1
|
Wang CW, Chu KL, Su TS, Liu KW, Lin YJ, Chao TK. Automated Quantification of HER2 Amplification Levels Using Deep Learning. IEEE J Biomed Health Inform 2025; 29:333-344. [PMID: 39383086 DOI: 10.1109/jbhi.2024.3476554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
HER2 assessment is necessary for patient selection in anti-HER2 targeted treatment. However, manual assessment of HER2 amplification is time-costly, labor-intensive, highly subjective and error-prone. Challenges in HER2 analysis in fluorescence in situ hybridization (FISH) and dual in situ hybridization (DISH) images include unclear and blurry cell boundaries, large variations in cell shapes and signals, overlapping and clustered cells and sparse label issues with manual annotations only on cells with high confidences, producing subjective assessment scores according to the individual choices on cell selection. To address the above-mentioned issues, we have developed a soft-sampling cascade deep learning model and a signal detection model in quantifying CEN17 and HER2 of cells to assist assessment of HER2 amplification status for patient selection of HER2 targeting therapy to breast cancer. In evaluation with two different kinds of clinical datasets, including a FISH data set and a DISH data set, the proposed method achieves high accuracy, recall and F1-score for both datasets in instance segmentation of HER2 related cells that must contain both CEN17 and HER2 signals. Moreover, the proposed method is demonstrated to significantly outperform seven state of the art recently published deep learning methods, including contour proposal network (CPN), soft label-based FCN (SL-FCN), modified fully convolutional network (M-FCN), bilayer convolutional network (BCNet), SOLOv2, Cascade R-CNN and DeepLabv3+ with three different backbones (p 0.01). Clinically, anti-HER2 therapy can also be applied to gastric cancer patients. We applied the developed model to assist in HER2 DISH amplification assessment for gastric cancer patients, and it also showed promising predictive results (accuracy 97.67 1.46%, precision 96.15 5.82%, respectively).
Collapse
|
2
|
Peng R, Zhang K, Lin G, Li J. Interlaboratory variability of HER2 fluorescence in situ hybridization testing in breast cancer: results of a multicenter proficiency-testing ring study in China. Diagn Pathol 2024; 19:161. [PMID: 39707446 DOI: 10.1186/s13000-024-01588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Accurate detection of human epidermal growth factor receptor 2 (HER2) gene amplification via fluorescence in situ hybridization (FISH) is necessary to determine HER2 status. Although many attempts have been made to increase the consistency of the results, the actual situation still needs to be determined. To investigate the latest interlaboratory variability of HER2 FISH testing for breast cancer, a multicenter proficiency-testing ring study was conducted in China. METHODS A total of ten samples, each exhibiting distinct HER2 signal patterns and genetic heterogeneity, were distributed to 169 laboratories for HER2 FISH analysis. Data comprising both the results of the tests and feedback from questionnaires were compiled for comprehensive evaluation. RESULTS The overall agreement among the participating laboratories was substantial to almost perfect, with a Fleiss' kappa value of 0.765-0.911. However, it is important to note that cases with characteristics of HER2 signals near the critical cutoff range or with genetic heterogeneity showed lower congruence, poorer reproducibility, and higher variability (Fleiss' kappa: 0.582). Our questionnaire showed that 52.2% (86/168) of the participants did not perform validation after their operation procedures or interpretation criteria were updated, and 75.6% (121/160) of the participants did not establish standard interpretation procedures. Since these laboratories showed worse performance (P < 0.05), the lack of validation and interpretation procedures was speculated to be the possible underlying cause. CONCLUSIONS This study presents the latest landscape of interlaboratory variability and accuracy of HER2 FISH testing in China and highlights potential causes for the variability. Despite many years of effort, the standardization of HER2 status determination still has a long way to go.
Collapse
Affiliation(s)
- Rongxue Peng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No.1 Da Hua Road, Dongdan, Beijing, 100730, People's Republic of China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P R China.
| | - Kuo Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No.1 Da Hua Road, Dongdan, Beijing, 100730, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P R China
| | - Guigao Lin
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No.1 Da Hua Road, Dongdan, Beijing, 100730, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P R China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No.1 Da Hua Road, Dongdan, Beijing, 100730, People's Republic of China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P R China.
| |
Collapse
|
3
|
Guo A, Wu C, Cao J, Zhu K, Ding S. Clinical significance of HER2 in urothelial carcinoma and analysis of its correlation with glycolytic metabolic characteristics. Front Mol Biosci 2024; 11:1521889. [PMID: 39822391 PMCID: PMC11736410 DOI: 10.3389/fmolb.2024.1521889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025] Open
Abstract
Objective This study aimed to explore the clinical relevance of Human Epidermal Growth Factor Receptor 2 (HER2) in urothelial carcinoma (UC) and its association with glycolytic metabolic markers, insulin resistance, and beta-cell function, shedding light on potential therapies targeting both HER2 pathways and cancer metabolism. Methods In this retrospective analysis, 237 UC patients from the Departments of Urology and Pathology at Shandong Provincial Hospital were examined. From 1 January 2023, to 1 October 2024, patients underwent HER2 testing using immunohistochemistry (IHC). We investigated the relationships between HER2 expression and metabolic indicators such as the Homeostatic Model Assessment for insulin resistance (HOMA-IR), beta-cell function (HOMA-β), the triglyceride-glucose (TyG) index, and lactate dehydrogenase (LDH) levels. HER2 status was determined using a standardized scoring system from the 2021 Clinical Pathological Expert Consensus on HER2 Testing in UC, China. Statistical analysis followed CDC guidelines, using multivariate logistic regression to assess the independent impacts of HER2 on metabolic traits. Results Of the 237 evaluated UC samples, 87.76% exhibited positive HER2 expression. A significant correlation was found between positive HER2 status, advanced tumor stages, and increased LDH levels, suggesting a link between HER2 expression and heightened glycolytic activity. No significant relationships were observed between HER2 status and TyG levels, HOMA-IR, or HOMA-B. Subgroup analyses confirmed the consistency of the relationship between HER2 expression and LDH levels across different demographics and lifestyle factors. Conclusion Our findings confirm the significant role of HER2 as a prognostic marker and therapeutic target in UC. The association of HER2 positivity with advanced tumor stages and high LDH levels underscores its complex involvement in disease progression. This study highlights the need to explore HER2's biological mechanisms further and pursue combined therapeutic strategies.
Collapse
Affiliation(s)
- Andong Guo
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chenrui Wu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jishuang Cao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kejia Zhu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Li JJX, Tse GM. Immunocytochemical markers, molecular testing and digital cytopathology for aspiration cytology of metastatic breast carcinoma. Cytopathology 2024; 35:218-225. [PMID: 37985397 DOI: 10.1111/cyt.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Fine-needle aspiration cytology (FNAC) is a versatile diagnostic procedure uniquely suited for tissue biopsy of breast carcinomas and axillary metastases and/or recurrences. With the expanding treatment options and accompanying theragnostic tests, it is crucial to recognize the developments on ancillary testing and digital cytopathology techniques related to aspiration cytology of metastatic breast carcinoma. In this review, we aim to summarize and update the evidence of immunocytochemistry, for the detection of carcinoma cells (epithelial markers), confirmation of breast primary (breast-specific markers), assessment of surrogate immunostains (hormone receptors, ki-67 proliferative index and HER2) and theragnostic biomarkers, with discussion on potential diagnostic pitfalls, followed by the application of molecular tests, and digital cytopathologic techniques for assessing metastatic breast carcinoma in cytology.
Collapse
Affiliation(s)
- Joshua J X Li
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
5
|
Antos A, Topolska-Woś A, Woś M, Mitura A, Sarzyńska P, Lipiński T, Kurylcio A, Ziółkowski P, Świtalska M, Tkaczuk-Włach J, Gamian A, Polkowski WP, Staniszewska M. The unique monoclonal antibodies and immunochemical assay for comprehensive determination of the cell-bound and soluble HER2 in different biological samples. Sci Rep 2024; 14:3978. [PMID: 38368450 PMCID: PMC10874376 DOI: 10.1038/s41598-024-54590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
The expression of the HER2 (human epidermal growth factor receptor 2) protein in cancer cells is a well-established cancer marker used for diagnostic and therapeutic purposes in modern treatment protocols, especially in breast cancer. The gold-standard immunohistochemical diagnostic methods with the specific anti-HER2 antibodies are utilized in the clinic to measure expression level of the membrane-bound receptor. However, a soluble extracellular domain (ECD) of HER2 is released to the extracellular matrix, thus the blood assays for HER2 measurements present an attractive way for HER2 level determination. There is a need for accurate and validated assays that can be used to correlate the concentration of the circulating HER2 protein with disease clinical manifestations. Here we describe two monoclonal antibodies binding HER2 with a unique sequence of the complementarity-determining regions that recognize HER2 ECD. Development and validation of the sandwich enzyme-linked immunosorbent assay (ELISA) for quantification of the soluble HER2 in a variety of biological samples is also presented. The assay provides HER2 quantitation within a concentrations range from 1.56 to 100 ng/ml with sensitivity at the level of 0.5 ng/ml that meets the expectations for measurements of HER2 in the blood and tumor tissue samples. The method presents satisfactory intra- and inter-assay precision and accuracy for immunochemical quantification of biomarkers in biological samples. The utility of the generated monoclonal anti-HER2 antibodies has been confirmed for use in the precise measurement of HER2 (both cell-bound and soluble) in several types of biological material, including serum, solid tumor tissue, and cell culture medium. Additionally, the developed immunochemical tools have a potential for HER2 detection, not only in a wide range of sample types but also independently of the sample storage/pre-processing, allowing for comprehensive HER2 analysis in tissue (IHC), cultured cells (immunofluorescence) and blood (ELISA).
Collapse
Affiliation(s)
- Aleksandra Antos
- SDS Optic, EcoTech Complex, Block A, Głęboka 39, 20-612, Lublin, Poland
| | | | - Marcin Woś
- SDS Optic, EcoTech Complex, Block A, Głęboka 39, 20-612, Lublin, Poland
| | - Agata Mitura
- SDS Optic, EcoTech Complex, Block A, Głęboka 39, 20-612, Lublin, Poland
| | - Paulina Sarzyńska
- SDS Optic, EcoTech Complex, Block A, Głęboka 39, 20-612, Lublin, Poland
| | - Tomasz Lipiński
- Lukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland
| | - Andrzej Kurylcio
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13, 20-080, Lublin, Poland
| | - Piotr Ziółkowski
- Department of Pathomorphology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Marta Świtalska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Joanna Tkaczuk-Włach
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, Staszica 4/6, 20-081, Lublin, Poland
| | - Andrzej Gamian
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Wojciech P Polkowski
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13, 20-080, Lublin, Poland
| | - Magdalena Staniszewska
- SDS Optic, EcoTech Complex, Block A, Głęboka 39, 20-612, Lublin, Poland.
- Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland.
| |
Collapse
|
6
|
Zhang Y, Ma W, Li N, Xu Y, Qi N, Yang M, Hou C, Huo D. Microswimmer-Assisted Dual-Signal Sensor for Multiple Targets in Whole Blood. Anal Chem 2023; 95:17256-17262. [PMID: 37963284 DOI: 10.1021/acs.analchem.3c03125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Accurate detection of biomarkers in whole blood is an important aspect of diagnostic testing but remains a challenge due to various interferences. However, using a self-calibrating two-signal strategy offers a solution that can overcome interference caused by experimental and environmental factors. Here, we proposed a novel microswimmer {methylene blue (MB)@ZIF-90@aptamer-HER2/3,3',5,5'-tetramethylbenzidine (TMB)@ZIF-90@aptamer-ER}-dual-signal (electrochemical and fluorescence) homogeneous sensor based on functionalized ZIF nanomaterials for one-step simultaneous detection of human epidermal growth factor receptor-2 (HER2) and estrogen receptor (ER) in whole blood. The proposed one-step ZIF-90 synthesis encapsulates TMB and MB with dual-signal properties. HER2 and ER aptamers adsorbed on MB@ZIF-90/TMB@ZIF-90 function as the gate switches. The microswimmer targets the HER2 and ER with adenosine triphosphate (ATP)-driven motion. When targets are present, aptamers dissociate and reduce the microswimmer's surface negative charge. The microswimmer undergoes attack and decomposition by swimming ATP due to the strong coordination force between ATP and Zn2+, leading to the release of MB and TMB. The negative charges on the surface of indium tin oxide enrich MB and TMB with positive charges, thereby increasing the intensities of electrochemical and fluorescence signals. The detection process was completed within 40 min, and the detection limits for ER and HER2 were 8.1 and 5.7 fg/mL respectively, with a linear range of 0.25-20 pg/mL.
Collapse
Affiliation(s)
- Ya Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Wenhao Ma
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ning Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ying Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
7
|
Liu J, Zhang Z, Bian H, Zhang Y, Ma W, Wang Z, Yin G, Dai D, Chen W, Zhu L, Xu W, Zhang H, Li X. Predictive value of radiomic signature based on 2-[ 18F]FDG PET/CT in HER2 status determination for primary breast cancer with equivocal IHC results. Eur J Radiol 2023; 167:111050. [PMID: 37598640 DOI: 10.1016/j.ejrad.2023.111050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
PURPOSE To evaluate the predictive power of 2-[18F]FDG PET/CT-derived radiomic signature in human epidermal growth factor receptor 2 (HER2) status determination for primary breast cancer (BC) with equivocal immunohistochemistry (IHC) results for HER2. METHODS A total of 154 primary BC with equivocal IHC results for HER2 were retrospectively enrolled in the study. First, the following five conventional PET parameters (SUVmax, SUVmean, SUVpeak, MTV, TLG) were measured and compared between HER2-positive and HER2-negative cohorts. After quantitative radiomic features extraction and reduction, the least absolute shrinkage and selection operator (LASSO) algorithm was used to establish a radiomic signature model. Then, the area under the curve (AUCs) after a receiver operator characteristic (ROC) analysis, accuracy, sensitivity and specificity were calculated and used as the main outcomes. Finally, a total of 37 BC patients from an external institution were included to perform an external validation. RESULTS All the five conventional PET parameters were unable to discriminate between HER2-positive and HER2-negative cohorts for BC (P = 0.104-0.544). Whereas, the developed radiomic signature model was potentially predictive of HER2 status with an of AUC 0.887 (95% confidence interval [CI], 0.824-0.950) in the training cohort and 0.766 (95% CI, 0.616-0.916) in the validation cohort, respectively. For external validation, the AUC for the external test cohort was 0.788 (95% CI, 0.633-0.944). CONCLUSIONS Radiomic signature based on 2-[18F]FDG PET/CT images was capable of non-invasively predicting the HER2 status with a comparable ability to FISH assay, especially for those with equivocal IHC results for HER2.
Collapse
Affiliation(s)
- Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhanlei Zhang
- Department of Nuclear Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510289, China
| | - Haiman Bian
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yufan Zhang
- Department of Nuclear Medicine, Southwest Hospital, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Wenjuan Ma
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Ziyang Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Nuclear Medicine, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wei Chen
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Hong Zhang
- Department of Nuclear Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510289, China.
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
8
|
Ayandipo OO, Ogun GO, Adepoju OJ, Afuwape OO, Fatunla EO, Orunmuyi AT. Immunohistochemical Profiling of HER-2/neu, Steroid Hormone Receptors and KI-67 Biomarkers in A Cohort of Nigerian Women with Breast Cancer. JOURNAL OF THE WEST AFRICAN COLLEGE OF SURGEONS 2023; 13:7-15. [PMID: 37228888 PMCID: PMC10204920 DOI: 10.4103/jwas.jwas_49_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/20/2023] [Indexed: 05/27/2023]
Abstract
Background Progressive improvement in the accuracy of profiling of hormone receptors in breast cancer provides the basis for targeted endocrine therapy, a major pillar of multimodal breast cancer treatment. However, the disparity in findings from comparatively smaller sample-sized studies in West Africa has led to somewhat conflicting conclusions and recommendations. Objectives This study investigates the immunohistochemical (IHC) profile of breast cancer specimens for estrogen receptor (ER), progesterone receptor (PR), human epidermal receptor-2 (HER2)/neu, and Ki-67 in a tertiary hospital in Ibadan, Nigeria over 12 years. Materials and Methods We reviewed 998 IHC reports, documented clinicopathologic parameters, computed patterns of biomarkers, and stratified them based on the American Society of Clinical Oncology/College of American Pathologists recommendations. Descriptive analysis including frequency, mean, and median were generated from the data extracted. Results Out of the 998 cases, 975 (97.7%) were females and 23 (2.3%) were males. The mean age was 48.84 ± 11.99 years. Open biopsies were the most common types of specimens (320, 41.6%): lumpectomy and incisional biopsy of ulcerated, fungating or unresectable tumours. In those cases, 246 (32.0%) were samples of breast-conserving or ablative surgical extirpation (mastectomy/wide local excision/quadrantectomy), and 203 (26.4%) were obtained by core needle biopsies. Invasive ductal carcinoma was the most common histopathological type (673, 94.5%). The majority of graded tumours were intermediate grade (444, 53.5%). Four hundred and sixty-nine (48.4%) were ER positive, 414 (42.8%) were PR positive, and 180 (19.4%) were HER2/neu positive. Three hundred and thirty-four (34.0%) were triple-negative. Eighty-nine cases had Ki-67 staining done, and of these 61 (68.5%) had positive nuclear staining. Conclusion Steroid hormone receptors and HER-2/neu proportions in our cohort are likely to be more representative than the widely varied figures hitherto reported in the sub-region. We advocate routine IHC analysis of breast cancer samples as a guide to personalized endocrine therapy.
Collapse
Affiliation(s)
- Omobolaji O. Ayandipo
- Department of Surgery, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| | - Gabriel O. Ogun
- Department of Pathology, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| | - Olalekan J. Adepoju
- Department of Surgery, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| | - Oludolapo O. Afuwape
- Department of Surgery, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| | - Ebenezer O. Fatunla
- Department of Pathology, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| | - Akintunde T. Orunmuyi
- Department of Radiation Oncology, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| |
Collapse
|
9
|
A Soft Label Deep Learning to Assist Breast Cancer Target Therapy and Thyroid Cancer Diagnosis. Cancers (Basel) 2022; 14:cancers14215312. [PMID: 36358732 PMCID: PMC9657740 DOI: 10.3390/cancers14215312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
According to the World Health Organization Report 2022, cancer is the most common cause of death contributing to nearly one out of six deaths worldwide. Early cancer diagnosis and prognosis have become essential in reducing the mortality rate. On the other hand, cancer detection is a challenging task in cancer pathology. Trained pathologists can detect cancer, but their decisions are subjective to high intra- and inter-observer variability, which can lead to poor patient care owing to false-positive and false-negative results. In this study, we present a soft label fully convolutional network (SL-FCN) to assist in breast cancer target therapy and thyroid cancer diagnosis, using four datasets. To aid in breast cancer target therapy, the proposed method automatically segments human epidermal growth factor receptor 2 (HER2) amplification in fluorescence in situ hybridization (FISH) and dual in situ hybridization (DISH) images. To help in thyroid cancer diagnosis, the proposed method automatically segments papillary thyroid carcinoma (PTC) on Papanicolaou-stained fine needle aspiration and thin prep whole slide images (WSIs). In the evaluation of segmentation of HER2 amplification in FISH and DISH images, we compare the proposed method with thirteen deep learning approaches, including U-Net, U-Net with InceptionV5, Ensemble of U-Net with Inception-v4, Inception-Resnet-v2 encoder, and ResNet-34 encoder, SegNet, FCN, modified FCN, YOLOv5, CPN, SOLOv2, BCNet, and DeepLabv3+ with three different backbones, including MobileNet, ResNet, and Xception, on three clinical datasets, including two DISH datasets on two different magnification levels and a FISH dataset. The result on DISH breast dataset 1 shows that the proposed method achieves high accuracy of 87.77 ± 14.97%, recall of 91.20 ± 7.72%, and F1-score of 81.67 ± 17.76%, while, on DISH breast dataset 2, the proposed method achieves high accuracy of 94.64 ± 2.23%, recall of 83.78 ± 6.42%, and F1-score of 85.14 ± 6.61% and, on the FISH breast dataset, the proposed method achieves high accuracy of 93.54 ± 5.24%, recall of 83.52 ± 13.15%, and F1-score of 86.98 ± 9.85%, respectively. Furthermore, the proposed method outperforms most of the benchmark approaches by a significant margin (p <0.001). In evaluation of segmentation of PTC on Papanicolaou-stained WSIs, the proposed method is compared with three deep learning methods, including Modified FCN, U-Net, and SegNet. The experimental result demonstrates that the proposed method achieves high accuracy of 99.99 ± 0.01%, precision of 92.02 ± 16.6%, recall of 90.90 ± 14.25%, and F1-score of 89.82 ± 14.92% and significantly outperforms the baseline methods, including U-Net and FCN (p <0.001). With the high degree of accuracy, precision, and recall, the results show that the proposed method could be used in assisting breast cancer target therapy and thyroid cancer diagnosis with faster evaluation and minimizing human judgment errors.
Collapse
|
10
|
Mishra S, Kachhawa P, Jain AK, Thakur RR, Chaturvedi N. High sensitivity label-free detection of HER2 using an Al-GaN/GaN high electron mobility transistor-based biosensor. LAB ON A CHIP 2022; 22:4129-4140. [PMID: 36129428 DOI: 10.1039/d2lc00349j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work reports rapid, label-free and specific detection of the HER2 antigen using a gallium nitride (GaN) high electron mobility transistor (HEMT). Thiol-based chemistry has been utilized to immobilize the corresponding HER2 antibody in the sensing area of the sensor. The formation of a gold-sulfur complex has been confirmed through Raman spectroscopy, giving a peak at around a wavelength of 260 cm-1. Fourier transform infrared spectroscopy and atomic force microscopy (AFM) also reveal the functionalization of thiol and free carboxylic groups. On-chip enzyme-linked immunosorbent assay has been utilized to confirm immobilization of antibody receptors on the sensing area surface, followed by current-voltage measurement. Morphology of the sensing area using AFM and electrical characterization of the sensor have been recorded before and after each functionalization process step. The sensor shows detection of the HER2 antigen in a broad range of 0.7 pg ml-1 to 10 μg ml-1i.e., (5 × 10-15 to 6 × 10-8 M). A long-time study and reusability aspect of the sensor have also been investigated that show good viability of the sensor. For the first time, a three-binding-site model based on the Langmuir isotherm has been developed for HER2 detection using GaN-HEMTs with three dissociation constants, i.e., 7 × 10-10, 8.8 × 10-11, and 7.2 × 10-9 M, respectively.
Collapse
Affiliation(s)
- Shivanshu Mishra
- CSIR - Central Electronics Engineering Research Institute, Pilani, Rajasthan, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Pharyanshu Kachhawa
- CSIR - Central Electronics Engineering Research Institute, Pilani, Rajasthan, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Amber Kumar Jain
- CSIR - Central Electronics Engineering Research Institute, Pilani, Rajasthan, India.
| | - Rajiv Ranjan Thakur
- CSIR - Central Electronics Engineering Research Institute, Pilani, Rajasthan, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Nidhi Chaturvedi
- CSIR - Central Electronics Engineering Research Institute, Pilani, Rajasthan, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
11
|
Bragina OD, Chernov VI, Deyev SM, Tolmachev VM. Clinical possibilities of HER2-positive breast cancer diagnosis using alternative scaffold proteins. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-132-139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HER2-positive breast cancer occurs in 15–20% of breast cancer patients and is associated primarily with a poor prognosis of the disease and the need for highly specific targeted therapy. Despite the clinical importance of determining HER2/neu, traditional diagnostic methods have their disadvantages and require the study of new additional research techniques.The information presented in this review makes it possible to consider current trends in the radionuclide diagnosis of HER2-positive breast cancer using the latest class of alternative scaffold proteins and to consider various aspects of their use in clinical practice.
Collapse
Affiliation(s)
- O. D. Bragina
- Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; National Research Tomsk Polytechnic University
| | - V. I. Chernov
- Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; National Research Tomsk Polytechnic University
| | - S. M. Deyev
- National Research Tomsk Polytechnic University; Shemyakin – Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - V. M. Tolmachev
- National Research Tomsk Polytechnic University; Uppsala University
| |
Collapse
|
12
|
Aznab M, Izadi B, Amirian F, Khazaei S, Madani SH, Ramezani M. Comparison of Immunohistochemical Methods (IHC) and Fluorescent in Situ Hybridization (FISH) in the Detection of HER 2 /Neu Gene in Kurdish Patients with Breast Cancer in Western Iran. Int J Hematol Oncol Stem Cell Res 2022; 16:217-223. [PMID: 36883108 PMCID: PMC9985809 DOI: 10.18502/ijhoscr.v16i4.10879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/09/2021] [Indexed: 03/09/2023] Open
Abstract
Background: Amplification of HER2 is an important factor in the diagnosis and treatment of breast cancer. Fluorescence in situ hybridization (FISH) is the gold standard for the detection of HER2-positive tumors. However, the Immunohistochemistry (IHC) assay for the detection of HER2 is more popular in the preclinical laboratory since it is faster and more economical compared to the FISH test. Materials and Methods: In this study, the status of HER2 amplification is determined by the FISH test using 44 formalin-fixed paraffin-embedded tissue samples and comparing the results with the IHC test to determine the reliability of the IHC test. Also, the relationship between HER2 amplification and estrogen, progesterone receptors, P53, age, menopausal status, family history of breast cancer, tumor size, and histological grade were determined. Results: Examination of HER2 in 44 samples by IHC showed 3 (6.8%) and 5 (11.4%) samples were positive (IHC 3+) and negative (IHC 0, 1+), respectively, and 36 (81.8%) samples were ambiguous (IHC 2 +), but examination by FISH showed 21 samples (47, 7%) were positive and 23 samples (52, 3%) were negative. There was a significant difference between IHC and FISH in the detection of HER2 amplification (P=0.019). Also, there was a significant difference between HER2 amplification and menopause in patients (P=0.035). Conclusion: This result demonstrated that the IHC test is not a reliable test to determine HER2 amplification. This study represented that FISH analysis is more reliable than IHC and must be preferentially performed for all cases, especially for HER2 +2 cases for whom the IHC result is 2+.
Collapse
Affiliation(s)
- Mozafar Aznab
- Department of Internal Medicine, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Babak Izadi
- Molecular Pathology Research Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Amirian
- Molecular Pathology Research Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Khazaei
- Molecular Pathology Research Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hamid Madani
- Molecular Pathology Research Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mazaher Ramezani
- Molecular Pathology Research Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Ehzari H, Safari M. A Sandwich-Type Electrochemical Immunosensor Using Antibody-Conjugated Pt-Doped CdTe QDs as Enzyme-Free Labels for Sensitive HER2 Detection Based on a Magnetic Framework. Front Chem 2022; 10:881960. [PMID: 35755254 PMCID: PMC9218600 DOI: 10.3389/fchem.2022.881960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor markers are highly sensitive and play an important role in the early diagnosis of cancer. We developed an electrochemical sandwich-type immunosensor that detects human epidermal growth factor receptor 2 (HER2). Magnetic framework (Fe3O4@ TMU-24) and AuNPs (Fe3O4@ TMU-24 -AuNPs) are utilized in this sensing platform. In addition to their high specific surface area and excellent biocompatibility, Fe3O4@ TMU-24-AuNPs nanocomposites exhibited excellent electrocatalytic properties. The primary antibody of HER2 (Ab1) was immobilized on the surface of the Fe3O4@ TMU-24-AuNPs. In this sensing method, palatine doped to CdTe QDs (Pt: CdTe QDs) is utilized as a novel labeling signal biomolecule (secondary antibodies). Pt: CdTe QDs own good biocompatibility and excellent catalytic performance. The amperometric technique was used to achieve the quantitative determination of HER2 by using a sandwich-type electrochemical immunosensor. Under the optimum conditions, the dependency of the current signal and HER2 concentration showed a linear region from 1 pg ml−1–100 ng ml−1 with 0.175 pg ml−1 as the limit of detection. This biosensing device also showed long stability and good reproducibility, which can be used for the quantitative assay of HER2.
Collapse
Affiliation(s)
- Hosna Ehzari
- Department of Chemical Engineering, Kermanshah University of Technology, Kermanshah, Iran
| | - Meysam Safari
- Department of Chemical Engineering, Kermanshah University of Technology, Kermanshah, Iran
| |
Collapse
|
14
|
Rui T, Xiang A, Guo J, Tang N, Lin X, Jin X, Liu J, Zhang X. Mir-4728 is a Valuable Biomarker for Diagnostic and Prognostic Assessment of HER2-Positive Breast Cancer. Front Mol Biosci 2022; 9:818493. [PMID: 35655761 PMCID: PMC9152170 DOI: 10.3389/fmolb.2022.818493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer remains one of the most common malignancies in female cancer patients. The rapid and accurate diagnosis of human epidermal growth factor receptor 2 (HER2) status is indispensable for breast cancer patients. The pre-miR-4728 (mir-4728) is encoded within an intron of the HER2 gene. We showed here that mir-4728 was the most significantly upregulated pre-miRNA in HER2-positive breast cancer patients (fold-change: 4.37), and it could serve as a strong diagnostic factor for the HER2 status in breast cancer patients (p < 0.0001). Moreover, mir-4728 was positively correlated with tumor recurrence and appeared to be a critical independent risk factor of tumor recurrence in patients with high tumor burden (HR: 7.558, 95% CI:1.842-31.006, p = 0.005). Remarkably, HER2-positive patients with higher mir-4728 expression levels had better drug responses to targeted therapies. Furthermore, estrogen receptor (ESR), the predictive marker for endocrine therapies, was found to be the direct target of miR-4728-3p. Taken together, our results supported the potential role of mir-4728 in the diagnosis of HER2 status and the prognostic assessment of HER2-positive patients in response to targeted therapies.
Collapse
Affiliation(s)
- Tao Rui
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- *Correspondence: Tao Rui, ; Xiaobing Zhang,
| | - Aizhai Xiang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jufeng Guo
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Tang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Lin
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Jin
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Liu
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobing Zhang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Tao Rui, ; Xiaobing Zhang,
| |
Collapse
|
15
|
Bragina OD, Deyev SM, Chernov VI, Tolmachev VM. The Evolution of Targeted Radionuclide Diagnosis of HER2-Positive Breast Cancer. Acta Naturae 2022; 14:4-15. [PMID: 35923562 PMCID: PMC9307982 DOI: 10.32607/actanaturae.11611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
This review examines the evolution of the radionuclide diagnosis of HER2-positive breast cancer using various compounds as a targeting module in clinical practice: from full-length antibodies to a new group of small synthetic proteins called alternative scaffold proteins. This topic is of especial relevance today in view of the problems attendant to the detection of breast cancer with HER2/neu overexpression, which, in most cases, introduce errors in the treatment of patients. The results of clinical studies of radiopharmaceuticals based on affibody molecules, ADAPTs, and DARPins for SPECT and PET have demonstrated good tolerability of the compounds, their rapid excretion from the body, and the possibility to differentiate tumor sites depending on the HER2/neu status. This indicates that targeted radionuclide diagnosis holds promise and the need to continue research in this direction.
Collapse
Affiliation(s)
- O D Bragina
- Tomsk National Research Medical Center of the Russian Academy of Sciences Cancer Research institute, Tomsk, 634009 Russia
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
| | - S M Deyev
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - V I Chernov
- Tomsk National Research Medical Center of the Russian Academy of Sciences Cancer Research institute, Tomsk, 634009 Russia
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
| | - V M Tolmachev
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
- Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Jedrzkiewicz J, Sirohi D, Uvejzovic N, Gulbahce HE. RAI1 alternate probe identifies additional gastroesophageal adenocarcinoma cases as amplified following equivocal HER2 fluorescence in situ hybridization testing: experience from a national reference laboratory. Mod Pathol 2022; 35:549-553. [PMID: 34663915 DOI: 10.1038/s41379-021-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
The College of American Pathologists/American Society of Clinical Oncology recommends HER2 testing prior to initiation of targeted therapy for patients with advanced Gastroesophageal adenocarcinoma (GEA), using immunohistochemistry (IHC) followed by fluorescence in situ hybridization (FISH) in cases with an equivocal (score 2 + ) result on IHC. The FISH results are considered indeterminate if the HER2/CEP17 ratio is <2.0 with an average CEP17 copy number of ≥3.0 and a HER2 copy number ≥4.0 and ≤6.0 after counting additional tumor cells. Indeterminate results may be resolved by using an alternative chromosome 17 probe such as RAI1. The purpose of this study is to review our experience with RAI1 alternate probe in HER2 FISH testing of GEA in a large reference laboratory setting. Esophageal, gastroesophageal, and gastric adenocarcinomas received for HER2 FISH testing in our lab between 9/2018 and 1/2020 were included. HER2/CEP17 and HER2/ RAI1 ratios, and the average HER2, CEP17, RAI1 signals per cell were recorded. 328 GEA had HER2 testing performed in our lab during the study period. 101 (30.8%) were amplified, 169 (51.5%) were non-amplified and 58 (17.7%) were indeterminate. Following RAI1 testing, 42 (72.4%) of 58 indeterminate cases were reclassified as non-amplified and 16 (27.6%) were reclassified as amplified, increasing the total amplified cases to 117 (35.7%). The correlation between the average CEP17 and RAI1 copy number for all cases was weak (R2 = 0.095). In summary, using the alternate probe RAI1 reclassifies 27.6% of original HER2 FISH indeterminate gastroesophageal carcinomas as amplified, which makes them eligible for targeted therapies.
Collapse
Affiliation(s)
| | - Deepika Sirohi
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | | - H Evin Gulbahce
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Wang L, Asirvatham JR, Ma Y, Reisenbichler ES, Jorns JM. HER-2/neu-positive breast cancer neoadjuvant chemotherapy response after implementation of 2018 ASCO/CAP focused update. Breast J 2021; 27:631-637. [PMID: 34018281 DOI: 10.1111/tbj.14241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
Human Epidermal Growth Factor Receptor 2 (HER2), a routinely tested breast cancer marker, is associated with worse prognosis yet increased sensitivity to targeted neoadjuvant therapy (NAT) in breast cancer patients. The presence of HER2 in breast carcinoma can be detected with either immunohistochemistry (IHC) or in situ hybridization (ISH). In this study, we examine the relationship between clinicopathological features, HER2 detection method (IHC vs ISH), and prognostic outcomes in NAT-treated HER2-positive breast cancer patients. We included 99 HER2-positive patients from three academic institutions following 2018 HER2 testing updates and conducted a retrospective correlational study. Seventy-one (72%) were HER2-positive by IHC and 28 (28%) were positive following reflexive ISH. Multivariate analysis showed biomarker status to be significantly associated with pathologic complete response (pCR) (p = 0.003), Residual Cancer Burden (RCB) (p = 0.007), and tumor size downstaging (p = 0.002) and HER2 detection method of IHC to be significantly associated with pCR (p = 0.05), RCB (p = 0.004), and nodal downstaging (p= 0.03). In conclusion, HER2 detection method and biomarker subtype allow for further prognostic stratification of HER2-positive patients when 2018 American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guideline updates are applied.
Collapse
Affiliation(s)
- Lin Wang
- Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Yanlin Ma
- University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
18
|
Bekaii-Saab TS, Bridgewater J, Normanno N. Practical considerations in screening for genetic alterations in cholangiocarcinoma. Ann Oncol 2021; 32:1111-1126. [PMID: 33932504 DOI: 10.1016/j.annonc.2021.04.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) encompasses diverse epithelial tumors historically associated with poor outcomes due to an aggressive disease course, late diagnosis, and limited benefit of standard chemotherapy for advanced disease. Comprehensive molecular profiling has revealed a diverse landscape of genomic alterations as oncogenic drivers in CCA. TP53 mutations, CDKN2A/B loss, and KRAS mutations are the most common genetic alterations in CCA. However, intrahepatic CCA (iCCA) and extrahepatic CCA (eCCA) differ substantially in the frequency of many alterations. This includes actionable alterations, such as isocitrate dehydrogenase 1 (IDH1) mutations and a large variety of FGFR2 rearrangements, which are found in up to 29% and ∼10% of patients with iCCA, respectively, but are rare in eCCA. FGFR2 rearrangements are currently the only genetic alteration in CCA for which a targeted therapy, the fibroblast growth factor receptor 1-3 inhibitor pemigatinib, has been approved. However, favorable phase III results for IDH1-targeted therapy with ivosidenib in iCCA have been published, and numerous other alterations are actionable by targeted therapies approved in other indications. Recent advances in next-generation sequencing (NGS) have led to the development of assays that allow comprehensive genomic profiling of large gene panels within 2-3 weeks, including in vitro diagnostic tests approved in the United States. These assays vary regarding acceptable source material (tumor tissue or peripheral whole blood), genetic source for library construction (DNA or RNA), target selection technology, gene panel size, and type of detectable genomic alterations. While some large commercial laboratories offer rapid and comprehensive genomic profiling services based on proprietary assay platforms, clinical centers may use commercial genomic profiling kits designed for clinical research to develop their own customized laboratory-developed tests. Large-scale genomic profiling based on NGS allows for a detailed and precise molecular diagnosis of CCA and provides an important opportunity for improved targeted treatment plans tailored to the individual patient's genetic signature.
Collapse
Affiliation(s)
| | - J Bridgewater
- University College London Cancer Institute, London, UK
| | - N Normanno
- Istituto Nazionale Tumori 'Fondazione Giovanni Pascale' IRCCS, Naples, Italy
| |
Collapse
|
19
|
Sun H, Chen H, Crespo J, Tang G, Robinson M, Lim B, Şahin AA. Clinicopathological Features of Breast Cancer with Polysomy 17 and Its Response to Neoadjuvant Chemotherapy. Eur J Breast Health 2021; 17:128-136. [PMID: 33870112 DOI: 10.4274/ejbh.galenos.2021.2021-2-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022]
Abstract
Objective The interpretation of human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) results may be challenging in tumors with polysomy 17, which is defined as increased signals of chromosome enumeration probe 17 (CEP17). The effect of polysomy 17 on HER2 protein expression and tumor treatment response has not been established. In this retrospective study, we investigated the clinicopathological features of breast cancer with polysomy 17 and determined the tumors' response to neoadjuvant chemotherapy (NACT). Materials and Methods The study included 366 patients with primary breast cancer whose tumors had a CEP17 count of ≥ three/nucleus based on HER2 FISH studies. These cases were categorized according to HER2/CEP17 ratio and HER2 signals/nucleus using the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) guidelines. We compared the clinicopathological characteristics and tumor response to NACT among different groups. Results There was a statistically significant difference in patients' age at diagnosis, tumor pathological grade, estrogen and progesterone receptor status, and NACT response among different HER2 FISH groups. Polysomy 17 tumors in group 1 had a higher rate of response (pathological complete response and residual cancer burden class I) to NACT containing anti-HER2 reagent than did those in other groups (p = 0.004), whereas polysomy 17 tumors in group 3 did not show a significant response to anti-HER2 treatment. Conclusion Polysomy 17 tumors in different HER2 FISH groups have different pathological features and respond to NACT differently. These results may help us identify patients who will benefit from anti-HER2 therapy.
Collapse
Affiliation(s)
- Hongxia Sun
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James Crespo
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guilin Tang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa Robinson
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ayşegül A Şahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
20
|
Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite. Mikrochim Acta 2021; 188:78. [DOI: 10.1007/s00604-021-04735-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
|
21
|
Label-free electrochemical immunosensor for sensitive HER2 biomarker detection using the core-shell magnetic metal-organic frameworks. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114722] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Hoda RS, Bowman AS, Zehir A, Razavi P, Brogi E, Ladanyi M, Arcila ME, Wen HY, Ross DS. Next-generation assessment of human epidermal growth factor receptor 2 gene (ERBB2) amplification status in invasive breast carcinoma: a focus on Group 4 by use of the 2018 American Society of Clinical Oncology/College of American Pathologists HER2 testing guideline. Histopathology 2020; 78:498-507. [PMID: 32841416 DOI: 10.1111/his.14241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 01/02/2023]
Abstract
AIMS The American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) updated the testing guideline in 2018 to address issues arising from uncommon human epidermal growth factor receptor 2 (HER2) fluorescence in-situ hybridisation (FISH) results according to the 2013 guideline. Next-generation sequencing (NGS) may be used to better classify patients. The aim of this study was to assess the ERBB2 amplification status of invasive breast carcinoma with equivocal HER2 immunohistochemistry (IHC) results by using NGS, focusing on Group 4 (HER2/CEP17 ratio of <2.0; average HER2 signals/cell of ≥4.0 and <6.0). METHODS AND RESULTS We retrospectively reviewed HER2 FISH and NGS data of HER2 IHC-equivocal breast carcinomas at our centre between January 2009 and September 2019, wherein all three assays were performed on the same tissue block, and compared HER2 FISH results, according to the 2018 ASCO/CAP guideline, and the ERBB2 amplification status determined with NGS. A total of 52 HER2 FISH and NGS results from 51 patients with HER2 IHC-equivocal breast carcinomas were reviewed. The cohort included eight cases classified as 2018 ASCO/CAP in-situ hybridisation Group 1, three classified as Group 2, three classified as Group 3, 14 classified as Group 4, and 24 classified as Group 5. Thirteen of 14 (92.9%) Group 4 (HER2-negative) cases were classified as ERBB2-non-amplified by the use of NGS; the discordant case was later classified as Group 1 with alternative sample FISH testing. NGS revealed no significant difference in somatic mutations or copy number alterations between Groups 4 and 5. CONCLUSIONS Our NGS findings support the reclassification of HER2 FISH-equivocal cases as HER2-negative under the 2018 ASCO/CAP guideline.
Collapse
Affiliation(s)
- Raza S Hoda
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anita S Bowman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dara S Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
23
|
Chrzanowska NM, Kowalewski J, Lewandowska MA. Use of Fluorescence In Situ Hybridization (FISH) in Diagnosis and Tailored Therapies in Solid Tumors. Molecules 2020; 25:molecules25081864. [PMID: 32316657 PMCID: PMC7221545 DOI: 10.3390/molecules25081864] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a standard technique used in routine diagnostics of genetic aberrations. Thanks to simple FISH procedure is possible to recognize tumor-specific abnormality. Its applications are limited to designed probe type. Gene rearrangements e.g., ALK, ROS1 reflecting numerous translocational partners, deletions of critical regions e.g., 1p and 19q, gene fusions e.g., COL1A1-PDGFB, genomic imbalances e.g., 6p, 6q, 11q and amplifications e.g., HER2 are targets in personalized oncology. Confirmation of genetic marker is frequently a direct indication to start specific, targeted treatment. In other cases, detected aberration helps pathologists to better distinguish soft tissue sarcomas, or to state a final diagnosis. Our main goal is to show that applying FISH to formalin-fixed paraffin-embedded tissue sample (FFPE) enables assessing genomic status in the population of cells deriving from a primary tumor or metastasis. Although many more sophisticated techniques are available, like Real-Time PCR or new generation sequencing, FISH remains a commonly used method in many genetic laboratories.
Collapse
Affiliation(s)
- Natalia Magdalena Chrzanowska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland;
| | - Janusz Kowalewski
- Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland;
| | - Marzena Anna Lewandowska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland;
- Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland;
- Correspondence: ; Tel.: +48-52-3743030
| |
Collapse
|
24
|
Press MF, Seoane JA, Curtis C, Quinaux E, Guzman R, Sauter G, Eiermann W, Mackey JR, Robert N, Pienkowski T, Crown J, Martin M, Valero V, Bee V, Ma Y, Villalobos I, Slamon DJ. Assessment of ERBB2/HER2 Status in HER2-Equivocal Breast Cancers by FISH and 2013/2014 ASCO-CAP Guidelines. JAMA Oncol 2019; 5:366-375. [PMID: 30520947 PMCID: PMC6439848 DOI: 10.1001/jamaoncol.2018.6012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance The 2013/2014 American Society of Clinical Oncology and College of American Pathologists (ASCO-CAP) guidelines for HER2 testing by fluorescence in situ hybridization (FISH) designated an "equivocal" category (average HER2 copies per tumor cell ≥4-6 with HER2/CEP17 ratio <2.0) to be resolved as negative or positive by assessments with alternative control probes. Approximately 4% to 12% of all invasive breast cancers are characterized as HER2-equivocal based on FISH. Objective To evaluate the following hypotheses: (1) genetic loci used as alternative controls are heterozygously deleted in a substantial proportion of breast cancers; (2) use of these loci for assessment of HER2 by FISH leads to false-positive assessments; and (3) these HER2 false-positive breast cancer patients have outcomes that do not differ from clinical outcomes for patients with HER2-negative breast cancer. Design, Setting, and Participants We retrospectively assessed the use of chromosome 17 p-arm and q-arm alternative control genomic sites (TP53, D17S122, SMS, RARA, TOP2A), as recommended by the 2013/2014 ASCO-CAP guidelines for HER2 testing, in patients whose data were available through Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and whose tissues were available through the Breast Cancer International Research Group clinical trials. We used data from an international cohort database of invasive breast cancers (1980 participants) and international clinical trial of adjuvant chemotherapy in invasive, node-positive breast cancer patients. Main Outcomes and Measures The primary objectives were to (1) assess frequency of heterozygous deletions in chromosome 17 genomic sites used as FISH internal controls for evaluation of HER2 status among HER2-equivocal cancers; (2) characterize impact of using deleted sites for determination of HER2-to-internal-control-gene ratios; (3) assess HER2 protein expression in each subgroup; and (4) compare clinical outcomes for each subgroup. Results Of the 1980 patients in METABRIC,1915 patients were fully evaluated. In addition, 100 HER2-equivocal breast cancers by FISH and 100 comparator FISH-negative breast cancers from the BCIRG-005 trial were analyzed. Heterozygous deletions, particularly in specific p-arm sites, were common in both HER2-amplified and HER2-not-amplified breast cancers. Use of alternative control probes from these regions to assess HER2 by FISH in HER2-equivocal as well as HER2-not-amplified breast cancers resulted in high rates of false-positive ratios (HER2-to-alternative control ratio ≥2.0) owing to heterozygous deletions of control p-arm genomic sites used in ratio denominators. Misclassification of HER2 status was observed not only in breast cancers with ASCO-CAP equivocal status but also in breast cancers with an average of fewer than 4.0 HER2 copies per tumor cell when using alternative control probes. Conclusions and Relevance The indiscriminate use of alternative control probes to calculate HER2 FISH ratios in HER2-equivocal breast cancers may lead to false-positive interpretations of HER2 status resulting from unrecognized heterozygous deletions in 1 or more of these alternative control genomic sites and incorrect HER2 ratio determinations.
Collapse
Affiliation(s)
- Michael F Press
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles
| | - Jose A Seoane
- Departments of Medicine & Genetics, Stanford University, Stanford, California
| | - Christina Curtis
- Departments of Medicine & Genetics, Stanford University, Stanford, California
| | - Emmanuel Quinaux
- International Drug Development Institute, Louvain-la-Neuve, Belgium
| | - Roberta Guzman
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles
| | | | | | - John R Mackey
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Nicholas Robert
- Virginia Cancer Specialists/US Oncology Research Network, Fairfax, Virginia
| | | | - John Crown
- Irish Cooperative Oncology Research Group, St Vincent's University Hospital, Dublin, Ireland
| | - Miguel Martin
- Instituto de Investigación Sanitaria Gregorio Marañón, CIBERONC, GEICAM, Universidad Complutense, Madrid, Spain
| | - Vicente Valero
- The University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Valerie Bee
- Cancer International Research Group/Translational Research in Oncology, Paris, France
| | - Yanling Ma
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles
| | - Ivonne Villalobos
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles
| | - Dennis J Slamon
- Department of Medicine, Geffen School of Medicine at University of California Los Angeles, Los Angeles
| |
Collapse
|
25
|
Mahtani R, Holmes FA, Badve S, Caldera H, Coleman R, Mamounas E, Kalinsky K, Kittaneh M, Lower E, Pegram M, Press MF, Rugo HS, Schwartzberg L, Vogel C. A Roundtable Discussion of the Breast Cancer Therapy Expert Group (BCTEG): Clinical Developments and Practice Guidance on Human Epidermal Growth Factor Receptor 2 (HER2)-positive Breast Cancer. Clin Breast Cancer 2019; 20:e251-e260. [PMID: 32139271 DOI: 10.1016/j.clbc.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/17/2019] [Accepted: 08/12/2019] [Indexed: 11/26/2022]
Abstract
Expression of human epidermal growth factor receptor 2 (HER2) in breast cancer defines a subset of patients (∼15%-20%) who are candidates for anti-HER2 therapies, most notably, trastuzumab, pertuzumab, antibody drug conjugates (eg, T-DM1), and tyrosine kinase inhibitor (TKI) drugs (eg, lapatinib and neratinib), all of which have dramatically changed the prognosis for this aggressive subtype of breast cancer. A roundtable meeting of the Breast Cancer Therapy Expert Group (BCTEG) was convened in March 2018 in an effort to discuss and clarify, from the perspective of the practicing community oncologist, recent developments in the diagnosis and treatment of HER2-positive (HER2+) breast cancer. Members of the group selected 4 key topics for discussion prior to the meeting, including diagnosis of HER2+ disease, and its treatment in the neoadjuvant, adjuvant, and metastatic settings. Approved testing methods, such as immunohistochemistry and fluorescence in situ hybridization, are used to demonstrate overexpression and/or amplification of HER2 in breast tumors, and established clinical guidelines are used to appropriately define treatment plans for patients with HER2+ disease. The panel acknowledges a range of treatment options now available for treatment of HER2+ breast cancer in the neoadjuvant, adjuvant, and advanced/metastatic settings, although it is noted that many controversies remain, including the optimal sequence of therapies, the most appropriate treatment(s) for subsets of patients with HER2+ disease (eg, hormone receptor-negative or -positive/HER2+), and uncertainties surrounding the diagnosis and definition of HER2+ disease. The current report summarizes the discussion of the BCTEG panel on this topic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hope S Rugo
- University of California San Francisco, San Francisco, CA
| | | | - Charles Vogel
- University of Miami Health System, Deerfield Beach, FL
| | | |
Collapse
|
26
|
Abstract
Fluorescence in situ hybridization (FISH) is used to examine chromosomal abnormalities and DNA damage. Developed in the early 1980s, this technique remains an important tool for understanding chromosome biology and diagnosing genetic disease and cancer. Use of FISH on metaphase chromosomes allows the visualization of chromosomal abnormalities at specific loci. Here, we describe methods for creating metaphase chromosome spreads and the use of telomere FISH probes to detect chromosome ends.
Collapse
Affiliation(s)
- P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
27
|
Shen C, Liu S, Li X, Zhao D, Yang M. Immunoelectrochemical detection of the human epidermal growth factor receptor 2 (HER2) via gold nanoparticle-based rolling circle amplification. Mikrochim Acta 2018; 185:547. [DOI: 10.1007/s00604-018-3086-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022]
|