1
|
Garg S, Rai G, Singh S, Gauba P, Ali J, Dang S. An insight into the role of innate immune cells in breast tumor microenvironment. Breast Cancer 2025; 32:79-100. [PMID: 39460874 DOI: 10.1007/s12282-024-01645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The immune background of breast cancer is highly heterogeneous and the immune system of the human body plays a dual role by both promoting and suppressing its progression. Innate immune cells are the first line of defense in the immune system and impart protection by identifying and interacting with foreign pathogens and cancer cells. Different innate immune cells like natural killer cells, macrophages, dendritic cells, and myeloid suppressor cells take part in hosting the cancer cells. Autophagy is another key component inside the tumor microenvironment and is linked to the disintegration and recycling of cellular components. Within the tumor microenvironment autophagy is involved with Pattern Recognition Receptors and inflammation. Various clinical studies have shown prominent results where innate immune cells and autophagy in combination are used for pathogen as well as cancer cell clearance. However, it is necessary to comprehend the complex tumor microenvironment so that different therapeutic approaches can be developed to enhance the suppressive actions of the cells toward breast cancer cells. In this review article, the complex interaction between immune cells and breast cancer cells and their role in developing effective immunotherapies to improve patient outcomes are discussed in detail.
Collapse
Affiliation(s)
- Sandini Garg
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Garima Rai
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Sakshi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
2
|
Use of Nonsteroidal Anti-Inflammatory Drugs and Risk of Breast Cancer: Evidence from a General Female Population and a Mammographic Screening Cohort in Sweden. Cancers (Basel) 2023; 15:cancers15030692. [PMID: 36765650 PMCID: PMC9913077 DOI: 10.3390/cancers15030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
A link has been proposed between the use of nonsteroidal anti-inflammatory drugs (NSAIDs) and the risk of breast cancer. There is, however, insufficient data regarding the subtype and stage of breast cancer, and few studies have assessed the interaction between the use of NSAIDs and breast density or previous breast disorders. There is also a lack of data from population-based studies. We first conducted a nested case-control study within the general female population of Sweden, including 56,480 women with newly diagnosed breast cancer during 2006-2015 and five breast cancer-free women per case as controls, to assess the association of NSAID use with the risk of incident breast cancer, focusing on subtype and stage of breast cancer as well as the interaction between NSAID use and previous breast disorders. We then used the Karolinska Mammography Project for Risk Prediction of Breast Cancer (Karma) cohort to assess the interaction between NSAID use and breast density in relation to the risk of breast cancer. Conditional logistic regression was used to estimate the hazard ratio (HR) and a 95% confidence interval (CI) was used for breast cancer in relation to the use of aspirin and non-aspirin NSAIDs. In the nested case-control study of the general population, exclusive use of aspirin was not associated with the risk of breast cancer, whereas exclusive use of non-aspirin NSAIDs was associated with a modestly higher risk of stage 0-2 breast cancer (HR: 1.05; 95% CI: 1.02-1.08) but a lower risk of stage 3-4 breast cancer (HR 0.80; 95% CI: 0.73-0.88). There was also a statistically significant interaction between the exclusive use of NSAIDs and previous breast disorders (p for interaction: <0.001). In the analysis of Karma participants, the exclusive use of non-aspirin NSAIDs was associated with a lower risk of breast cancer among women with a breast dense area of >40 cm2 (HR: 0.72; 95% CI: 0.59-0.89). However, the possibility of finding this by chance cannot be ruled out. Overall, we did not find strong evidence to support an association between the use of NSAIDs and the risk of breast cancer.
Collapse
|
3
|
Archer M, Dasari P, Walsh D, Britt KL, Evdokiou A, Ingman WV. Immune Regulation of Mammary Fibroblasts and the Impact of Mammographic Density. J Clin Med 2022; 11:jcm11030799. [PMID: 35160252 PMCID: PMC8837019 DOI: 10.3390/jcm11030799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Mammographic density is associated with a 4–6-fold increase in breast cancer risk independent of age and BMI. High mammographic density is characterized by breast tissue with high proportions of stroma comprised of fibroblasts, collagen, and immune cells. This study sought to investigate whether stromal fibroblasts from high mammographic density breast tissue contributes to increased extracellular matrix deposition and pro-tumorigenic signaling. Mammary fibroblasts were isolated from women with high and low mammographic density and exposed to immune factors myeloperoxidase (MPO), eosinophil peroxidase (EPO), transforming growth factor beta 1 (TGFB1) and tumour necrosis factor alpha (TNFA) for 72 h and profiled for expression of cancer-associated fibroblast and extracellular matrix regulation markers. No differences in gene expression profiles or collagen production were observed between fibroblasts with high or low mammographic density, and they did not have a differential response to immune mediators. MPO and EPO significantly increased the production of collagen 1. TGFB and TNFA induced variable changes in gene expression. Fibroblasts cultured in vitro from women with high mammographic density do not appear to be inherently different to those from women with low mammographic density. The function of fibroblasts in mammographic density-associated breast cancer risk is likely to be regulated by immune signals from surrounding cells in the microenvironment.
Collapse
Affiliation(s)
- Maddison Archer
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia; (M.A.); (P.D.); (D.W.); (A.E.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
| | - Pallave Dasari
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia; (M.A.); (P.D.); (D.W.); (A.E.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
| | - David Walsh
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia; (M.A.); (P.D.); (D.W.); (A.E.)
| | - Kara L. Britt
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
| | - Andreas Evdokiou
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia; (M.A.); (P.D.); (D.W.); (A.E.)
| | - Wendy V. Ingman
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia; (M.A.); (P.D.); (D.W.); (A.E.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
- Correspondence: ; Tel.: +61-882-226-141
| |
Collapse
|
4
|
Danforth DN. The Role of Chronic Inflammation in the Development of Breast Cancer. Cancers (Basel) 2021; 13:3918. [PMID: 34359821 PMCID: PMC8345713 DOI: 10.3390/cancers13153918] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation contributes to the malignant transformation of several malignancies and is an important component of breast cancer. The role of chronic inflammation in the initiation and development of breast cancer from normal breast tissue, however, is unclear and needs to be clarified. A review of the literature was conducted to define the chronic inflammatory processes in normal breast tissue at risk for breast cancer and in breast cancer, including the role of lymphocyte and macrophage infiltrates, chronic active adipocytes and fibroblasts, and processes that may promote chronic inflammation including the microbiome and factors related to genomic abnormalities and cellular injury. The findings indicate that in healthy normal breast tissue there is systemic evidence to suggest inflammatory changes are present and associated with breast cancer risk, and adipocytes and crown-like structures in normal breast tissue may be associated with chronic inflammatory changes. The microbiome, genomic abnormalities, and cellular changes are present in healthy normal breast tissue, with the potential to elicit inflammatory changes, while infiltrating lymphocytes are uncommon in these tissues. Chronic inflammatory changes occur prominently in breast cancer tissues, with important contributions from tumor-infiltrating lymphocytes and tumor-associated macrophages, cancer-associated adipocytes and crown-like structures, and cancer-associated fibroblasts, while the microbiome and DNA damage may serve to promote inflammatory events. Together, these findings suggest that chronic inflammation may play a role in influencing the initiation, development and conduct of breast cancer, although several chronic inflammatory processes in breast tissue may occur later in breast carcinogenesis.
Collapse
Affiliation(s)
- David N Danforth
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Pubertal mammary gland development is a key determinant of adult mammographic density. Semin Cell Dev Biol 2020; 114:143-158. [PMID: 33309487 DOI: 10.1016/j.semcdb.2020.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Mammographic density refers to the radiological appearance of fibroglandular and adipose tissue on a mammogram of the breast. Women with relatively high mammographic density for their age and body mass index are at significantly higher risk for breast cancer. The association between mammographic density and breast cancer risk is well-established, however the molecular and cellular events that lead to the development of high mammographic density are yet to be elucidated. Puberty is a critical time for breast development, where endocrine and paracrine signalling drive development of the mammary gland epithelium, stroma, and adipose tissue. As the relative abundance of these cell types determines the radiological appearance of the adult breast, puberty should be considered as a key developmental stage in the establishment of mammographic density. Epidemiological studies have pointed to the significance of pubertal adipose tissue deposition, as well as timing of menarche and thelarche, on adult mammographic density and breast cancer risk. Activation of hypothalamic-pituitary axes during puberty combined with genetic and epigenetic molecular determinants, together with stromal fibroblasts, extracellular matrix, and immune signalling factors in the mammary gland, act in concert to drive breast development and the relative abundance of different cell types in the adult breast. Here, we discuss the key cellular and molecular mechanisms through which pubertal mammary gland development may affect adult mammographic density and cancer risk.
Collapse
|
6
|
Eriksson L, He W, Eriksson M, Humphreys K, Bergh J, Hall P, Czene K. Adjuvant Therapy and Mammographic Density Changes in Women With Breast Cancer. JNCI Cancer Spectr 2019; 2:pky071. [PMID: 31360886 PMCID: PMC6649795 DOI: 10.1093/jncics/pky071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/23/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
Background Tamoxifen decreases mammographic density. Whether compliance affects this relationship is unclear as is the relationship between other types of adjuvant treatment and changes in mammographic density. Methods This prospective cohort study included 2490 women diagnosed with breast cancer during 2001-2015 in Sweden. Mammographic density was assessed within 3 months of diagnosis and 6-36 months post diagnosis. Logistic regression was performed to study the association between each respective adjuvant treatment and mammographic density reduction (annual dense area decrease >15%). Results Intention-to-treat analyses using treatment information from the regional cancer registries showed that tamoxifen-treated patients more frequently experienced mammographic density reductions compared with nontreated patients (odds ratio [OR] = 1.58, 95% confidence interval [CI] = 1.25 to 1.99), as did chemotherapy-treated patients (OR = 1.28, 95% CI = 1.06 to 1.54). For chemotherapy, the association was mainly seen in premenopausal women. Neither aromatase inhibitors nor radiotherapy was associated with density change. Tamoxifen use based on prescription and dispensation data from the Swedish Prescribed Drug Register showed that users were more likely to have density reductions compared with nonusers (adjusted OR = 2.24, 95% CI = 1.40 to 3.59). Moreover, among tamoxifen users, tamoxifen continuers were more likely than discontinuers to experience density reductions (adjusted OR = 1.50, 95% CI = 1.04 to 2.17). Conclusions Our results indicate that adherence influences the association between tamoxifen and mammographic density reduction. We further found that chemotherapy was associated with density reductions and propose that this is largely secondary to chemotherapy-induced ovarian failure.
Collapse
Affiliation(s)
| | - Wei He
- Correspondence to: Wei He, PhD, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12 A, Stockholm 171 77, Sweden (e-mail: )
| | | | | | | | | | | |
Collapse
|
7
|
Thompson PA, Preece C, Stopeck AT. Breast Cancer Prevention. FUNDAMENTALS OF CANCER PREVENTION 2019:543-606. [DOI: 10.1007/978-3-030-15935-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Maskarinec G, Ju D, Fong J, Horio D, Chan O, Loo LWM, Hernandez BY. Mammographic density and breast tissue expression of inflammatory markers, growth factors, and vimentin. BMC Cancer 2018; 18:1191. [PMID: 30497427 PMCID: PMC6267911 DOI: 10.1186/s12885-018-5088-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mammographic density is a known risk factor for breast cancer, but the underlying pathologic characteristics are not well understood. The current analysis investigated the expression of several markers of interest, e.g., inflammation and growth, with mammographic density (MD) in normal and malignant breast tissue specimens from 279 women of the Multiethnic Cohort (MEC). Methods Breast cancer cases, recruited from a nested case-control study within the MEC, provided mammograms for density evaluation. Protein expression (COX-2, TNF-α, TGF-β, IGF-1R, IGFBP-2, and vimentin) was assessed by immunohistochemical detection. Linear regression was applied to evaluate the relation between marker expression and percent density and to compute adjusted means with 95% confidence intervals (CI) by marker status while adjusting for confounders. Results Due to missing cores and tissue, normal tissue could only be evaluated for COX-2 and vimentin. No significant associations with mammographic density were detected for all markers analyzed. For inflammatory markers (TNF-α, COX-2, and TGF-β) in tumor tissue, MD were non-significantly higher with stronger expression but the differences were very small. For example, the mean MD values for no, weak, and strong TNF-α expression were 35% (95% CI 24–47%), 39% (95% CI 29–48%), and 38% (95% CI 27–50%). In a posthoc analysis among postmenopausal women only, the difference across categories of TNF-α expression increased to 25% (95% CI 12–39%), 35% (95% CI 23–48%), and 35% (95% CI 20–49%). Conclusions The current analysis offers little support for an involvement of immunohistochemical markers representing inflammatory and growth factor pathways as predictors of breast density. Electronic supplementary material The online version of this article (10.1186/s12885-018-5088-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gertraud Maskarinec
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Dan Ju
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Jaimie Fong
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - David Horio
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Owen Chan
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Lenora W M Loo
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Brenda Y Hernandez
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| |
Collapse
|
9
|
Huo CW, Hill P, Chew G, Neeson PJ, Halse H, Williams ED, Henderson MA, Thompson EW, Britt KL. High mammographic density in women is associated with protumor inflammation. Breast Cancer Res 2018; 20:92. [PMID: 30092832 PMCID: PMC6085707 DOI: 10.1186/s13058-018-1010-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023] Open
Abstract
Background Epidemiological studies have consistently shown that increased mammographic density (MD) is a strong risk factor for breast cancer. We previously observed an elevated number of vimentin+/CD45+ leukocytes in high MD (HMD) epithelium. In the present study, we aimed to investigate the subtypes of immune cell infiltrates in HMD and low MD (LMD) breast tissue. Methods Fifty-four women undergoing prophylactic mastectomy at Peter MacCallum Cancer Centre or St. Vincent’s Hospital were enrolled. Upon completion of mastectomy, HMD and LMD areas were resected under radiological guidance in collaboration with BreastScreen Victoria and were subsequently fixed, processed, and sectioned. Fifteen paired HMD and LMD specimens were further selected according to their fibroglandular characteristics (reasonable amount [> 20%] of tissue per block on H&E stains) for subsequent IHC analysis of immune cell infiltration. Results Overall, immune cell infiltrates were predominantly present in breast ducts and lobules rather than in the stroma, with CD68+ macrophages and CD20+ B lymphocytes also surrounding the vasculature. Macrophages, dendritic cells (DCs), B lymphocytes, and programmed cell death protein 1 (PD-1) expression were significantly increased in HMD epithelium compared with LMD. Moreover, significantly higher levels of DCs, CD4+ T cells, and PD-1 were also observed in HMD stroma than in LMD stroma. The increased expression of interleukin (IL)-6 and IL-4, with unaltered interferon-γ, indicate a proinflammatory microenvironment. Conclusions Our work indicates that the immune system may be activated very early in breast cancer development and may in part underpin the breast cancer risk associated with HMD. Electronic supplementary material The online version of this article (10.1186/s13058-018-1010-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cecilia W Huo
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Prue Hill
- Department of Pathology, St Vincent's Hospital, Melbourne, Australia
| | - Grace Chew
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Paul J Neeson
- Pathology Department, University of Melbourne, Melbourne, Australia.,Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | | | - Elizabeth D Williams
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia
| | - Michael A Henderson
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia.,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Erik W Thompson
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia
| | - Kara L Britt
- Peter MacCallum Cancer Centre, Melbourne, Australia. .,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
10
|
An overview of mammographic density and its association with breast cancer. Breast Cancer 2018; 25:259-267. [PMID: 29651637 PMCID: PMC5906528 DOI: 10.1007/s12282-018-0857-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
In 2017, breast cancer became the most commonly diagnosed cancer among women in the US. After lung cancer, breast cancer is the leading cause of cancer-related mortality in women. The breast consists of several components, including milk storage glands, milk ducts made of epithelial cells, adipose tissue, and stromal tissue. Mammographic density (MD) is based on the proportion of stromal, epithelial, and adipose tissue. Women with high MD have more stromal and epithelial cells and less fatty adipose tissue, and are more likely to develop breast cancer in their lifetime compared to women with low MD. Because of this correlation, high MD is an independent risk factor for breast cancer. Further, mammographic screening is less effective in detecting suspicious lesions in dense breast tissue, which can lead to late-stage diagnosis. Molecular differences between dense and non-dense breast tissues explain the underlying biological reasons for why women with dense breasts are at a higher risk for developing breast cancer. The goal of this review is to highlight the current molecular understanding of MD, its association with breast cancer risk, the demographics pertaining to MD, and the environmental factors that modulate MD. Finally, we will review the current legislation regarding the disclosure of MD on a traditional screening mammogram and the supplemental screening options available to women with dense breast tissue.
Collapse
|
11
|
Association between expression of inflammatory markers in normal breast tissue and mammographic density among premenopausal and postmenopausal women. Menopause 2018; 24:524-535. [PMID: 28002200 DOI: 10.1097/gme.0000000000000794] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Inflammatory markers may be associated with breast cancer risk. We assessed the association between expression levels of proinflammatory (interleukin 6, tumor necrosis factor-α, C-reactive protein, cyclooxygenase 2, leptin, serum amyloid A1, interleukin 8, and signal transducer and activator of transcription 3) and anti-inflammatory markers (transforming growth factor-β, interleukin 10, and lactoferrin) in normal breast tissue with mammographic density, a strong breast cancer risk indicator, among 163 breast cancer patients. METHODS The expression of inflammatory markers was visually evaluated on immunohistochemistry stained slides. The percent mammographic density (PMD) was estimated by a computer-assisted method in the contralateral cancer-free breast. We used generalized linear models to estimate means of PMD by median expression levels of the inflammatory markers while adjusting for age and waist circumference. RESULTS Higher expression levels (above median) of the proinflammatory marker interleukin 6 were associated with higher PMD among all women (24.1% vs 18.5%, P = 0.007). Similarly, higher expression levels (above median) of the proinflammatory markers (interleukin 6, tumor necrosis factor-α, C-reactive protein, and interleukin 8) were associated with higher PMD among premenopausal women (absolute difference in the PMD of 8.8% [P = 0.006], 7.7% [P = 0.022], 6.7% [P = 0.037], and 16.5% [P = 0.032], respectively). Higher expression levels (above median) of the anti-inflammatory marker transforming growth factor-β were associated with lower PMD among all (18.8% vs 24.3%, P = 0.005) and postmenopausal women (14.5% vs 20.7%, P = 0.013). CONCLUSIONS Our results provide support for the hypothesized role of inflammatory markers in breast carcinogenesis through their effects on mammographic density. Inflammatory markers could be targeted in future breast cancer prevention interventions.
Collapse
|
12
|
Shawky MS, Martin H, Hugo HJ, Lloyd T, Britt KL, Redfern A, Thompson EW. Mammographic density: a potential monitoring biomarker for adjuvant and preventative breast cancer endocrine therapies. Oncotarget 2018; 8:5578-5591. [PMID: 27894075 PMCID: PMC5354931 DOI: 10.18632/oncotarget.13484] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/08/2016] [Indexed: 11/25/2022] Open
Abstract
Increased mammographic density (MD) has been shown beyond doubt to be a marker for increased breast cancer risk, though the underpinning pathobiology is yet to be fully elucidated. Estrogenic activity exerts a strong influence over MD, which consequently has been observed to change predictably in response to tamoxifen anti-estrogen therapy, although results for other selective estrogen receptor modulators and aromatase inhibitors are less consistent. In both primary and secondary prevention settings, tamoxifen-associated MD changes correlate with successful modulation of risk or outcome, particularly among pre-menopausal women; an observation that supports the potential use of MD change as a surrogate marker where short-term MD changes reflect longer-term anti-estrogen efficacy. Here we summarize endocrine therapy-induced MD changes and attendant outcomes and discuss both the need for outcome surrogates in such therapy, as well as make a case for MD as such a monitoring marker. We then discuss the process and steps required to validate and introduce MD into practice as a predictor or surrogate for endocrine therapy efficacy in preventive and adjuvant breast cancer treatment settings.
Collapse
Affiliation(s)
- Michael S Shawky
- Department of Head and Neck and Endocrine Surgery, Faculty of Medicine, University of Alexandria, Egypt.,Department of Surgery, University College Hospital, London, UK
| | - Hilary Martin
- School of Medicine and Pharmacology, University of Western Australia, and Department of Medical Oncology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Honor J Hugo
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Australia.,Translational Research Institute, Brisbane, Australia
| | - Thomas Lloyd
- Department of Radiology, Princess Alexandra Hospital, Brisbane, Australia
| | - Kara L Britt
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Andrew Redfern
- School of Medicine and Pharmacology, University of Western Australia, and Department of Medical Oncology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Australia.,Translational Research Institute, Brisbane, Australia.,Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
13
|
Amaral MEA, Nery LR, Leite CE, de Azevedo Junior WF, Campos MM. Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes. Invest New Drugs 2018; 36:782-796. [PMID: 29392539 DOI: 10.1007/s10637-018-0568-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Background Breast cancer is highly prevalent among women worldwide. It is classified into three main subtypes: estrogen receptor positive (ER+), human epidermal growth factor receptor 2 positive (HER2+), and triple negative breast cancer (TNBC). This study has evaluated the effects of aspirin and metformin, isolated or in a combination, in breast cancer cells of the different subtypes. Methods The breast cancer cell lines MCF-7, MDA-MB-231, and SK-BR-3 were treated with aspirin and/or metformin (0.01 mM - 10 mM); functional in vitro assays were performed. The interactions with the estrogen receptors (ER) were evaluated in silico. Results Metformin (2.5, 5 and 10 mM) altered the morphology and reduced the viability and migration of the ER+ cell line MCF-7, whereas aspirin triggered this effect only at 10 mM. A synergistic effect for the combination of metformin and aspirin (2.5, 5 or 10 mM each) was observed in the TNBC cell subtype MDA-MB-231, according to the evaluation of its viability and colony formation. Partial inhibitory effects were observed for either of the drugs in the HER2+ cell subtype SK-BR-3. The effects of metformin and aspirin partly relied on cyclooxygenase-2 (COX-2) upregulation, without the production of lipoxins. In silico, metformin and aspirin bound to the ERα receptor with the same energy. Conclusion We have provided novel evidence on the mechanisms of action of aspirin and metformin in breast cancer cells, showing favorable outcomes for these drugs in the ER+ and TNBC subtypes.
Collapse
Affiliation(s)
- Maria Eduarda Azambuja Amaral
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Laura Roesler Nery
- ZebLab & Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12 D, sala 301, Porto Alegre, RS, 90619-900, Brazil
| | - Carlos Eduardo Leite
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Walter Filgueira de Azevedo Junior
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil.,Laboratório de Biologia de Sistemas Computacionais, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Maria Martha Campos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil. .,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil. .,Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
14
|
Ironside AJ, Jones JL. Stromal characteristics may hold the key to mammographic density: the evidence to date. Oncotarget 2017; 7:31550-62. [PMID: 26784251 PMCID: PMC5058777 DOI: 10.18632/oncotarget.6912] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/02/2016] [Indexed: 12/11/2022] Open
Abstract
There is strong epidemiological data indicating a role for increased mammographic density (MD) in predisposing to breast cancer, however, the biological mechanisms underlying this phenomenon are less well understood. Recently, studies of human breast tissues have started to characterise the features of mammographically dense breasts, and a number of in-vitro and in-vivo studies have explored the potential mechanisms through which dense breast tissue may exert this tumourigenic risk. This article aims to review both the pathological and biological evidence implicating a key role for the breast stromal compartment in MD, how this may be modified and the clinical significance of these findings. The epidemiological context will be briefly discussed but will not be covered in detail.
Collapse
Affiliation(s)
- Alastair J Ironside
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Sun X, Glynn DJ, Hodson LJ, Huo C, Britt K, Thompson EW, Woolford L, Evdokiou A, Pollard JW, Robertson SA, Ingman WV. CCL2-driven inflammation increases mammary gland stromal density and cancer susceptibility in a transgenic mouse model. Breast Cancer Res 2017; 19:4. [PMID: 28077158 PMCID: PMC5225654 DOI: 10.1186/s13058-016-0796-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
Background Macrophages play diverse roles in mammary gland development and breast cancer. CC-chemokine ligand 2 (CCL2) is an inflammatory cytokine that recruits macrophages to sites of injury. Although CCL2 has been detected in human and mouse mammary epithelium, its role in regulating mammary gland development and cancer risk has not been explored. Methods Transgenic mice were generated wherein CCL2 is driven by the mammary epithelial cell-specific mouse mammary tumour virus 206 (MMTV) promoter. Estrous cycles were tracked in adult transgenic and non-transgenic FVB mice, and mammary glands collected at the four different stages of the cycle. Dissected mammary glands were assessed for cyclical morphological changes, proliferation and apoptosis of epithelium, macrophage abundance and collagen deposition, and mRNA encoding matrix remodelling enzymes. Another cohort of control and transgenic mice received carcinogen 7,12-Dimethylbenz(a)anthracene (DMBA) and tumour development was monitored weekly. CCL2 protein was also quantified in paired samples of human breast tissue with high and low mammographic density. Results Overexpression of CCL2 in the mammary epithelium resulted in an increased number of macrophages, increased density of stroma and collagen and elevated mRNA encoding matrix remodelling enzymes lysyl oxidase (LOX) and tissue inhibitor of matrix metalloproteinases (TIMP)3 compared to non-transgenic controls. Transgenic mice also exhibited increased susceptibility to development of DMBA-induced mammary tumours. In a paired sample cohort of human breast tissue, abundance of epithelial-cell-associated CCL2 was higher in breast tissue of high mammographic density compared to tissue of low mammographic density. Conclusions Constitutive expression of CCL2 by the mouse mammary epithelium induces a state of low level chronic inflammation that increases stromal density and elevates cancer risk. We propose that CCL2-driven inflammation contributes to the increased risk of breast cancer observed in women with high mammographic density.
Collapse
Affiliation(s)
- Xuan Sun
- Discipline of Obstetrics and Gynaecology, School of Medicine, University of Adelaide, Adelaide, Australia.,The Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Danielle J Glynn
- Discipline of Obstetrics and Gynaecology, School of Medicine, University of Adelaide, Adelaide, Australia.,The Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, DX465702, 28 Woodville Rd, Woodville, 5011, Australia
| | - Leigh J Hodson
- The Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, DX465702, 28 Woodville Rd, Woodville, 5011, Australia
| | - Cecilia Huo
- The University of Melbourne Department of Surgery, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Kara Britt
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Erik W Thompson
- The University of Melbourne Department of Surgery, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology and Translational Research Institute, Queensland, Australia
| | - Lucy Woolford
- School of Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Andreas Evdokiou
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, DX465702, 28 Woodville Rd, Woodville, 5011, Australia
| | - Jeffrey W Pollard
- MRC and University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah A Robertson
- Discipline of Obstetrics and Gynaecology, School of Medicine, University of Adelaide, Adelaide, Australia.,The Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Wendy V Ingman
- The Robinson Research Institute, University of Adelaide, Adelaide, Australia. .,Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, DX465702, 28 Woodville Rd, Woodville, 5011, Australia.
| |
Collapse
|