2100784118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Increasing attention has been paid to roles of tripartite motif-containing (TRIM) family proteins in cancer biology, often functioning as E3 ubiquitin ligases. In the present study, we focus on a contribution of TRIM47 to breast cancer biology, particularly to endocrine therapy resistance, which is a major clinical problem in breast cancer treatment. We performed immunohistochemical analysis of TRIM47 protein expression in 116 clinical samples of breast cancer patients with postoperative endocrine therapy using tamoxifen. Our clinicopathological study showed that higher immunoreactivity scores of TRIM47 were significantly associated with higher relapse rate of breast cancer patients (P = 0.012). As functional analyses, we manipulated TRIM47 expression in estrogen receptor-positive breast cancer cells MCF-7 and its 4-hydroxytamoxifen (OHT)-resistant derivative OHTR, which was established in a long-term culture with OHT. TRIM47 promoted both MCF-7 and OHTR cell proliferation. MCF-7 cells acquired tamoxifen resistance by overexpressing exogenous TRIM47. We found that TRIM47 enhances nuclear factor kappa-B (NF-κB) signaling, which further up-regulates TRIM47. We showed that protein kinase C epsilon (PKC-ε) and protein kinase D3 (PKD3), known as NF-κB-activating protein kinases, are directly associated with TRIM47 and stabilized in the presence of TRIM47. As an underlying mechanism, we showed TRIM47-dependent lysine 27-linked polyubiquitination of PKC-ε. These results indicate that TRIM47 facilitates breast cancer proliferation and endocrine therapy resistance by forming a ternary complex with PKC-ε and PKD3. TRIM47 and its associated kinases can be a potential diagnostic and therapeutic target for breast cancer refractory to endocrine therapy.
Collapse
|
18
|
Ren Z, Lv M, Yu Q, Bao J, Lou K, Li X. MicroRNA-370-3p shuttled by breast cancer cell-derived extracellular vesicles induces fibroblast activation through the CYLD/Nf-κB axis to promote breast cancer progression. FASEB J 2021; 35:e21383. [PMID: 33629796 DOI: 10.1096/fj.202001430rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a malignancy arising in the mammary epithelial tissues. Recent studies have indicated the abundance of microRNAs (miRNAs) in extracellular vesicles (EVs), and their interactions have been illustrated to exert crucial roles in the cell-to-cell communication. The present study focused on investigating whether EV-delivered miR-370-3p affects breast cancer. Initially, the miR-370-3p expression pattern was examined in the cancer-associated fibroblasts (CAFs), normal fibroblasts (NFs), and cancerous cells-derived EVs. The relation of miR-370-3p to CYLD was assessed using luciferase activity assay. Afterwards, based on ectopic expression and depletion experiments in the MCF-7 breast cancer cells, we evaluated stemness, migration, invasion, and sphere formation ability, and EMT, accompanied with measurement on the expression patterns of pro-inflammatory factors and nuclear factor-kappa B (NF-κB) signaling-related genes. Finally, tumorigenesis and proliferation were analyzed in vivo using a nude mouse xenograft model. The in vitro experiments revealed that breast cancer cell-derived EVs promoted NF activation, while activated fibroblasts contributed to enhanced stemness, migration, invasion, as well as EMT of cancerous cells. In addition, EVs could transfer miR-370-3p from breast cancer cells to NFs, and EV-encapsulated miR-370-3p was also found to facilitate fibroblast activation. Mechanistically, EV-encapsulated miR-370-3p downregulated the expression of CYLD through binding to its 3'UTR and activated the NF-κB signaling pathway, thereby promoting the cellular functions in vitro and in vivo in breast cancer. Taken together, EVs secreted by breast cancer cells could carry miR-370-3p to aggravate breast cancer through downregulating CYLD expression and activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhaojun Ren
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Mengmeng Lv
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Qiao Yu
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jun Bao
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Kexin Lou
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiujuan Li
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
19
|
Wang J, Tan L, Jia B, Yu X, Yao R, OUYang N, Yu X, Cao X, Tong J, Chen T, Chen R, Li J. Downregulation of m 6A Reader YTHDC2 Promotes the Proliferation and Migration of Malignant Lung Cells via CYLD/NF-κB Pathway. Int J Biol Sci 2021; 17:2633-2651. [PMID: 34326699 PMCID: PMC8315025 DOI: 10.7150/ijbs.58514] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is one of the most common types of carcinoma worldwide. Cigarette smoking is considered the leading cause of lung cancer. Aberrant expression of several YT521-B homology (YTH) family proteins has been reported to be closely associated with multiple cancer types. The present study aims to evaluate the function and regulatory mechanisms of the N6-methyladenosine (m6A) reader protein YTH domain containing 2 (YTHDC2) by in vitro, in vivo and bioinformatics analyses. The results revealed that YTHDC2 was reduced in lung cancer and cigarette smoke-exposed cells. Notably, bioinformatics and tissue arrays analysis demonstrated that decreased YTHDC2 was highly associated with smoking history, pathological stage, invasion depth, lymph node metastasis and poor outcomes. The in vivo and in vitro studies revealed that YTHDC2 overexpression inhibited the proliferation and migration of lung cancer cells as well as tumor growth in nude mice. Furthermore, YTHDC2 decreased expression was modulated by copy number deletion in lung cancer. Importantly, the cylindromatosis (CYLD)/NF-κB pathways were confirmed as the downstream signaling of YTHDC2, and this axis was mediated by m6A modification. The present results indicated that smoking-related downregulation of YTHDC2 was associated with enhanced proliferation and migration in lung cancer cells, and appeared to be regulated by DNA copy number variation. Importantly, YTHDC2 functions as a tumor suppressor through the CYLD/NF-κB signaling pathway, which is mediated by m6A modification.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lirong Tan
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Beibei Jia
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaofan Yu
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ruixin Yao
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Nan OUYang
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xueting Yu
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiyuan Cao
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Rui Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215004, China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
20
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Evolution of Reproductive Life History in Mammals and the Associated Change of Functional Constraints. Genes (Basel) 2021; 12:genes12050740. [PMID: 34068942 PMCID: PMC8157036 DOI: 10.3390/genes12050740] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Phylogenetic trees based on multiple genomic loci enable us to estimate the evolution of functional constraints that operate on genes based on lineage-specific fluctuation of the evolutionary rate at particular gene loci, “gene–branch interactions”. Using this information as predictors, our previous work inferred that the common ancestor of placental mammals was nocturnal, insectivorous, solitary, and bred seasonally. Here, we added seven new continuous traits including lifespan, bodyweight, and five reproduction-related traits and inferred the coevolution network of 14 core life history traits for 89 mammals. In this network, bodyweight and lifespan are not directly connected to each other; instead, their correlation is due to both of them coevolving with gestation period. Diurnal mammals are more likely to be monogamous than nocturnal mammals, while arboreal mammals tend to have a smaller litter size than terrestrial mammals. Coevolution between diet and the seasonal breeding behavior test shows that year-round breeding preceded the dietary change to omnivory, while seasonal breeding preceded the dietary change to carnivory. We also discuss the evolution of reproductive strategy of mammals. Genes selected as predictors were identified as well; for example, genes function as tumor suppressor were selected as predictors of weaning age.
Collapse
|
22
|
Xu X, Wei T, Zhong W, Ang R, Lei Y, Zhang H, Li Q. Down-regulation of cylindromatosis protein phosphorylation by BTK inhibitor promotes apoptosis of non-GCB-diffuse large B-cell lymphoma. Cancer Cell Int 2021; 21:195. [PMID: 33827598 PMCID: PMC8025353 DOI: 10.1186/s12935-021-01891-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Non-germinal center B-cell-like diffuse large B-cell lymphoma (non-GCB-DLBCL) has worse clinical outcome than GCB-DLBCL, and some relapsed/refractory non-GCB-DLBCL (R/R non-GCB-DLBCL) are even resistant to CD20 monoclonal antibody (rituximab). Bruton's tyrosine kinase inhibitors (BTKis) are new drugs for B-cell lymphoma. BTKis can promote apoptosis of DLBCL by inactivating nuclear transcription factor κB (NFκB) signaling pathway. Cylindromatosis (CYLD) is a tumor suppressor and ubiquitinase. CYLD can inactivate NFκB signaling pathway through ubiquitination and regulate the apoptosis of hematological tumors. The ubiquitination of CYLD can be regulated by phosphorylation, suggesting that the regulation of CYLD phosphorylation can be a potential mechanism to promote the apoptosis of hematological tumors. Therefore, we hypothesized that BTKis could promote the apoptosis of non-GCB-DLBCL by regulating the phosphorylation of CYLD, especially in rituximab resistant cases, and we proved this hypothesis through both in vivo and in vitro experiments. METHODS The baseline expression levels of CYLD phosphorylation in non-GCB-DLBCL patients and cell lines were detected by Western Blotting. The non-GCB-DLBCL cell lines were treated with BTKis, and apoptosis induced by BTKis treatment was detected by Western blotting, cell viability assay and Annexin V assay. To verify whether the effect of BTKis on apoptosis in non-GCN-DLBCL cells is CYLD dependent, the expression of CYLD was knocked down by lentiviral shRNAs. To verify the effect of BTKis on the phosphorylation of CYLD and the apoptosis in vivo and in rituximab resistant non-GCB-DLBCL, the xeograft model and rituximab resistant non-GCB-DLBCL cells were generated by tumor cell inoculation and escalation of drug concentrations, respectively. RESULTS BTKis induced apoptosis by down-regulating CYLD phosphorylationin in non GCB-DLBCL, xenograft mouse model, and rituximab-resistant cells, and this effect could be enhanced by rituximab. Knocking-down CYLD reversed apoptosis which was induced by BTKis. BTKis induced CYLD-dependent apoptosis in non-GCB-DLBCL including in rituximab-resistant cells. CONCLUSIONS The present results indicated that CYLD phosphorylation is a potential clinical therapeutic target for non-GCB-DLBCL, especially for rituximab-resistant relapsed/refractory cases.
Collapse
Affiliation(s)
- Xin Xu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People's Republic of China.,Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 511458, People's Republic of China
| | - Ting Wei
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Weijie Zhong
- Department of Geriatrics, Hematology and Oncology Ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Rosalind Ang
- Precision Immunology Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Ye Lei
- Precision Immunology Institute, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jinan, Shandong, 272067, People's Republic of China
| | - Qingshan Li
- Department of Hematology, Guangzhou Red Cross Hospital, Jinan University, No. 396 Tongfuzhong Road, Haizhu District, 510220, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Li B, Zhang H. Knockdown of microRNA-130b improves doxorubicin sensitivity in bladder urothelial carcinoma by negatively regulating cylindromatosis expression. Arch Med Sci 2021; 17:1038-1043. [PMID: 34336031 PMCID: PMC8314415 DOI: 10.5114/aoms.2019.86622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Chemotherapeutic resistance reduces the sensitivity of bladder urothelial carcinoma (BUC) to chemotherapeutic drugs and contributes a barrier leading to treatment failure. The purpose of this research project is to investigate the regulatory effects of miR-130b on chemotherapeutic drug resistance of BUC and its mechanism. MATERIAL AND METHODS The relative expression of miRNA-130b and cylindromatosis (CYLD) was examined using real-time quantitative PCR. The cell proliferation and doxorubicin sensitivity were detected with the enhanced CCK-8 assay. The specific combination of miR-130b and CYLD was verified with the luciferase reporter gene assay. Protein expression was detected by Western blot. RESULTS Our study found that miR-130b was up-regulated in doxorubicin-insensitive BUC tissues and cell lines, and its high expression was negatively related to doxorubicin sensitivity in BUC. The miR-130b knockdown reduced the IC50 of doxorubicin and improved doxorubicin sensitivity of J82/Dox and T24/Dox cells. For the regulation mechanism analysis of miR-130b, bioinformatics analysis software was used to predict the potential targets of miR-130b, including the CYLD gene. The following luciferase activities assay, quantitative real time-PCR and western blot identified the CYLD gene as a target of miR-130b. Knockdown of CYLD reversed miR-130b's regulatory roles in doxorubicin sensitivity in J82/Dox and T24/Dox cells. CONCLUSIONS High expression of miR-130b is negatively related to doxorubicin sensitivity in BUC, and knockdown of miR-130b improves doxorubicin sensitivity in BUC by negatively regulating CYLD expression. Our findings will provide guidance for the clinical chemotherapy of BUC.
Collapse
Affiliation(s)
- Bo Li
- China Medical University, Shenyang, China
| | - Hui Zhang
- China Medical University, Shenyang, China
| |
Collapse
|
24
|
Lin Y, Wang L, Luo W, Zhou X, Chen Y, Yang K, Liao J, Wu D, Cai L. CYLD Promotes Apoptosis of Nasopharyngeal Carcinoma Cells by Regulating NDRG1. Cancer Manag Res 2020; 12:10639-10649. [PMID: 33149672 PMCID: PMC7604974 DOI: 10.2147/cmar.s268216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Nasopharyngeal carcinoma (NPC) is among the most common malignancies derived from the epithelium of the nasopharynx. To date, the regulatory networks involved in NPC have not been fully identified. Previous studies revealed multiple loss-of-function mutations in NPC and specifically in cylindromatosis lysine 63 deubiquitinase (CYLD); however, the exact role of CYLD in NPC progression and its potential mechanism remains unclear. Methods We performed immunohistochemical (IHC) staining and real-time quantitative polymerase chain reaction (qPCR) to measure CYLD expression in NPC tissues, and Western blot was conducted to determine CYLD levels in NPC cell lines. Cell proliferation was detected by CCK8 assay and colony formation analysis, and apoptosis was determined by Annexin V/propidium iodide staining. Potential targets of CYLD were verified by co-immunoprecipitation and mass spectrometry. Xenograft assay was conducted to confirm the role of CYLD in vivo. Results We found that CYLD levels were significantly decreased in both NPC tissues and cell lines, and that CYLD overexpression inhibited NPC cell proliferation and promoted apoptosis. Additionally, we revealed that CYLD bound and upregulated N-Myc downstream regulated 1 (NDRG1), and that silencing NDRG1 abolished the tumor-suppressor effect of CYLD on NPC cells. Furthermore, CYLD suppressed tumor growth in xenograft mice models. Conclusion These results suggest CYLD as a tumor suppressor, potential biomarker for diagnosing NPC, and therapeutic target.
Collapse
Affiliation(s)
- Yanling Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Lingzhi Wang
- First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wenxiao Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuting Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Kaifan Yang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jinrong Liao
- Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Longmei Cai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
25
|
Miyake S, Miwa T, Yoneda G, Kanemaru A, Saito H, Minoda R, Orita Y, Saito H, Jono H. Relationship between clinicopathological characteristics and CYLD expression in patients with cholesteatoma. PLoS One 2020; 15:e0240216. [PMID: 33031450 PMCID: PMC7544047 DOI: 10.1371/journal.pone.0240216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022] Open
Abstract
Middle ear cholesteatoma is a destructive disease in which inflammation plays an important role in development and progression, and there are currently no biomarkers predicting prognosis or recurrence. Cylindromatosis (CYLD), a tumor suppressor deubiquitinase, serves as a negative regulator of inflammation expressed in tissues including the middle ear. To determine the clinical significance of CYLD in acquired cholesteatoma, we evaluated CYLD expression in acquired cholesteatoma tissue by immunostaining and analyzed its correlation with clinicopathological characteristics. Our immunohistochemical analysis revealed that CYLD expression levels were varied in the tissues of acquired cholesteatoma patients. The relative expression levels of CYLD in cholesteatoma exhibited a significant correlation with the grade of otorrhea (R = 0.532, p = 0.039). Moreover, the period of epithelialization was also significantly associated with the relative expression levels of CYLD (R = 0.720, p = 0.002). In addition, CYLD expression tended to be lower in the group with recurrence. These results suggest that low CYLD expression correlates with postoperative recovery of acquired cholesteatoma, while potentially affecting the induction of recurrence. This is the first report showing that low CYLD expression correlates with accelerated disease recovery, and suggests a new aspect of CYLD as a prognostic predictor of acquired cholesteatoma.
Collapse
Affiliation(s)
- Shunsuke Miyake
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University, Kyoto, Japan
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Go Yoneda
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Ayumi Kanemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Saito
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryosei Minoda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto General Hospital, Kumamoto, Japan
| | - Yorihisa Orita
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
26
|
Cui Z, Kang H, Grandis JR, Johnson DE. CYLD Alterations in the Tumorigenesis and Progression of Human Papillomavirus-Associated Head and Neck Cancers. Mol Cancer Res 2020; 19:14-24. [PMID: 32883697 DOI: 10.1158/1541-7786.mcr-20-0565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
Genetic alterations of CYLD lysine 63 deubiquitinase (CYLD), a tumor-suppressor gene encoding a deubiquitinase (DUB) enzyme, are associated with the formation of tumors in CYLD cutaneous syndrome. Genome sequencing efforts have revealed somatic CYLD alterations in multiple human cancers. Moreover, in cancers commonly associated with human papillomavirus (HPV) infection (e.g., head and neck squamous cell carcinoma), CYLD alterations are preferentially observed in the HPV-positive versus HPV-negative form of the disease. The CYLD enzyme cleaves K63-linked polyubiquitin from substrate proteins, resulting in the disassembly of key protein complexes and the inactivation of growth-promoting signaling pathways, including pathways mediated by NF-κB, Wnt/β-catenin, and c-Jun N-terminal kinases. Loss-of-function CYLD alterations lead to aberrant activation of these signaling pathways, promoting tumorigenesis and malignant transformation. This review summarizes the association and potential role of CYLD somatic mutations in HPV-positive cancers, with particular emphasis on the role of these alterations in tumorigenesis, invasion, and metastasis. Potential therapeutic strategies for patients whose tumors harbor CYLD alterations are also discussed. IMPLICATIONS: Alterations in CYLD gene are associated with HPV-associated cancers, contribute to NF-κB activation, and are implicated in invasion and metastasis.
Collapse
Affiliation(s)
- Zhibin Cui
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| | - Hyunseok Kang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
27
|
The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel) 2020; 12:cancers12082047. [PMID: 32722292 PMCID: PMC7466024 DOI: 10.3390/cancers12082047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Downregulation of the cylindromatosis (CYLD) tumor suppressor has been associated with breast cancer development and progression. Here, we report a critical role for CYLD in maintaining the phenotype of mammary epithelial cells in vitro and in vivo. CYLD downregulation or inactivation induced an epithelial to mesenchymal transition of mammary epithelial cells that was dependent on the concomitant activation of the transcription factors Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and transforming growth factor beta (TGF)signaling. CYLD inactivation enhanced the nuclear localization of YAP/TAZ and the phosphorylation of Small Mothers Against Decapentaplegic (SMAD)2/3 proteins in confluent cell culture conditions. Consistent with these findings were the hyperplastic alterations of CYLD-deficient mouse mammary epithelia, which were associated with enhanced nuclear expression of the YAP/TAZ transcription factors. Furthermore, in human breast cancer samples, downregulation of CYLD expression correlates with enhanced YAP/TAZ-regulated target gene expression. Our results identify CYLD as a critical regulator of a signaling node that prevents the coordinated activation of YAP/TAZ and the TGF pathway in mammary epithelial cells, in order to maintain their phenotypic identity and homeostasis. Consequently, they provide a novel conceptual framework that supports and explains a causal implication of deficient CYLD expression in aggressive human breast cancers.
Collapse
|
28
|
Deng M, Dai W, Yu VZ, Tao L, Lung ML. Cylindromatosis Lysine 63 Deubiquitinase (CYLD) Regulates NF-kB Signaling Pathway and Modulates Fibroblast and Endothelial Cells Recruitment in Nasopharyngeal Carcinoma. Cancers (Basel) 2020; 12:cancers12071924. [PMID: 32708712 PMCID: PMC7409113 DOI: 10.3390/cancers12071924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the nasopharynx. Cylindromatosis lysine 63 deubiquitinase (CYLD), a NF-kB inhibitor, was reported as one of the top mutated candidate genes in NPC. NF-kB is an inducible transcription factor, contributing to cancer via regulating inflammation, angiogenesis, cell proliferation, and metastasis. In this study, the impact of CYLD on regulating the NF-kB signaling pathway and its contribution to NPC development was studied using in vitro and in vivo functional assays, together with single cell RNA sequencing to understand the NPC tumor microenvironment. CYLD was downregulated in NPC clinical specimens and multiple cell lines. Functional assays revealed CYLD inhibits NPC cell proliferation and migration in vitro and suppresses NPC tumorigenicity and metastasis in vivo by negatively regulating the NF-kB signaling pathway. Additionally, CYLD was able to inhibit fibroblast and endothelial stromal cell infiltration into the NPC tumor microenvironment. These findings suggest that CYLD inhibits NPC development and provides strong evidence supporting a role for CYLD inhibiting fibroblast and endothelial stromal cell infiltration into NPC via suppressing the NF-kB pathway.
Collapse
|
29
|
Tian T, Bi H, Liu Y, Li G, Zhang Y, Cao L, Hu F, Zhao Y, Yuan H. Copy number variation of ubiquitin- specific proteases genes in blood leukocytes and colorectal cancer. Cancer Biol Ther 2020; 21:637-646. [PMID: 32364424 PMCID: PMC7515516 DOI: 10.1080/15384047.2020.1750860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-specific proteases (USPs) play important roles in the regulation of many cancer-related biological processes. USPs copy number variation (CNVs) may affect the risk and prognosis of colorectal cancer (CRC). We detected CNVs of USPs genes in 468 matched CRC patients and controls, estimated the associations between the USPs genes CNVs and CRC risk and prognosis and their interactions with environmental factors on CRC risk. Finally, we generated five CRC risk predictive models with different CNVs patterns combining with environmental factors (EF). We identified significant association between CYLD deletion and CRC risk (ORadj = 4.18, 95% CI: 2.03-8.62), significant association between USP9X amplification and CRC risk (ORadj = 2.30, 95% CI: 1.48-3.57), and significant association between USP11 deletion and CRC risk (ORadj = 3.49, 95% CI: 1.49-8.64). There were significant gene-environment and gene-gene interactions on CRC risk. The area under the receiver operating characteristic curve (AUC) of EF + SIG (deletion of CYLD and USP11, amplification of USP9X) model was significantly larger than any other models (AUC = 0.75, 95% CI: 0.74-0.77). We did not identify significant associations between CNVs of the three genes and CRC prognosis. CNVs of CYLD, USP9X, and USP11 are significantly associated with the risk of CRC. Gene-gene and gene-environment interactions might also play an important role in the development of CRC.
Collapse
Affiliation(s)
- Tian Tian
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Haoran Bi
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Yupeng Liu
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Guangxiao Li
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Yiwei Zhang
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Liming Cao
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Fulan Hu
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
30
|
Komatsu K, Nam DH, Lee JY, Yoneda G, Yan C, Li JD. Vinpocetine Suppresses Streptococcus pneumoniae-Induced Inflammation via Inhibition of ERK1 by CYLD. THE JOURNAL OF IMMUNOLOGY 2020; 204:933-942. [PMID: 31900337 DOI: 10.4049/jimmunol.1901299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022]
Abstract
Otitis media (OM) is the most common bacterial infection in children. It remains a major health problem and a substantial socioeconomic burden. Streptococcus pneumoniae (S. pneumoniae) is one of the most common bacterial pathogens causing OM. Innate inflammatory response plays a critical role in host defense against bacterial pathogens. However, if excessive, it has a detrimental impact on the middle ear, leading to middle ear inflammation, a hallmark of OM. Currently, there has been limited success in developing effective therapeutic agents to suppress inflammation without serious side effects. In this study, we show that vinpocetine, an antistroke drug, suppressed S. pneumoniae-induced inflammatory response in cultured middle ear epithelial cells as well as in the middle ear of mice. Interestingly, vinpocetine inhibited S. pneumoniae-induced inflammation via upregulating a key negative regulator cylindromatosis (CYLD). Moreover, CYLD suppressed S. pneumoniae-induced inflammation via inhibiting the activation of ERK. Importantly, the postinfection administration of vinpocetine markedly inhibited middle ear inflammation induced by S. pneumoniae in a well-established mouse OM model. These studies provide insights into the molecular mechanisms underlying the tight regulation of inflammation via inhibition of ERK by CYLD and identified vinpocetine as a potential therapeutic agent for suppressing the inflammatory response in the pathogenesis of OM via upregulating negative regulator CYLD expression.
Collapse
Affiliation(s)
- Kensei Komatsu
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Dae-Hwan Nam
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Ji-Yun Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303.,College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul 06974, South Korea; and
| | - Go Yoneda
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Chen Yan
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303;
| |
Collapse
|
31
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
32
|
Suenaga N, Kuramitsu M, Komure K, Kanemaru A, Takano K, Ozeki K, Nishimura Y, Yoshida R, Nakayama H, Shinriki S, Saito H, Jono H. Loss of Tumor Suppressor CYLD Expression Triggers Cisplatin Resistance in Oral Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20205194. [PMID: 31635163 PMCID: PMC6829433 DOI: 10.3390/ijms20205194] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is one of the most effective chemotherapeutic agents commonly used for several malignancies including oral squamous cell carcinoma (OSCC). Although cisplatin resistance is a major obstacle to effective treatment and is associated with poor prognosis of OSCC patients, the molecular mechanisms by which it develops are largely unknown. Cylindromatosis (CYLD), a deubiquitinating enzyme, acts as a tumor suppressor in several malignancies. Our previous studies have shown that loss of CYLD expression in OSCC tissues is significantly associated with poor prognosis of OSCC patients. Here, we focused on CYLD expression in OSCC cells and determined whether loss of CYLD expression is involved in cisplatin resistance in OSCC and elucidated its molecular mechanism. In this study, to assess the effect of CYLD down-regulation on cisplatin resistance in human OSCC cell lines (SAS), we knocked-down the CYLD expression by using CYLD-specific siRNA. In cisplatin treatment, cell survival rates in CYLD knockdown SAS cells were significantly increased, indicating that CYLD down-regulation caused cisplatin resistance to SAS cells. Our results suggested that cisplatin resistance caused by CYLD down-regulation was associated with the mechanism through which both the reduction of intracellular cisplatin accumulation and the suppression of cisplatin-induced apoptosis via the NF-κB hyperactivation. Moreover, the combination of cisplatin and bortezomib treatment exhibited significant anti-tumor effects on cisplatin resistance caused by CYLD down-regulation in SAS cells. These findings suggest the possibility that loss of CYLD expression may cause cisplatin resistance in OSCC patients through NF-κB hyperactivation and may be associated with poor prognosis in OSCC patients.
Collapse
Affiliation(s)
- Naoki Suenaga
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Mimi Kuramitsu
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Kanae Komure
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Ayumi Kanemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Kanako Takano
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Kazuya Ozeki
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Yuka Nishimura
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto 860-8556, Japan.
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto 860-8556, Japan.
| |
Collapse
|
33
|
Rodrigues-Ferreira S, Molina A, Nahmias C. Microtubule-associated tumor suppressors as prognostic biomarkers in breast cancer. Breast Cancer Res Treat 2019; 179:267-273. [PMID: 31606824 DOI: 10.1007/s10549-019-05463-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Breast cancer is the most common malignancy in women worldwide. Although important therapeutic progress was achieved over the past decade, this disease remains a public health problem. In light of precision medicine, the identification of new prognostic biomarkers in breast cancer is urgently needed to stratify populations of patients with poor clinical outcome who may benefit from new personalized therapies. The microtubule cytoskeleton plays a pivotal role in essential cellular functions and is an interesting target for cancer therapy. Microtubule assembly and dynamics are regulated by a wide range of microtubule-associated proteins (MAPs), some of which have oncogenic or tumor suppressor effects in breast cancer. RESULTS This review covers current knowledge on microtubule-associated tumor suppressors (MATS) in breast cancer and their potential value as prognostic biomarkers. We present recent studies showing that combinatorial expression of ATIP3 and EB1, two microtubule-associated biomarkers with tumor suppressor and oncogenic effects, respectively, improves breast cancer prognosis compared to each biomarker alone. CONCLUSIONS These findings are discussed regarding the increasing complexity of protein networks composed of MAPs that coordinate microtubule dynamics and functions. Further studies are warranted to evaluate the prognostic value of combined expression of different MATS and their interacting partners in breast cancer.
Collapse
Affiliation(s)
- Sylvie Rodrigues-Ferreira
- INSERM U981, LabEx LERMIT, Gustave Roussy Cancer Center, Department of Molecular Medicine, Université Paris Sud, 94800, Villejuif, France.,Inovarion, 75014, Paris, France
| | - Angie Molina
- INSERM U981, LabEx LERMIT, Gustave Roussy Cancer Center, Department of Molecular Medicine, Université Paris Sud, 94800, Villejuif, France.,Centre de Biologie du Développement, Centre de Biologie Intégrative, UMR 5547 CNRS/Université Paul Sabatier, 31400, Toulouse, France
| | - Clara Nahmias
- INSERM U981, LabEx LERMIT, Gustave Roussy Cancer Center, Department of Molecular Medicine, Université Paris Sud, 94800, Villejuif, France. .,Inserm U981, Gustave Roussy Cancer Center, 114 rue Edouard Vaillant, 94800, Villejuif, France.
| |
Collapse
|
34
|
Zhang J, Zhou Q, Wang H, Huang M, Shi J, Han F, Cai W, Li Y, He T, Hu D. MicroRNA-130a has pro-fibroproliferative potential in hypertrophic scar by targeting CYLD. Arch Biochem Biophys 2019; 671:152-161. [PMID: 31283910 DOI: 10.1016/j.abb.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
Hypertrophic scars are dermal fibrosis diseases that protrude from the surface of the skin and irregularly extend to the periphery, seriously affecting the appearance and limb function of the patient. In this study, we found that microRNA-130a (miR-130a) was increased in hypertrophic scar tissues and derived primary fibroblasts, accompanied by up-regulation of collagen1/3 and α-SMA. Inhibition of miR-130a in hypertrophic scars fibroblasts suppressed the expression of collagen1/3 and α-SMA as well as the cell proliferation. Bioinformatics analysis combined with luciferase reporter gene assay results indicated that CYLD was a target gene of miR-130a, and the miR-130a mimic could reduce the level of CYLD. In contrast to miR-130a, the expression of CYLD was downregulated in hypertrophic scars and their derived fibroblasts. Overexpressing CYLD inhibited the expression of collagen 1/3 and α-SMA, slowed cell proliferation, and inhibited Akt activity. As expected, further study showed that the overexpression of CYLD could prevent the pro-fibroproliferative effects of miR-130a. Consistent with the in vitro results, the inhibitor of miR-130a effectively ameliorated excessive collagen deposition in bleomycin-induced skin fibrosis mouse model. Taken together, our results indicate that miR-130a promotes collagen secretion, myofibroblast transformation and cell proliferation by targeting CYLD and enhancing Akt activity. Therefore, the miR-130a/CYLD/Akt pathway may serve as a novel entry point for future skin fibrosis research.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Meiling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
35
|
Gyurján I, Rosskopf S, Coronell JAL, Muhr D, Singer C, Weinhäusel A. IgG based immunome analyses of breast cancer patients reveal underlying signaling pathways. Oncotarget 2019; 10:3491-3505. [PMID: 31191821 PMCID: PMC6544406 DOI: 10.18632/oncotarget.26834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/23/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Breast cancer is the most frequent and one of the most fatal malignancies among women. Within the concept of personalized medicine, molecular characterization of tumors is usually performed by analyzing somatic mutations, RNA gene expression signatures or the proteome by mass-spectrometry. Alternatively, the immunological fingerprint of the patients can be analyzed by protein microarrays, which is able to provide another layer of molecular pathological information without invasive intervention. Results: We have investigated the immune signature of breast cancer patients and compared them with healthy controls, using protein microarray-based IgG profiling. The identified differentially reactive antigens (n=517) were further evaluated by means of various pathway analysis tools. Our results indicate that the immune signature of breast cancer patients shows a clear distinction from healthy individuals characterized by differentially reactive antigens involved in known disease relevant signaling pathways, such as VEGF, AKT/PI3K/mTOR or c-KIT, which is in close agreement with the findings from RNA-based expression profiles. Conclusion: Differential antigenic properties between breast cancer patients and healthy individual classes can be defined by serum-IgG profiling on protein microarrays. These immunome profiles provide an additional layer of molecular pathological information, which has the potential to refine and complete the systems biological map of neoplastic disease.
Collapse
Affiliation(s)
- István Gyurján
- Austrian Institute of Technology AIT, Center for Health & Environment, Molecular Diagnostics Unit, Vienna, Austria
| | - Sandra Rosskopf
- Austrian Institute of Technology AIT, Center for Health & Environment, Molecular Diagnostics Unit, Vienna, Austria
| | - Johana A Luna Coronell
- Austrian Institute of Technology AIT, Center for Health & Environment, Molecular Diagnostics Unit, Vienna, Austria
| | - Daniela Muhr
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Christian Singer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Andreas Weinhäusel
- Austrian Institute of Technology AIT, Center for Health & Environment, Molecular Diagnostics Unit, Vienna, Austria
| |
Collapse
|
36
|
Maternal folic acid depletion during early pregnancy increases sensitivity to squamous tumor formation in the offspring in mice. J Dev Orig Health Dis 2019; 10:683-691. [PMID: 31131784 DOI: 10.1017/s2040174419000217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gestational nutrition is widely recognized to affect an offspring's future risk of lifestyle-related diseases, suggesting the involvement of epigenetic mechanisms. As folic acid (FA) is a nutrient essential for modulating DNA methylation, we sought to determine how maternal FA intake during early pregnancy might influence tumor sensitivity in an offspring. Dams were maintained on a FA-depleted (FA(-)) or normal (2 mg FA/kg; FA(+)) diet from 2 to 3 days before mating to 7 days post-conception, and their offspring were challenged with chemical tumorigenesis using 7,12-dimethylbenz[a)anthracene and phorbol 12-myristate 13-acetate for skin and 4-nitroquinoline N-oxide for tongue. In both squamous tissues, tumorigenesis was more progressive in the offspring from FA(-) than FA(+) dams. Notably, in the skin of FA(-) offspring, the expression and activity of cylindromatosis (Cyld) were decreased due to the altered DNA methylation status in its promoter region, which contributed to increased tumorigenesis coupled with inflammation in the FA(-) offspring. Thus, we conclude that maternal FA insufficiency during early pregnancy is able to promote neoplasm progression in the offspring through modulating DNA methylation, such as Cyld. Moreover, we propose, for the first time, "innate" utero nutrition as the third cause of tumorigenesis besides the known causes-hereditary predisposition and acquired environmental factors.
Collapse
|
37
|
Ghadami E, Nikbakhsh N, Fattahi S, Kosari‐Monfared M, Ranaee M, Taheri H, Amjadi‐Moheb F, Godazandeh G, Shafaei S, Nosrati A, Pilehchian Langroudi M, Samadani AA, Amirbozorgi G, Mirnia V, Akhavan‐Niaki H. Epigenetic alterations of CYLD promoter modulate its expression in gastric adenocarcinoma: A footprint of infections. J Cell Physiol 2019; 234:4115-4124. [DOI: 10.1002/jcp.27220] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
AbstractGastric cancer (GC) is one of the most common causes of cancer‐related death in the world, with multiple genetic and epigenetic alterations involved in disease development. CYLD tumor suppressor gene encodes a multifunctional deubiquitinase which negatively regulates various signaling pathways. Deregulation of this gene has been found in different types of cancer. This study aimed to evaluate for the first time the CpG island methylation pattern of CYLD gene promoter, and its expression level in gastric adenocarcinoma. CYLD messenger RNA expression and promoter methylation in 53 tumoral and their non‐neoplastic counterpart tissues were assessed using quantitative polymerase chain reaction and bisulfite sequencing. Also, we investigated the impacts of the infectious agents including Helicobacter pylori (H. pylori), EBV, and CMV on CYLD expression and promoter methylation in GC. Results showed that the expression level of CYLD was downregulated in GC, and was significantly associated with gender (female), patient’s age (<60), high grade, and no lymph‐node metastasis (p = 0.001, 0.002, 0.03, and 0.003, respectively). Among the 31 analyzed CpG sites located in about 600 bp region within the promoter, two CpG sites were hypermethylated in GC tissues. We also found a significant inverse association between DNA promoter methylation and CYLD expression (p = 0.02). Furthermore, a direct association between H. pylori, EBV, and CMV infections with hypermethylation and reduced CYLD expression was observed (p = 0.04, 0.03, and 0.03, respectively). Our findings indicate that CYLD is downregulated in GC. Infectious agents may influence CYLD expression.
Collapse
Affiliation(s)
- Elham Ghadami
- Department of Genetics, Faculty of Medicine Babol University of Medical Sciences Babol Iran
- Department of Genetics Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Novin Nikbakhsh
- Department of Surgery Rouhani Hospital, Babol University of Medical Sciences Babol Iran
| | - Sadegh Fattahi
- Department of Genetics Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
- Department of Molecular Biology North Research Center of Pasteur Institute Amol Iran
| | | | - Mohammad Ranaee
- Department of Pathology Rouhani Hospital, Babol University of Medical Sciences Babol Iran
| | - Hassan Taheri
- Department of Internal Medicine Rouhani Hospital, Babol University of Medical Sciences Babol Iran
| | - Fatemeh Amjadi‐Moheb
- Department of Genetics, Faculty of Medicine Babol University of Medical Sciences Babol Iran
| | - Gholamali Godazandeh
- Department of Thoracic Surgery Imam Khomeini Hospital, Mazandaran University of Medical Sciences Sari Iran
| | - Shahryar Shafaei
- Department of Pathology Rouhani Hospital, Babol University of Medical Sciences Babol Iran
| | - Anahita Nosrati
- Department of Pathology Imam Khomeini Hospital, Mazandaran University of Medical Sciences Sari Iran
| | | | - Ali Akbar Samadani
- Department of Genetics Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
- Department of Genetics Gastrointestinal and Liver Diseases Research Center (GLDRC), Guilan University of Medical Sciences Rasht Iran
| | - Galia Amirbozorgi
- Department of Molecular Biology North Research Center of Pasteur Institute Amol Iran
| | - Vahideh Mirnia
- Faculty of Paramedicine Babol University of Medical Sciences Babol Iran
| | - Haleh Akhavan‐Niaki
- Department of Genetics, Faculty of Medicine Babol University of Medical Sciences Babol Iran
- Department of Genetics Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
| |
Collapse
|
38
|
Song H, Li D, Wu T, Xie D, Hua K, Hu J, Deng X, Ji C, Deng Y, Fang L. MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD. BMB Rep 2019. [PMID: 30269739 PMCID: PMC6283026 DOI: 10.5483/bmbrep.2018.51.11.168] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs) plays important roles in carcinogenesis and tumor progression. However, the expression and biological role of miR-301b in triple-negative breast cancer (TNBC) remains unclear. Here we aimed to evaluate the roles and mechanisms of miR-301b in TNBC cells. miR-301b expression was assessed in TNBC specimens and cell lines by quantitative Real-Time PCR (qRT-PCR). TNBC cells were transfected with miR-301b mimics, inhibitors or Cylindromatosis (CYLD) small interfering RNA (siRNA) using Lipofectamine 2000. The functional roles of miR-301b were determined by cell proliferation, colony formation, and apoptosis assays. Western blots and qRT-PCR were used to measure the expression of mRNAs and proteins in the cells. We found that miR-301b was upregulated in TNBC specimens and cell lines. Overexpression of miR-301b promoted cell proliferation in TNBC cells, while inhibited the apoptosis induced by 5-FU. CYLD was downregulated by miR-301b at both mRNA and protein levels in TNBC cells. Dual-luciferase report assay confirmed that miR-301b downregulated CYLD by direct interaction with the 3′-untranslated region(3′-UTR) of CYLD mRNA. NF-κB activation was mechanistically associated with miR-301b-mediated downregulation of CYLD. However, inhibition of miR-301b reversed all the effects of miR-301b. In conclusion, miR-301b plays an oncogenic role in TNBC possibly by downregulating CYLD and subsequently activating NF-κB p65, and this may provide a novel therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Hongming Song
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Dengfeng Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Tianqi Wu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Dan Xie
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Kaiyao Hua
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiashu Hu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xiaochong Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Changle Ji
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yijun Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
39
|
Wieser V, Tsibulak I, Degasper C, Welponer H, Leitner K, Parson W, Zeimet AG, Marth C, Fiegl H. Tumor necrosis factor receptor modulator spermatogenesis-associated protein 2 is a novel predictor of outcome in ovarian cancer. Cancer Sci 2019; 110:1117-1126. [PMID: 30697874 PMCID: PMC6398874 DOI: 10.1111/cas.13955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammation plays a crucial role in the pathogenesis of cancer with tumor necrosis factor-α (TNF-α) as a key mediator. Recently, spermatogenesis-associated protein 2 (SPATA2) was identified as a TNF receptor modulator which is required for TNF-induced inflammation and apoptosis. The available data on TNF-α in ovarian cancer (OC) are inconsistent, and SPATA2 is completely uncharacterized in tumorigenesis. We analyzed expression of SPATA2 and TNFA by quantitative real-time polymerase chain reaction in tissues of 171 patients with low-grade serous (LGSOC), high-grade serous (HGSOC), endometrioid and clear cell OC compared with 28 non-malignant control tissues. We stimulated OC cells (OVCAR3) with pro-inflammatory (TNF-α, interleukin [IL]-1β) and mitogenic stimuli (IL-6, lysophosphatidic acid) to establish a direct effect between inflammatory signaling and SPATA2. Pro-inflammatory, but not mitogenic stimuli, potently induced SPATA2 expression in OC cells. Expression of TNFA and SPATA2 was higher in OC compared with control tissues (P = 0.010 and P = 0.001, respectively) and correlated with each other (P = 0.034, rs = 0.198). When compared with grade 1 cancers, SPATA2 was expressed higher in grade 2 and 3 tumors (P = 0.011) as well as in HGSOC compared with LGSOC (P = 0.024). Multivariate survival analyses revealed that OC with high SPATA2 expression were associated with reduced progression-free survival (P = 0.048) and overall survival (P < 0.001). In conclusion, SPATA2 expression is regulated by TNF-α and IL-1β and is found to independently affect clinical outcome in OC patients. These data implicate a role of SPATA2 in tumorigenesis which warrants further investigation in gynecological malignancies.
Collapse
Affiliation(s)
- Verena Wieser
- Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irina Tsibulak
- Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christine Degasper
- Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannah Welponer
- Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Leitner
- Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Alain G Zeimet
- Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heidelinde Fiegl
- Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
40
|
Alameda JP, Ramírez Á, García-Fernández RA, Navarro M, Page A, Segovia JC, Sanchez R, Suárez-Cabrera C, Paramio JM, Bravo A, Fernández-Aceñero MJ, Casanova ML. Premature aging and cancer development in transgenic mice lacking functional CYLD. Aging (Albany NY) 2019; 11:127-159. [PMID: 30631004 PMCID: PMC6339805 DOI: 10.18632/aging.101732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Abstract
CYLD is a deubiquitinating enzyme known for its role as a tumor suppressor whose mutation leads to skin appendages tumors and other cancers. In this manuscript we report that the tumor suppressor CYLD, similarly to other renowned tumor suppressor genes, protects from premature aging and cancer. We have generated transgenic mice expressing the mutant CYLDC/S protein, lacking its deubiquitinase function, under the control of the keratin 5 promoter, the K5-CYLDC/S mice. These mice express the transgene in different organs, including those considered to be more susceptible to aging, such as skin and thymus. Our results show that K5-CYLDC/S mice exhibit epidermal, hair follicle, and sebaceous gland alterations; and, importantly, they show signs of premature aging from an early age. Typically, 3-month-old K5-CYLDC/S mice exhibit a phenotype characterized by alopecia and kyphosis, and, the histological examination reveals that transgenic mice show signs of accelerated aging in numerous organs such as skin, thymus, pancreas, liver and lung. Additionally, they spontaneously develop tumors of diverse origin. Over-activation of the NF-κB pathway, along with hyperactivation of Akt, JNK and c-Myc, and chronic inflammation, appear as the mechanisms responsible for the premature aging of the K5-CYLDC/S mice.
Collapse
Affiliation(s)
- Josefa P. Alameda
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | - Ángel Ramírez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | | | - Manuel Navarro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | - Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | - José C. Segovia
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER/II-FJD, 28040 Madrid, Spain
| | - Rebeca Sanchez
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER/II-FJD, 28040 Madrid, Spain
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | - Jesús M. Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | - Ana Bravo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - M. Jesús Fernández-Aceñero
- Servicio de Anatomía Patológica Hospital Clínico San Carlos, Departamento de Anatomía Patológica, Facultad de Medicina, UCM, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC),
28040 Madrid, España
| | - M. Llanos Casanova
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| |
Collapse
|
41
|
Song H, Li D, Wu T, Xie D, Hua K, Hu J, Deng X, Ji C, Deng Y, Fang L. MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD. BMB Rep 2018; 51:602-607. [PMID: 30269739 PMCID: PMC6283026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/28/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2023] Open
Abstract
Aberrant expression of microRNAs (miRNAs) plays important roles in carcinogenesis and tumor progression. However, the expression and biological role of miR-301b in triple-negative breast cancer (TNBC) remains unclear. Here we aimed to evaluate the roles and mechanisms of miR-301b in TNBC cells. miR-301b expression was assessed in TNBC specimens and cell lines by quantitative Real-Time PCR (qRT-PCR). TNBC cells were transfected with miR-301b mimics, inhibitors or Cylindromatosis (CYLD) small interfering RNA (siRNA) using Lipofectamine 2000. The functional roles of miR-301b were determined by cell proliferation, colony formation, and apoptosis assays. Western blots and qRT-PCR were used to measure the expression of mRNAs and proteins in the cells. We found that miR-301b was upregulated in TNBC specimens and cell lines. Overexpression of miR-301b promoted cell proliferation in TNBC cells, while inhibited the apoptosis induced by 5-FU. CYLD was downregulated by miR-301b at both mRNA and protein levels in TNBC cells. Dual-luciferase report assay confirmed that miR-301b downregulated CYLD by direct interaction with the 3'-untranslated region(3'-UTR) of CYLD mRNA. NF-κB activation was mechanistically associated with miR-301b-mediated downregulation of CYLD. However, inhibition of miR-301b reversed all the effects of miR-301b. In conclusion, miR-301b plays an oncogenic role in TNBC possibly by downregulating CYLD and subsequently activating NF-κB p65, and this may provide a novel therapeutic approach for TNBC. [BMB Reports 2018; 51(11): 602-607].
Collapse
Affiliation(s)
- Hongming Song
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Dengfeng Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Tianqi Wu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Dan Xie
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Kaiyao Hua
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Jiashu Hu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Xiaochong Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Changle Ji
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Yijun Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072,
China
| |
Collapse
|
42
|
Frequent and differential mutations of the CYLD gene in basal cell salivary neoplasms: linkage to tumor development and progression. Mod Pathol 2018; 31:1064-1072. [PMID: 29463883 DOI: 10.1038/s41379-018-0018-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 12/28/2022]
Abstract
Basal cell salivary neoplasms display similar cyto-morphologic features and are classified into adenoma and adenocarcinoma based on the presence or absence of tumor invasion at diagnosis. These neoplasms also share considerable phenotypic resemblance and co-exist with certain dermal adnexal tumors harboring the CYLD gene mutations inferring common genetic association. We sequenced the CYLD gene in both basal cell adenomas and adenocarcinomas and correlated the findings with CYLD, NF-κB, and β-catenin expression levels and clinicopathologic factors. Twenty mutations were identified and comprised of 3 synonymous and 17 non-synonymous (missense) types involving the coding exons of the CYLD gene. Mutations in exons 9-11 were identified in both adenomas and adenocarcinomas, while mutations in exons 12-20, encoding the USP domain, were exclusively found in carcinomas. Although no significant correlation between CYLD mutations and expression levels of CYLD, NF-κB, and β-catenin or clinicopathologic parameters was found, basal cell adenocarcinomas with multiple mutations showed reduction in CYLD protein expression and pursued aggressive clinical behavior. Our study revealed high incidence and sequential CYLD mutations in both basal cell adenoma and adenocarcinoma supporting a single neoplastic continuum for their evolution and provides evidence for potential diagnostic and therapeutic utility.
Collapse
|
43
|
Zhang H, Zhong K, Lu M, Mei Y, Tan E, Sun X, Tan W. Neuroprotective effects of isosteviol sodium through increasing CYLD by the downregulation of miRNA-181b. Brain Res Bull 2018; 140:392-401. [DOI: 10.1016/j.brainresbull.2018.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/29/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
|
44
|
Lu Y, Zhou Q, Han Q, Wu P, Zhang L, Zhu L, Weaver DT, Xu C, Zhang B. Inactivation of deubiquitinase CYLD enhances therapeutic antibody production in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2018; 102:6081-6093. [DOI: 10.1007/s00253-018-9070-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
|
45
|
miR-501 is upregulated in cervical cancer and promotes cell proliferation, migration and invasion by targeting CYLD. Chem Biol Interact 2018; 285:85-95. [DOI: 10.1016/j.cbi.2018.02.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 12/29/2022]
|
46
|
Hadweh P, Chaitoglou I, Gravato-Nobre MJ, Ligoxygakis P, Mosialos G, Hatzivassiliou E. Functional analysis of the C. elegans cyld-1 gene reveals extensive similarity with its human homolog. PLoS One 2018; 13:e0191864. [PMID: 29394249 PMCID: PMC5796713 DOI: 10.1371/journal.pone.0191864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/13/2018] [Indexed: 12/16/2022] Open
Abstract
The human cylindromatosis tumor suppressor (HsCyld) has attracted extensive attention due to its association with the development of multiple types of cancer. HsCyld encodes a deubiquitinating enzyme (HsCYLD) with a broad range of functions that include the regulation of several cell growth, differentiation and death pathways. HsCyld is an evolutionarily conserved gene. Homologs of HsCyld have been identified in simple model organisms such as Drosophila melanogaster and Caenorhabditis elegans (C. elegans) which offer extensive possibilities for functional analyses. In the present report we have investigated and compared the functional properties of HsCYLD and its C. elegans homolog (CeCYLD). As expected from the mammalian CYLD expression pattern, the CeCyld promoter is active in multiple tissues with certain gastrointestinal epithelia and neuronal cells showing the most prominent activity. CeCYLD is a functional deubiquitinating enzyme with similar specificity to HsCYLD towards K63- and M1-linked polyubiquiting chains. CeCYLD was capable of suppressing the TRAF2-mediated activation of NF-kappaB and AP1 similarly to HsCYLD. Finally, CeCYLD could suppress the induction of TNF-dependent gene expression in mammalian cells similarly to HsCYLD. Our results demonstrate extensively overlapping functions between the HsCYLD and CeCYLD, which establish the C. elegans protein as a valuable model for the elucidation of the complex activity of the human tumor suppressor protein.
Collapse
Affiliation(s)
- Paul Hadweh
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Iro Chaitoglou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | | | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford,South Parks Road, Oxford, United Kingdom
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eudoxia Hatzivassiliou
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| |
Collapse
|
47
|
Chen Y, Yang C. miR‑197‑3p‑induced downregulation of lysine 63 deubiquitinase promotes cell proliferation and inhibits cell apoptosis in lung adenocarcinoma cell lines. Mol Med Rep 2017; 17:3921-3927. [PMID: 29286108 PMCID: PMC5802183 DOI: 10.3892/mmr.2017.8333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a common cause of cancer-associated mortality. The dysregulation of microRNA (miR) expression has been reported to induce lung carcinogenesis. In the present study, miR-197-3p upregulation was detected within LUAD tissues compared with in adjacent noncancerous tissues. The suppression of miR-197-3p expression was confirmed to inhibit proliferative ability and induce apoptosis of LUAD cell lines; miR-197-3p overexpression within the HBE cell line exhibited opposing effects. Via in silico modeling, western blot analyses and dual-luciferase assays, it was confirmed that miR-197-3p directly targets the lysine 63 deubiquitinase (CYLD) gene. In the present study, the expression of miR-197-3p was negatively associated with CYLD mRNA expression within LUAD cell lines. In conclusion, the findings of the present study have provided novel insight into the association of miR-197-3p with LUAD proliferation and apoptotic regulation; the miR-197-3p/CYLD axis may serve as a novel potential therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Yang Chen
- Department of Thoracic Surgery, Chest Hospital of Shenyang, Shenyang, Liaoning 110044, P.R. China
| | - Chunlu Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
48
|
Ulcerating Tumor of the Scalp: Answer. Am J Dermatopathol 2017; 39:943-944. [PMID: 29189319 DOI: 10.1097/dad.0000000000000626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Abstract
Although growing numbers of oncoproteins and pro-metastatic proteins have been extensively characterized, many of these tumor-promoting proteins are not good drug targets, which represent a major barrier to curing breast cancer and other cancers. There is a need, therefore, for alternative therapeutic approaches to destroying cancer-promoting proteins. The human genome encodes approximately 100 deubiquitinating enzymes (DUBs, also called deubiquitinases), which are amenable to pharmacologic inhibition by small molecules. By removing monoubiquitin or polyubiquitin chains from the target protein, DUBs can modulate the degradation, localization, activity, trafficking, and recycling of the substrate, thereby contributing substantially to the regulation of cancer proteins and pathways. Targeting certain DUBs may lead to destabilization or functional inactivation of some key oncoproteins or pro-metastatic proteins, including non-druggable ones, which will provide therapeutic benefits to cancer patients. In breast cancer, growing numbers of DUBs are found to be aberrantly expressed. Depending on their substrates, specific DUBs can either promote or suppress mammary tumors. In this article, we review the role and mechanisms of action of DUBs in breast cancer and discuss the potential of targeting DUBs for cancer treatment.
Collapse
|
50
|
Yin J, Weng C, Ma J, Chen F, Huang Y, Feng M. MicroRNA‑1288 promotes cell proliferation of human glioblastoma cells by repressing ubiquitin carboxyl‑terminal hydrolase CYLD expression. Mol Med Rep 2017; 16:6764-6770. [PMID: 28901464 PMCID: PMC5865833 DOI: 10.3892/mmr.2017.7481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 06/21/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that microRNAs (miRs) are important regulators involved in various cancers, including human glioblastoma (GBM). However, the underlying mechanism of miR-1288 remains poorly understood, and its role in GBM has not been reported. The present study confirmed that miR-1288 expression was markedly upregulated in GBM. Ectopic expression of miR-1288 promoted the proliferation, colony formation and anchorage-independent growth of GBM cells. Bioinformatics analysis coupled with western blotting and luciferase report assays also indicated that miR-1288 promoted cell proliferation of GBM by targeting ubiquitin carboxyl-terminal hydrolase (CYLD). Knockdown of CYLD expression reversed the cell proliferation promotion by miR-1288-in in GBM. These results suggest that the miR-1288/CYLD axis may represent a potential therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
- Jun Yin
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Chengyin Weng
- Department of Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jieke Ma
- Department of Craniofacial and Neurosurgery, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Fanfan Chen
- Department of Neurosurgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yecai Huang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Mei Feng
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|