1
|
Adams S, Demaria S, Rinchai D, Wang E, Novik Y, Oratz R, Fenton-Kerimian M, Levine PG, Li X, Marincola F, Jin P, Stroncek D, Goldberg J, Bedognetti D, Formenti SC. Topical TLR7 agonist and radiotherapy in patients with metastatic breast cancer. J Immunother Cancer 2025; 13:e011173. [PMID: 40187749 PMCID: PMC11973781 DOI: 10.1136/jitc-2024-011173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Toll-like receptor (TLR) agonists and radiation therapy hold promise for cancer immunotherapy. We conducted a phase I/II trial combining topical imiquimod (IMQ, a TLR-7 agonist) and local radiotherapy (RT) in patients with metastatic breast cancer accompanied by longitudinal transcriptional analysis of tumor biopsies. METHODS The primary objective of the trial (NCT01421017) was to assess systemic responses by immune-related response criteria (irRC) after an 8-week cycle of topical IMQ and concurrent local RT (cohort 1). An amendment to the trial added two cohorts, both received one dose of cyclophosphamide (CTX) administered 1 week before study treatment initiation, IMQ/RT/CTX (cohort 2) and RT/CTX control (cohort 3). Cutaneous metastases were prospectively assigned to treatment with IMQ and RT (area A) or IMQ alone (area B). Secondary objectives were safety (Common Terminology Criteria for Adverse Events criteria) and local response in skin metastases. In all IMQ cohorts, tumors were biopsied before treatment and at 2 and 3 weeks. RESULTS 31 patients were enrolled (n=12, n=12, and n=7, in cohort 1, 2, and 3, respectively), with 4 out of 24 patients in the IMQ cohorts showing systemic tumor responses (two complete responses (CR) and two partial responses (PR)). No objective responses were observed in the seven patients enrolled in the control arm (RT alone). The treatment was well-tolerated, no grade 4-5 treatment-related adverse events occurred and grade 3 AEs were manageable (anemia, local pain, and local ulceration, n=1 each). Local objective responses were observed in 19/24 (9 CR and 10 PR) and 5/24 (5 PR) in areas treated with combined IMQ-RT and IMQ alone, respectively (p<0.001). All 24 patients treated with IMQ underwent serial biopsies, and 84 samples yielded sufficient material for transcriptional analyses. These revealed that the presence of a T-helper 1 functional orientation of the tumor microenvironment paralleled by the downregulation of DNA-repair genes was associated with CR after IMQ+RT, but not after IMQ alone. No post-treatment activation of immune-effector functions was observed in stable and progressing lesions. CONCLUSIONS Our findings support the safety and clinical efficacy of combining topical IMQ with local RT for recurrent breast cancer, with evidence of local and occasional systemic antitumor activity. TRIAL REGISTRATION NUMBER NCT01421017.
Collapse
Affiliation(s)
- Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | | | - Ena Wang
- Sidra Medical and Research Center, Ar-Rayyan, Qatar
| | - Yelena Novik
- Department of Medicine, NYU Langone Health, New York, New York, USA
| | - Ruth Oratz
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | | | - Xiaochun Li
- Division of Biostatistics, NYU Langone Health, New York, New York, USA
| | | | - Ping Jin
- National Institutes of Health, Bethesda, Maryland, USA
| | | | - Judith Goldberg
- Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Grossman School of Medicine
| | | | | |
Collapse
|
2
|
Hao W, Rajendran BK, Cui T, Sun J, Zhao Y, Palaniyandi T, Selvam M. Advances in predicting breast cancer driver mutations: Tools for precision oncology (Review). Int J Mol Med 2025; 55:6. [PMID: 39450552 PMCID: PMC11537269 DOI: 10.3892/ijmm.2024.5447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
In the modern era of medicine, prognosis and treatment, options for a number of cancer types including breast cancer have been improved by the identification of cancer‑specific biomarkers. The availability of high‑throughput sequencing and analysis platforms, the growth of publicly available cancer databases and molecular and histological profiling facilitate the development of new drugs through a precision medicine approach. However, only a fraction of patients with breast cancer with few actionable mutations typically benefit from the precision medicine approach. In the present review, the current development in breast cancer driver gene identification, actionable breast cancer mutations, as well as the available therapeutic options, challenges and applications of breast precision oncology are systematically described. Breast cancer driver mutation‑based precision oncology helps to screen key drivers involved in disease development and progression, drug sensitivity and the genes responsible for drug resistance. Advances in precision oncology will provide more targeted therapeutic options for patients with breast cancer, improving disease‑free survival and potentially leading to significant successes in breast cancer treatment in the near future. Identification of driver mutations has allowed new targeted therapeutic approaches in combination with standard chemo‑ and immunotherapies in breast cancer. Developing new driver mutation identification strategies will help to define new therapeutic targets and improve the overall and disease‑free survival of patients with breast cancer through efficient medicine.
Collapse
Affiliation(s)
- Wenhui Hao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Barani Kumar Rajendran
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Tingting Cui
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Jiayi Sun
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Yingchun Zhao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | | | - Masilamani Selvam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
| |
Collapse
|
3
|
Qin Y, Zhang H, Li Y, Xie T, Yan S, Wang J, Qu J, Ouyang F, Lv S, Guo Z, Wei H, Yu CY. Promotion of ICD via Nanotechnology. Macromol Biosci 2023; 23:e2300093. [PMID: 37114599 DOI: 10.1002/mabi.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Immunotherapy represents the most promising treatment strategy for cancer, but suffers from compromised therapeutic efficiency due to low immune activity of tumor cells and an immunosuppressive microenvironment, which significantly hampers the clinical translations of this treatment strategy. To promote immunotherapy with desired therapeutic efficiency, immunogenic cell death (ICD), a particular type of death capable of reshaping body's antitumor immune activity, has drawn considerable attention due to the potential to stimulate a potent immune response. Still, the potential of ICD effect remains unsatisfactory because of the intricate tumor microenvironment and multiple drawbacks of the used inducing agents. ICD has been thoroughly reviewed so far with a general classification of ICD as a kind of immunotherapy strategy and repeated discussion of the related mechanism. However, there are no published reviews, to the authors' knowledge, providing a systematic summarization on the enhancement of ICD via nanotechnology. For this purpose, this review first discusses the four stages of ICD according to the development mechanisms, followed by a comprehensive description on the use of nanotechnology to enhance ICD in the corresponding four stages. The challenges of ICD inducers and possible solutions are finally summarized for future ICD-based enhanced immunotherapy.
Collapse
Affiliation(s)
- Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunxian Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ting Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuang Yan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Qu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feijun Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shaoyang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
4
|
Li P, Wang W, Wang S, Cao G, Pan T, Huang Y, Wan H, Zhang W, Huang Y, Jin H, Wang Z. PTPRC promoted CD8+ T cell mediated tumor immunity and drug sensitivity in breast cancer: based on pan-cancer analysis and artificial intelligence modeling of immunogenic cell death-based drug sensitivity stratification. Front Immunol 2023; 14:1145481. [PMID: 37388747 PMCID: PMC10302730 DOI: 10.3389/fimmu.2023.1145481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Background Immunogenic cell death (ICD) is a result of immune cell infiltration (ICI)-mediated cell death, which is also a novel acknowledgment to regulate cellular stressor-mediated cell death, including drug therapy and radiotherapy. Methods In this study, TCGA and GEO data cohorts were put into artificial intelligence (AI) to identify ICD subtypes, and in vitro experiments were performed. Results Gene expression, prognosis, tumor immunity, and drug sensitivity showed significance among ICD subgroups, Besides, a 14-gene-based AI model was able to represent the genome-based drug sensitivity prediction, which was further verified in clinical trials. Network analysis revealed that PTPRC was the pivotal gene in regulating drug sensitivity by regulating CD8+ T cell infiltration. Through in vitro experiments, intracellular down-regulation of PTPRC enhanced paclitaxel tolerance in triple breast cancer (TNBC) cell lines. Meanwhile, the expression level of PTPRC was positively correlated with CD8+ T cell infiltration. Furthermore, the down-regulation of PTPRC increased the level of TNBC-derived PD-L1 and IL2. Discussion ICD-based subtype clustering of pan-cancer was helpful to evaluate chemotherapy sensitivity and immune cell infiltration, and PTPRC was a potential target to against drug resistance of breast cancer.
Collapse
Affiliation(s)
- Pengping Li
- Department of Thyroid & Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Oncology, The Second Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Shaowen Wang
- Neuromedicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Guodong Cao
- The Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tonghe Pan
- The Department of Ningbo Eye Hospital, Affiliated to Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Yuqing Huang
- Department of Thyroid & Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Hong Wan
- The Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weijun Zhang
- Department of Thyroid & Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Yate Huang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haigang Jin
- Department of Thyroid & Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Zhenyu Wang
- Department of Thyroid & Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Zhang XW, Wu YS, Xu TM, Cui MH. CAR-T Cells in the Treatment of Ovarian Cancer: A Promising Cell Therapy. Biomolecules 2023; 13:biom13030465. [PMID: 36979400 PMCID: PMC10046142 DOI: 10.3390/biom13030465] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Ovarian cancer (OC) is among the most common gynecologic malignancies with a poor prognosis and a high mortality rate. Most patients are diagnosed at an advanced stage (stage III or IV), with 5-year survival rates ranging from 25% to 47% worldwide. Surgical resection and first-line chemotherapy are the main treatment modalities for OC. However, patients usually relapse within a few years of initial treatment due to resistance to chemotherapy. Cell-based therapies, particularly adoptive T-cell therapy and chimeric antigen receptor T (CAR-T) cell therapy, represent an alternative immunotherapy approach with great potential for hematologic malignancies. However, the use of CAR-T-cell therapy for the treatment of OC is still associated with several difficulties. In this review, we comprehensively discuss recent innovations in CAR-T-cell engineering to improve clinical efficacy, as well as strategies to overcome the limitations of CAR-T-cell therapy in OC.
Collapse
|
6
|
Pepe FF, Cazzaniga ME, Baroni S, Riva F, Cicchiello F, Capici S, Cogliati V, Maggioni C, Cordani N, Cerrito MG, Malandrin S. Immunomodulatory effects of metronomic vinorelbine (mVRL), with or without metronomic capecitabine (mCAPE), in hormone receptor positive (HR+)/HER2-negative metastatic breast cancer (MBC) patients: final results of the exploratory phase 2 Victor-5 study. BMC Cancer 2022; 22:956. [PMID: 36068484 PMCID: PMC9446532 DOI: 10.1186/s12885-022-10031-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
Tregs are able of suppressing tumor-specific effector cells, such as lymphocytes CD8+, CD4+ and Natural Killer cells. Different drugs, especially different schedules of administration, like metronomic chemotherapy (mCHT), seem to be able to increase anticancer immunity, by acting on downregulation of Tregs. Most of the data available regarding the immunomodulating effect of mCHT have been obtained with Cyclophosphamide (CTX). Aim of the present study was to explore the effects of mVRL and mCAPE administration, alone or in combination, on T cells. Observation of 13 metastatic breast cancer patients lasted controlling for 56 days, where Treg frequencies and function, spontaneous anti-tumor T-cell responses were monitored, as well as the clinical outcome. No depletion in Treg absolute numbers, or percentage of T lymphocytes, was observed. Only in 5 patients, a modest and transient depletion of Tregs was observed during the first 14 days of treatment. To better describe the effect on Tregs, we subsequently looked at the variations in Memory, Naïve and Activated Treg subpopulations: we observed a trend in reduction for memory Treg (Treg MEM) and an increase for Treg Naïve (Treg NAIVE) and Treg Activated (Treg ACT) components. We finally analyzed the average trend of Treg in the Treg depleted patients and non-depleted ones, without fiding any significant differences. The trend of the Treg MEM appeared different, showing a reduction during the first 14 days, followed by an increase at the levels before treatment at Day 56 in the group of depleted patients and a progressive substantial reduction in the group of non-depleted patients along the entire course of treatment. Opposed to the data known, treatment with mVRL w/o mCAPE did not show any effect on Tregs.
Collapse
Affiliation(s)
- F F Pepe
- Phase 1 Research Centre, ASST Monza, Monza, Italy
| | - M E Cazzaniga
- Phase 1 Research Centre, ASST Monza, Monza, Italy. .,School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy.
| | - S Baroni
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - F Riva
- Oncology Unit, ASST Monza, Monza, Italy
| | | | - S Capici
- Phase 1 Research Centre, ASST Monza, Monza, Italy
| | - V Cogliati
- Phase 1 Research Centre, ASST Monza, Monza, Italy
| | | | - N Cordani
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - M G Cerrito
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | | |
Collapse
|
7
|
Rizzo A, Ricci AD, Lanotte L, Lombardi L, Di Federico A, Brandi G, Gadaleta-Caldarola G. Immune-based combinations for metastatic triple negative breast cancer in clinical trials: current knowledge and therapeutic prospects. Expert Opin Investig Drugs 2021; 31:557-565. [PMID: 34802383 DOI: 10.1080/13543784.2022.2009456] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitor (ICI) monotherapy appears to be effective in a small cohort of patients with metastatic triple negative breast cancer (mTNBC). This supports the exploration of strategies for increasing the efficacy of immunotherapy. To enhance overall response and clinical outcomes, several immune-based combinations are being investigated. AREAS COVERED The authors present a synopsis of current, state-of-art immune-based combinations in this setting and reflect on future possibilities. They shed light on recently presented and published clinical trials and ongoing studies. A literature search was conducted in October 2021; in addition, abstracts of international cancer meetings were reviewed. EXPERT OPINION Clinical trials suggest that ICI monotherapy could be beneficial in a minority of mTNBC patients; conversely, several immune-based combinations have reported notable results in recently presented or published studies. Some of these combination strategies have been approved for mTNBC - as in the case of chemoimmunotherapy in PD-L1 positive patients. Numerous trials are investigating novel ICI-based combinations and their results are eagerly awaited.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia.,Medical Oncology Unit, "Mons. R. Dimiccoli" Hospital, Barletta (BT), ASL BT, Barletta, Italy
| | - Angela Dalia Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia.,Medical Oncology Unit, "Mons. R. Dimiccoli" Hospital, Barletta (BT), ASL BT, Barletta, Italy
| | - Laura Lanotte
- Medical Oncology Unit, "Mons. R. Dimiccoli" Hospital, Barletta (BT), ASL BT, Barletta, Italy
| | - Lucia Lombardi
- Medical Oncology Unit, "Mons. R. Dimiccoli" Hospital, Barletta (BT), ASL BT, Barletta, Italy
| | | | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | | |
Collapse
|
8
|
Heeke AL, Tan AR. Checkpoint inhibitor therapy for metastatic triple-negative breast cancer. Cancer Metastasis Rev 2021; 40:537-547. [PMID: 34101053 PMCID: PMC8184866 DOI: 10.1007/s10555-021-09972-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/27/2021] [Indexed: 12/03/2022]
Abstract
Immunotherapy has become a mainstay of cancer treatment in many malignancies, though its application in breast cancer remains limited. Of the breast cancer subtypes, triple-negative breast cancers (TNBCs) are characterized by immune activation and infiltration and more commonly express biomarkers associated with response to immunotherapy. Checkpoint inhibitor therapy has shown promising activity in metastatic TNBC. In 2019, the US FDA granted accelerated approval of atezolizumab, a programmed death-ligand 1 (PD-L1) inhibitor, in combination with nab-paclitaxel for unresectable locally advanced or metastatic PD-L1-positive TNBC, based on the results of the phase III IMpassion130 trial. In 2020, the FDA also granted accelerated approval of pembrolizumab, a PD-1 inhibitor, in combination with chemotherapy for locally recurrent unresectable and metastatic PD-L1-positive TNBC, based on results of the phase III KEYNOTE-355 trial. Additional combination strategies are being explored in the treatment of metastatic TNBC, with the goal of augmenting antitumor activity. In this review, the clinical development of checkpoint inhibitors in the treatment of metastatic TNBC will be discussed, including clinical outcomes with monotherapy and combination therapy regimens, biomarkers that may predict for benefit, and future directions in the field.
Collapse
|
9
|
Baseline effector cells predict response and NKT cells predict pulmonary toxicity in advanced breast cancer patients treated with everolimus and exemestane. Int Immunopharmacol 2021; 93:107404. [PMID: 33524804 DOI: 10.1016/j.intimp.2021.107404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND The mTOR inhibitor everolimus used in cancer has immune-modulating effects, potentially contributing to an antitumor response but also leading to pulmonary toxicity. We studied the association of immunological cell subsets with antitumor response and pulmonary toxicity in breast cancer patients treated with everolimus plus exemestane. METHODS In this exploratory analysis, peripheral blood mononuclear cells (PBMCs) were collected at baseline and 14, 35, 60, and 90 days after start of treatment, and at the moment of pulmonary toxicity. The percentage and absolute number of T-cells, B-cells, NK-cells, monocytes and numerous subtypes were measured in peripheral blood using flow cytometric analysis and were compared using a (paired) t-test. RESULTS From 20 patients, a total of 89 samples were collected. At baseline, responders versus non-responders had 0.86% versus 0.32% CD4+ effector cells (CD45RA+CD27-) (p = 0.1266) and non-response could be predicted with 0.71 sensitivity and 0.82 specificity. Patients who developed pulmonary toxicity compared to patients without pulmonary toxicity had relatively more NKT-cells at baseline (6.0% versus 1.3%, p = 0.0068, 59 k versus 12 k * 109/l, p = 0.0081) and at the moment of toxicity (5.2% versus 1.2%, p = 0.0106 and 47 k versus 16 k * 109/l, p = 0.0466). Baseline percentage NKT cells predicted pulmonary toxicity with 0.78 sensitivity and 1.0 specificity. CONCLUSIONS Our results suggest that baseline CD4+ effector cells may be predictive of antitumor responses and baseline NKT cells may be predictive of pulmonary toxicity. These results warrant further validation.
Collapse
|
10
|
Hayashi K, Nikolos F, Lee YC, Jain A, Tsouko E, Gao H, Kasabyan A, Leung HE, Osipov A, Jung SY, Kurtova AV, Chan KS. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat Commun 2020; 11:6299. [PMID: 33288764 PMCID: PMC7721802 DOI: 10.1038/s41467-020-19970-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Induction of tumor cell death is the therapeutic goal for most anticancer drugs. Yet, a mode of drug-induced cell death, known as immunogenic cell death (ICD), can propagate antitumoral immunity to augment therapeutic efficacy. Currently, the molecular hallmark of ICD features the release of damage-associated molecular patterns (DAMPs) by dying cancer cells. Here, we show that gemcitabine, a standard chemotherapy for various solid tumors, triggers hallmark immunostimualtory DAMP release (e.g., calreticulin, HSP70, and HMGB1); however, is unable to induce ICD. Mechanistic studies reveal gemcitabine concurrently triggers prostaglandin E2 release as an inhibitory DAMP to counterpoise the adjuvanticity of immunostimulatory DAMPs. Pharmacological blockade of prostaglandin E2 biosythesis favors CD103+ dendritic cell activation that primes a Tc1-polarized CD8+ T cell response to bolster tumor rejection. Herein, we postulate that an intricate balance between immunostimulatory and inhibitory DAMPs could determine the outcome of drug-induced ICD and pose COX-2/prostaglandin E2 blockade as a strategy to harness ICD.
Collapse
Affiliation(s)
- K Hayashi
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - F Nikolos
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Y C Lee
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei City, Taiwan
| | - A Jain
- Alkek Center for Molecular Discovery, Proteomics Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - E Tsouko
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - H Gao
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - A Kasabyan
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - H E Leung
- Alkek Center for Molecular Discovery, Proteomics Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - A Osipov
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - S Y Jung
- Alkek Center for Molecular Discovery, Proteomics Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - A V Kurtova
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - K S Chan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
11
|
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020; 12:E524. [PMID: 32521684 PMCID: PMC7355786 DOI: 10.3390/pharmaceutics12060524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has become one of the biggest concerns for oncologists in the past few decades because of its unpredictable etiopathology and nonavailability of personalized translational medicine. The number of women getting affected by breast cancer has increased dramatically, owing to lifestyle and environmental changes. Besides, the development of multidrug resistance has become a challenge in the therapeutic management of breast cancer. Studies reveal that the use of monotherapy is not effective in the management of breast cancer due to high toxicity and the development of resistance. Combination therapies, such as radiation therapy with adjuvant therapy, endocrine therapy with chemotherapy, and targeted therapy with immunotherapy, are found to be effective. Thus, multimodal and combination treatments, along with nanomedicine, have emerged as a promising strategy with minimum side effects and drug resistance. In this review, we emphasize the multimodal approaches and recent advancements in breast cancer treatment modalities, giving importance to the current data on clinical trials. The novel treatment approach by targeted therapy, according to type, such as luminal, HER2 positive, and triple-negative breast cancer, are discussed. Further, passive and active targeting technologies, including nanoparticles, bioconjugate systems, stimuli-responsive, and nucleic acid delivery systems, including siRNA and aptamer, are explained. The recent research exploring the role of nanomedicine in combination therapy and the possible use of artificial intelligence in breast cancer therapy is also discussed herein. The complexity and dynamism of disease changes require the constant upgrading of knowledge, and innovation is essential for future drug development for treating breast cancer.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Shristi Sinha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| |
Collapse
|
12
|
Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 2020; 9:1703449. [PMID: 32002302 PMCID: PMC6959434 DOI: 10.1080/2162402x.2019.1703449] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The term ‘immunogenic cell death’ (ICD) denotes an immunologically unique type of regulated cell death that enables, rather than suppresses, T cell-driven immune responses that are specific for antigens derived from the dying cells. The ability of ICD to elicit adaptive immunity heavily relies on the immunogenicity of dying cells, implying that such cells must encode and present antigens not covered by central tolerance (antigenicity), and deliver immunostimulatory molecules such as damage-associated molecular patterns and cytokines (adjuvanticity). Moreover, the host immune system must be equipped to detect the antigenicity and adjuvanticity of dying cells. As cancer (but not normal) cells express several antigens not covered by central tolerance, they can be driven into ICD by some therapeutic agents, including (but not limited to) chemotherapeutics of the anthracycline family, oxaliplatin and bortezomib, as well as radiation therapy. In this Trial Watch, we describe current trends in the preclinical and clinical development of ICD-eliciting chemotherapy as partner for immunotherapy, with a focus on trials assessing efficacy in the context of immunomonitoring.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Sabine Tejpar
- Department of Oncology, KU Leuven, Leuven, Belgium.,UZ Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Haematology, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med 2019; 17:90. [PMID: 31068190 PMCID: PMC6507064 DOI: 10.1186/s12916-019-1326-5] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Several accomplishments have been achieved in triple-negative breast cancer (TNBC) research over the last year. The phase III IMpassion130 trial comparing chemotherapy plus atezolizumab versus chemotherapy plus placebo brought breast cancer into the immunotherapy era. Nevertheless, despite encouraging results being obtained in this trial, many open questions remain. MAIN BODY A positive overall survival outcome was achieved only in PD-L1+ TNBC patients, suggesting a need to enrich the patient population more likely to benefit from an immunotherapeutic approach. Moreover, it remains unknown whether single-agent immunotherapy might be a good option for some patients. In this context, the discovery and implementation of novel and appropriate biomarkers are required. Focusing on the early onset of TNBC, neoadjuvant trials could represent excellent in vivo platforms to test immunotherapy agents and their potential combinations, allowing the performance of translational studies for biomarker implementation and improved patient selection. CONCLUSION The aim of our review is to present recent advances in TNBC treatment and to discuss open issues in order to better define potential future directions for immunotherapy in TNBC.
Collapse
Affiliation(s)
- Antonio Marra
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology (IEO), IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milano, Milano, Italy
| | - Giulia Viale
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology (IEO), IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milano, Milano, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology (IEO), IRCCS, Milan, Italy. .,Department of Oncology and Haematology, University of Milano, Milano, Italy.
| |
Collapse
|
14
|
Heinhuis KM, Ros W, Kok M, Steeghs N, Beijnen JH, Schellens JHM. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann Oncol 2019; 30:219-235. [PMID: 30608567 DOI: 10.1093/annonc/mdy551] [Citation(s) in RCA: 369] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Cancer immunotherapy has changed the standard of care for a subgroup of patients with advanced disease. Immune checkpoint blockade (ICB) in particular has shown improved survival compared with previous standards of care for several tumor types. Although proven to be successful in more immunogenic tumors, ICB is still largely ineffective in patients with tumors that are not infiltrated by immune cells, the so-called cold tumors. PATIENTS AND METHODS This review describes the effects of different chemotherapeutic agents on the immune system and the potential value of these different types of chemotherapy as combination partners with ICB in patients with solid tumors. Both preclinical data and currently ongoing clinical trials were evaluated. In addition, we reviewed findings regarding different dosing schedules, including the effects of an induction phase and applying metronomic doses of chemotherapy. RESULTS Combining ICB with other treatment modalities may lead to improved immunological conditions in the tumor microenvironment and could thereby enhance the antitumor immune response, even in tumor types that are so far unresponsive to ICB monotherapy. Chemotherapy, that was originally thought to be solely immunosuppressive, can exert immunomodulatory effects which may be beneficial in combination with immunotherapy. Each chemotherapeutic drug impacts the tumor microenvironment differently, and in order to determine the most suitable combination partners for ICB it is crucial to understand these mechanisms. CONCLUSION Preclinical studies demonstrate that the majority of chemotherapeutic drugs has been shown to exert immunostimulatory effects, either by inhibiting immunosuppressive cells and/or activating effector cells, or by increasing immunogenicity and increasing T-cell infiltration. However, for certain chemotherapeutic agents timing, dose and sequence of administration of chemotherapeutic agents and ICB is important. Further studies should focus on determining the optimal drug combinations, sequence effects and optimal concentration-time profiles in representative preclinical models.
Collapse
Affiliation(s)
- K M Heinhuis
- Divisions of Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - W Ros
- Divisions of Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - M Kok
- Medical Oncology and Molecular Oncology & Immunology, Utrecht University, Utrecht, The Netherlands
| | - N Steeghs
- Medical Oncology, Department of Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - J H Beijnen
- Divisions of Pharmacology, Utrecht University, Utrecht, The Netherlands; Department of Pharmacy, The Netherlands Cancer Institute, Amsterdam, The Netherlands; MC Slotervaart, Amsterdam, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - J H M Schellens
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Noordam L, Kaijen MEH, Bezemer K, Cornelissen R, Maat LAPWM, Hoogsteden HC, Aerts JGJV, Hendriks RW, Hegmans JPJJ, Vroman H. Low-dose cyclophosphamide depletes circulating naïve and activated regulatory T cells in malignant pleural mesothelioma patients synergistically treated with dendritic cell-based immunotherapy. Oncoimmunology 2018; 7:e1474318. [PMID: 30524884 PMCID: PMC6279421 DOI: 10.1080/2162402x.2018.1474318] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
Rationale: Regulatory T cells (Treg) play a pivotal role in the immunosuppressive tumor micro-environment in cancer, including mesothelioma. Recently, the combination of autologous tumor lysate-pulsed dendritic cells (DC) and metronomic cyclophosphamide (mCTX) was reported as a feasible and well-tolerated treatment in malignant pleural mesothelioma patients and further as a method to reduce circulating Tregs. Objectives: The aim of this study was to establish the immunological effects of mCTX alone and in combination with DC-based immunotherapy on circulating Treg and other T cell subsets in mesothelioma patients. Methods: Ten patients received mCTX and DC-based immunotherapy after chemotherapy (n = 5) or chemotherapy and debulking surgery (n = 5). Peripheral blood mononuclear cells before, during and after treatment were analyzed for various Treg and other lymphocyte subsets by flow cytometry. Results: After one week treatment with mCTX, both activated FoxP3hi and naïve CD45RA+ Tregs were effectively decreased in all patients. In addition, a shift from naïve and central memory towards effector memory and effector T cells was observed. Survival analysis showed that overall Treg levels before treatment were not correlated with survival, however, nTreg levels before treatment were positively correlated with survival. After completion of mCTX and DC-based immunotherapy treatment, all cell subsets returned to baseline levels, except for the proportions of proliferating EM CD8 T cells, which increased. Conclusions: mCTX treatment effectively reduced the proportions of circulating Tregs, both aTregs and nTregs, thereby favoring EM T cell subsets in mesothelioma patients. Interestingly, baseline levels of nTregs were positively correlated to overall survival upon complete treatment.
Collapse
Affiliation(s)
- Lisanne Noordam
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Margaretha E H Kaijen
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Koen Bezemer
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Robin Cornelissen
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Lex A P W M Maat
- Department of Cardio-Thoracic Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Henk C Hoogsteden
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joost P J J Hegmans
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Xu J, Wang Y, Shi J, Liu J, Li Q, Chen L. Combination therapy: A feasibility strategy for CAR-T cell therapy in the treatment of solid tumors. Oncol Lett 2018; 16:2063-2070. [PMID: 30008901 PMCID: PMC6036511 DOI: 10.3892/ol.2018.8946] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have been demonstrated to have durable and potentially curative therapeutic efficacies in patients with hematological malignancies. Currently, multiple clinical trials in CAR-T cell therapy have been evaluated for the treatment of patients with solid malignancies, but have had less marked therapeutic effects when the agents are used as monotherapies. When summarizing relevant studies, the present study found that combination therapy strategies for solid tumors based on CAR-T cell therapies might be more effective. This review will focus on various aspects of treating solid tumors with CAR-T cell therapy: i) The therapeutic efficacy of CAR-T cell monotherapy, ii) the feasibility of the CAR-T cell therapy in conjunction with chemotherapy, iii) the feasibility of CAR-T cell therapy with radiotherapy, iv) the feasibility of CAR-T cell therapy with chemoradiotherapy, and v) the feasibility of the combination of CAR-T cell therapy with other strategies.
Collapse
Affiliation(s)
- Jinjing Xu
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Yali Wang
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Jing Shi
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Juan Liu
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Qingguo Li
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Longzhou Chen
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| |
Collapse
|
17
|
Abotaleb M, Kubatka P, Caprnda M, Varghese E, Zolakova B, Zubor P, Opatrilova R, Kruzliak P, Stefanicka P, Büsselberg D. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed Pharmacother 2018; 101:458-477. [PMID: 29501768 DOI: 10.1016/j.biopha.2018.02.108] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the second greatest cause of death among women worldwide; it comprises a group of heterogeneous diseases that evolves due to uncontrolled cellular growth and differentiation and the loss of normal programmed cell death. There are different molecular sub-types of breast cancer; therefore, various options are selected for treatment of different forms of metastatic breast cancer. However, the use of chemotherapeutic drugs is usually accompanied by deleterious side effects and the development of drug resistance when applied for a longer period. This review offers a classification of these chemotherapeutic agents according to their modes of action and therefore improves the understanding of molecular targets that are affected during treatment. Overall, it will allow the clinician to identify more specific targets to increase the effectiveness of a drug and to reduce general toxicity, resistance and other side effects.
Collapse
Affiliation(s)
- Mariam Abotaleb
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia; Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Medical Faculty, Comenius University in Bratislava, Bratislava, Slovakia
| | - Elizabeth Varghese
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Barbora Zolakova
- Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Clinic of Gynecology and Obsterics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Peter Kruzliak
- Department of Internal Medicine, Brothers of Mercy Hospital, Brno, Czech Republic; 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic.
| | - Patrik Stefanicka
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Comenius University and University Hospital, Antolska 11, 851 07, Bratislava, Slovakia.
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar.
| |
Collapse
|