1
|
Yu Z, Fu J, Mantareva V, Blažević I, Wu Y, Wen D, Battulga T, Wang Y, Zhang J. The role of tumor-derived exosomal LncRNA in tumor metastasis. Cancer Gene Ther 2025; 32:273-285. [PMID: 40011710 DOI: 10.1038/s41417-024-00852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 02/28/2025]
Abstract
Tumor metastasis regulated by multiple complicated pathways is closely related to variations in the tumor microenvironment. Exosomes can regulate the tumor microenvironment through various mechanisms. Exosomes derived from tumor cells carry a variety of substances, including long non-coding RNAs (lncRNAs), play important roles in intercellular communication and act as critical determinants influencing tumor metastasis. In this review, we elaborate on several pivotal processes through which lncRNAs regulate tumor metastasis, including the regulation of epithelial‒mesenchymal transition, promotion of angiogenesis and lymphangiogenesis, enhancement of the stemness of tumor cells, and evasion of immune clearance. Additionally, we comprehensively summarized a diverse array of potential tumor-derived exosomal lncRNA biomarkers to facilitate accurate diagnosis and prognosis in a clinical setting.
Collapse
Affiliation(s)
- Zhile Yu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Jiali Fu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113, Sofia, Bulgaria
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Yusong Wu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Dianchang Wen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Yuqing Wang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510140, PR China.
| | - Jianye Zhang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China.
| |
Collapse
|
2
|
Attar FA, Irani S, Oloomi M, Bolhassani A, Geranpayeh L, Atyabi F. Doxorubicin loaded exosomes inhibit cancer-associated fibroblasts growth: in vitro and in vivo study. Cancer Cell Int 2025; 25:72. [PMID: 40016747 PMCID: PMC11869484 DOI: 10.1186/s12935-025-03689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Cancer-associated fibroblast cells (CAFs) play a key role in the breast cancer (BC) microenvironment that induces resistance to chemotherapy. Adipose mesenchymal stem cells (ADMSCs) derived exosomes were utilized to deliver the doxorubicin (Dox) to BC cell lines (MDA-MB-231, MCF-7) and CAFs in both mono and co-culture systems. Immunocytochemistry (ICC) for VIMENTIN and flow cytometry for the CD45, CD34, CD73, and CD90 markers were used to confirm the phenotypic characteristics of CAFs and MSC cells. Dox was loaded into ADMSCs-derived exosomes (Exo-Dox) through sonication and its loading wasa confirmed by transmission electron microscope (TEM). Compared to free Dox, Exo-Dox showed a higher efficiency in inducing apoptosis and inhibiting growth and migration in co-culture cells with CAFs (P < 0.05). The up-regulation of H19 and UCA1 lncRNAs, associated with chemoresistance, was confirmed using real-time PCR in CAF-derived breast cancer patients, CAF-derived exosomes, and exosome-derived patient serums. H19 and UCA1 expression levels were significantly down-regulated in MDA-MB-231, MCF-7, and co-cultures of MDA-MB-231 and MCF-7 cells with CAFs that received Exo-Dox treatment. In vivo results indicated that ADMSCs-derived exosomes (MSC-Exos) can accumulate at the tumor site. Exo-Dox suppressed cancer cell growth and significantly decreased tumor size compared to PBS (p < 0.01). The findings confirmed the growth inhibition effects of Exo-Dox n in CAFs, BC cells, and tumor-bearing mice.
Collapse
Affiliation(s)
- Fatemeh Akhavan Attar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Chen W, Pan Z, Feng Z, Wang X, Zhu S. Deciphering the code: the pivotal role of lncRNAs in advancing TNBC therapy. Front Oncol 2024; 14:1450980. [PMID: 39286016 PMCID: PMC11402698 DOI: 10.3389/fonc.2024.1450980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most formidable subtype of breast cancer, characterized by a notable dearth in targeted therapeutic options. Deciphering the underlying molecular mechanisms of TNBC is pivotal for improving patient outcomes. Recent scientific advancements have spotlighted long non-coding RNAs (lncRNAs) as key players in the genesis, progression, and metastasis of cancers. This review delineates the significant influence of lncRNAs on the advancement, detection, and neoadjuvant chemotherapy efficacy in TNBC, detailing the diverse expression patterns of aberrant lncRNAs. The paper explores the specific mechanisms by which lncRNAs regulate gene expression in both the nucleus and cytoplasm, with a special focus on their involvement in TNBC's post-transcriptional landscape. Thorough investigations into TNBC-associated lncRNAs not only forge new avenues for early diagnosis and potent treatment strategies but also highlight these molecules as promising therapeutic targets, heralding an era of personalized and precision medicine in TNBC management.
Collapse
Affiliation(s)
- Weiping Chen
- Department of Respiratory, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Zhiyong Pan
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Zhengfu Feng
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Xin Wang
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Song Zhu
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
4
|
Darmadi D, Chugaeva UY, Saleh RO, Hjazi A, Saleem HM, Ghildiyal P, Alwaily ER, Alawadi A, Alnajar MJ, Ihsan A. Critical roles of long noncoding RNA H19 in cancer. Cell Biochem Funct 2024; 42:e4018. [PMID: 38644608 DOI: 10.1002/cbf.4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
Long noncoding RNAs (lncRNAs) are a category of noncoding RNAs characterized by their length, often exceeding 200 nucleotides. There is a growing body of data that indicate the significant involvement of lncRNAs in a wide range of disorders, including cancer. lncRNA H19 was among the initial lncRNAs to be identified and is transcribed from the H19 gene. The H19 lncRNA exhibits significant upregulation in a diverse range of human malignancies, such as breast, colorectal, pancreatic, glioma, and gastric cancer. Moreover, the overexpression of H19 is frequently associated with a worse prognosis among individuals diagnosed with cancer. H19 has been shown to have a role in facilitating several cellular processes, including cell proliferation, invasion, migration, epithelial-mesenchymal transition, metastasis, and apoptosis. This article summarizes the aberrant upregulation of H19 in human malignancies, indicating promising avenues for future investigations on cancer diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hiba Muwafaq Saleem
- Department of Biology, College of Science, University of Anbar, Ramadi, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Hillah, Iraq
| | | | - Ali Ihsan
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
5
|
Jasim SA, Al-Hawary SIS, Kaur I, Ahmad I, Hjazi A, Petkov I, Ali SHJ, Redhee AH, Shuhata Alubiady MH, Al-Ani AM. Critical role of exosome, exosomal non-coding RNAs and non-coding RNAs in head and neck cancer angiogenesis. Pathol Res Pract 2024; 256:155238. [PMID: 38493725 DOI: 10.1016/j.prp.2024.155238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/13/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Head and neck cancer (HNC) refers to the epithelial malignancies of the upper aerodigestive tract. HNCs have a constant yet slow-growing rate with an unsatisfactory overall survival rate globally. The development of new blood vessels from existing blood conduits is regarded as angiogenesis, which is implicated in the growth, progression, and metastasis of cancer. Aberrant angiogenesis is a known contributor to human cancer progression. Representing a promising therapeutic target, the blockade of angiogenesis aids in the reduction of the tumor cells oxygen and nutrient supplies. Despite the promise, the association of existing anti-angiogenic approaches with severe side effects, elevated cancer regrowth rates, and limited survival advantages is incontrovertible. Exosomes appear to have an essential contribution to the support of vascular proliferation, the regulation of tumor growth, tumor invasion, and metastasis, as they are a key mediator of information transfer between cells. In the exocrine region, various types of noncoding RNAs (ncRNAs) identified to be enriched and stable and contribute to the occurrence and progression of cancer. Mounting evidence suggest that exosome-derived ncRNAs are implicated in tumor angiogenesis. In this review, the characteristics of angiogenesis, particularly in HNC, and the impact of ncRNAs on HNC angiogenesis will be outlined. Besides, we aim to provide an insight on the regulatory role of exosomes and exosome-derived ncRNAs in angiogenesis in different types of HNC.
Collapse
Affiliation(s)
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Iliya Petkov
- Medical University - Sofia, Department of Neurology, Sofia, Bulgaria
| | - Saad Hayif Jasim Ali
- Department of medical laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | | | |
Collapse
|
6
|
Zou H, Luo J, Guo Y, Deng L, Zeng L, Pan Y, Li P. Tyrosine phosphorylation-mediated YAP1-TFAP2A interactions coordinate transcription and trastuzumab resistance in HER2+ breast cancer. Drug Resist Updat 2024; 73:101051. [PMID: 38219531 DOI: 10.1016/j.drup.2024.101051] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Trastuzumab resistance in HER2+ breast cancer (BC) is the major reason leading to poor prognosis of BC patients. Oncogenic gene overexpression or aberrant activation of tyrosine kinase SRC is identified to be the key modulator of trastuzumab response. However, the detailed regulatory mechanisms underlying SRC activation-associated trastuzumab resistance remain poorly understood. In the present study, we discover that SRC-mediated YAP1 tyrosine phosphorylation facilitates its interaction with transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha, TFAP2A), which in turn promotes YAP1/TEAD-TFAP2A (YTT) complex-associated transcriptional outputs, thereby conferring trastuzumab resistance in HER2+ BC. Inhibition of SRC kinase activity or disruption of YTT complex sensitizes cells to trastuzumab treatment in vitro and in vivo. Additionally, we also identify YTT complex co-occupies the regulatory regions of a series of genes related to trastuzumab resistance and directly regulates their transcriptions, including EGFR, HER2, H19 and CTGF. Moreover, YTT-mediated transcriptional regulation is coordinated by SRC kinase activity. Taken together, our study reveals that SRC-mediated YTT complex formation and transcriptions are responsible for multiple mechanisms associated with trastuzumab resistance. Therefore, targeting HER2 signaling in combination with the inhibition of YTT-associated transcriptional outputs could serve as the treatment strategy to overcome trastuzumab resistance caused by SRC activation.
Collapse
Affiliation(s)
- Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China.
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China.
| |
Collapse
|
7
|
Song B, Wei F, Peng J, Wei X, Liu M, Nie Z, Ma Y, Peng T. Icariin Regulates EMT and Stem Cell-Like Character in Breast Cancer through Modulating lncRNA NEAT1/TGFβ/SMAD2 Signaling Pathway. Biol Pharm Bull 2024; 47:399-410. [PMID: 38220208 DOI: 10.1248/bpb.b23-00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metastases and drug resistance are the major risk factors associated with breast cancer (BC), which is the most common type of tumor affecting females. Icariin (ICA) is a traditional Chinese medicine compound that possesses significant anticancer properties. Long non-coding RNAs (lncRNAs) are involved in a wide variety of biological and pathological processes and have been shown to modulate the effectiveness of certain drugs in cancer. The purpose of this study was to examine the potential effect of ICA on epithelial mesenchymal transition (EMT) and stemness articulation in BC cells, as well as the possible relationship between its inhibitory action on EMT and stemness with the NEAT1/transforming growth factor β (TGFβ)/SMAD2 pathway. The effect of ICA on the proliferation (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony assays), EMT (Western blotting, immunofluorescence, and wound healing), and stemness (mammosphere formation assays, Western blotting) of BC cells were examined. According to the findings, ICA suppressed the proliferation, EMT, and stem cell-like in MDA-MB-231 cells, and exerted its inhibitory impact by downregulating the TGFβ/SMAD2 signaling pathway. ICA could significantly downregulate the expression of lncRNA NEAT1, and silencing NEAT1 enhanced the effect of ICA in suppressing EMT and expression of different stem cell markers. In addition, silencing NEAT1 was found to attenuate the TGFβ/SMAD2 signaling pathway, thereby improving the inhibitory impact of ICA on stemness and EMT in BC cells. In conclusion, ICA can potentially inhibit the metastasis of BC via affecting the NEAT1/TGFβ/SMAD2 pathway, which provides a theoretical foundation for understanding the mechanisms involved in potential application of ICA for BC therapy.
Collapse
Affiliation(s)
- Bo Song
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Fuxia Wei
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Jiehao Peng
- School of Third Clinical Medicine, Shanxi University of Chinese Medicine
| | - Xiuhong Wei
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Mingran Liu
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Zhongbiao Nie
- Pharmaceutical Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Yanmiao Ma
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine
| | - Tao Peng
- Famous Chinese Medicine Studio, Shanxi Hospital of Integrated Traditional Chinese and Western Medicine
- Shanxi Provincial Key Laboratory of Classical Prescription Strengthening Yang, Shanxi Hospital of Integrated Traditional Chinese and Western Medicine
| |
Collapse
|
8
|
Ghasemian M, Zehtabi M, Dari MAG, Pour FK, Tabesh GA, Moramezi F, Jafari RM, Barati M, Uddin S, Farzaneh M. The emerging roles of long non-coding RNA (lncRNA) H19 in gynecologic cancers. BMC Cancer 2024; 24:4. [PMID: 38166752 PMCID: PMC10763168 DOI: 10.1186/s12885-023-11743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Long non-coding RNA (lncRNA) H19 has gained significant recognition as a pivotal contributor to the initiation and advancement of gynecologic cancers, encompassing ovarian, endometrial, cervical, and breast cancers. H19 exhibits a complex array of mechanisms, demonstrating dualistic effects on tumorigenesis as it can function as both an oncogene and a tumor suppressor, contingent upon the specific context and type of cancer being investigated. In ovarian cancer, H19 promotes tumor growth, metastasis, and chemoresistance through modulation of key signaling pathways and interaction with microRNAs. Conversely, in endometrial cancer, H19 acts as a tumor suppressor by inhibiting proliferation, inducing apoptosis, and regulating epithelial-mesenchymal transition. Additionally, H19 has been implicated in cervical and breast cancers, where it influences cell proliferation, invasion, and immune evasion. Moreover, H19 has potential as a diagnostic and prognostic biomarker for gynecologic cancers, with its expression levels correlating with clinical parameters and patient outcomes. Understanding the functional roles of H19 in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized treatment approaches. Further investigation into the intricate molecular mechanisms underlying H19's involvement in gynecologic malignancies is warranted to fully unravel its therapeutic potential and clinical implications. This review aims to elucidate the functional roles of H19 in various gynecologic malignancies.
Collapse
Affiliation(s)
- Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Azizi Tabesh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Moramezi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razieh Mohammad Jafari
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Barati
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 22602, India
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Yang K, Xiao Y, Zhong L, Zhang W, Wang P, Ren Y, Shi L. p53-regulated lncRNAs in cancers: from proliferation and metastasis to therapy. Cancer Gene Ther 2023; 30:1456-1470. [PMID: 37679529 DOI: 10.1038/s41417-023-00662-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as master gene regulators through various mechanisms such as transcription, translation, protein modification and RNA-protein complexes. LncRNA dysregulation is frequently associated with a variety of biological functions and human diseases including cancer. The p53 network is a key tumor-suppressive mechanism that transcriptionally activates target genes to suppress cellular proliferation in human malignancies. Recent research indicates that lncRNAs play an important role in the p53 signaling pathway. In this review, we summarize the current knowledge of lncRNAs in p53-relevant functions and provide an overview of how these altered lncRNAs contribute to tumor initiation and progression. We also discuss the association between lncRNA and up- or downstream genes of p53. These findings imply that lncRNAs can help identify cellular vulnerabilities that may prove to be promising potential biomarkers and therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, People's Republic of China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
10
|
Zichittella C, Loria M, Celesia A, Di Liberto D, Corrado C, Alessandro R, Emanuele S, Conigliaro A. Long non-coding RNA H19 enhances the pro-apoptotic activity of ITF2357 (a histone deacetylase inhibitor) in colorectal cancer cells. Front Pharmacol 2023; 14:1275833. [PMID: 37841928 PMCID: PMC10572549 DOI: 10.3389/fphar.2023.1275833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Long non-coding RNA H19 (lncH19) is highly expressed in colorectal cancer (CRC) and plays critical roles in tumor development, proliferation, metastasis, and drug resistance. Indeed, the expression of lncH19 usually affects the outcomes of chemo-, endocrine, and targeted therapies. ITF2357 (givinostat) is a histone deacetylase inhibitor (HDACi) that revealed a significant anti-tumor action by inducing apoptosis in different tumor models, including leukemia, melanoma, and glioblastoma. However, no data are present in the literature regarding the use of this compound for CRC treatment. Here, we investigate the role of lncH19 in ITF2357-induced apoptosis in CRC cells. Methods: The HCT-116 CRC cell line was stably silenced for H19 to investigate the role of this lncRNA in ITF2357-induced cell death. Cell viability assays and flow cytometric analyses were performed to assess the anti-proliferative and pro-apoptotic effects of ITF2357 in CRC cell lines that are silenced or not for lncH19. RT-PCR and Western blot were used to study the effects of ITF2357 on autophagy and apoptosis markers. Finally, bioinformatics analyses were used to identify miRNAs targeting pro-apoptotic factors that can be sponged by lncH19. Results: ITF2357 increased the expression levels of H19 and reduced HCT-116 cell viability, inducing apoptosis, as demonstrated by the increase in annexin-V positivity, caspase 3 cleavage, and poly (ADP-ribose) polymerase (PARP-1) degradation. Interestingly, the apoptotic effect of ITF2357 was much less evident in lncH19-silenced cells. We showed that lncH19 plays a functional role in the pro-apoptotic activity of the drug by stabilizing TP53 and its transcriptional targets, NOXA and PUMA. ITF2357 also induced autophagy in CRC cells, which was interpreted as a pro-survival response not correlated with lncH19 expression. Furthermore, ITF2357 induced apoptosis in 5-fluorouracil-resistant HCT-116 cells that express high levels of lncH19. Conclusion: This study shows that lncH19 expression contributes to ITF2357-induced apoptosis by stabilizing TP53. Overall, we suggest that lncH19 expression may be exploited to favor HDACi-induced cell death and overcome 5-fluorouracil chemoresistance.
Collapse
Affiliation(s)
- Chiara Zichittella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Marco Loria
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Adriana Celesia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Biochemistry Building, University of Palermo, Palermo, Italy
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Biochemistry Building, University of Palermo, Palermo, Italy
| | - Chiara Corrado
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Biochemistry Building, University of Palermo, Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Zhang R, Zeng Y, Deng JL. Long non-coding RNA H19: a potential biomarker and therapeutic target in human malignant tumors. Clin Exp Med 2023; 23:1425-1440. [PMID: 36484927 DOI: 10.1007/s10238-022-00947-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs play important roles in cellular functions and disease development. H19, as a long non-coding RNA, is pervasively over-expressed in almost all kinds of human malignant tumors. Although many studies have reported that H19 is closely associated with tumor cell proliferation, apoptosis, invasion, metastasis, and chemoresistance, the role and mechanism of H19 in gene regulation and tumor development are largely unclear. In this review, we summarized the recent progress in the study of the major functions and mechanisms of H19 lncRNA in cancer development and progression. H19 possesses both oncogenic and tumor-suppressing activities, presumably through regulating target gene transcription, mRNA stability and splicing, and competitive inhibition of endogenous RNA degradation. Studies indicate that H19 may involve in cell proliferation and apoptosis, tumor initiation, migration, invasion, metastasis and chemoresistance and may serve as a potential biomarker for early diagnosis, prognosis, and novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, People's Republic of China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410008, People's Republic of China
| | - Jun-Li Deng
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China.
| |
Collapse
|
12
|
Rolla M, Jawiarczyk-Przybyłowska A, Kolačkov K, Zembska A, Bolanowski M. Is H19 RNA a Useful Marker of Acromegaly and Its Complications? A Preliminary Study. Biomedicines 2023; 11:biomedicines11041211. [PMID: 37189829 DOI: 10.3390/biomedicines11041211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Acromegaly is a rare endocrine disorder caused by somatotroph pituitary adenoma. Besides its typical symptoms, it contributes to the development of cardiovascular, metabolic, and bone comorbidities. H19 RNA is a long non-coding RNA and it is suspected to be involved in tumorigenesis, cancer progression, and metastasis. H19 RNA is a novel biomarker for the diagnosis and monitoring of neoplasms. Moreover, there might be an association between H19 and cardiovascular and metabolic diseases. We enrolled 32 acromegaly patients and 25 controls. We investigated whether whole blood H19 RNA expression is associated with the diagnosis of acromegaly. Correlations between H19 and tumour dimension, invasiveness, and biochemical and hormonal parameters were evaluated. We analysed the coincidence of acromegaly comorbidities with H19 RNA expression. In the results, we did not observe a statistically significant difference in H19 RNA expression between acromegaly patients and the controls. There were no correlations between H19 and the adenoma size and infiltration and patients' biochemical and hormonal statuses. In the acromegaly group, hypertension, goitre, and cholelithiasis were observed more frequently. The diagnosis of acromegaly was a factor contributing to the occurrence of dyslipidaemia, goitre, and cholelithiasis. We found an association between H19 and cholelithiasis in acromegaly patients. To conclude, H19 RNA expression is not a relevant marker for diagnosis and monitoring of acromegaly patients. There is a higher risk of hypertension, goitre, and cholelithiasis related to acromegaly. Cholelithiasis is associated with a higher H19 RNA expression.
Collapse
Affiliation(s)
- Małgorzata Rolla
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, 50-367 Wrocław, Poland
| | | | - Katarzyna Kolačkov
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, 50-367 Wrocław, Poland
| | - Agnieszka Zembska
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, 50-367 Wrocław, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, 50-367 Wrocław, Poland
| |
Collapse
|
13
|
Dozmorov MG, Marshall MA, Rashid NS, Grible JM, Valentine A, Olex AL, Murthy K, Chakraborty A, Reyna J, Figueroa DS, Hinojosa-Gonzalez L, Da-Inn Lee E, Baur BA, Roy S, Ay F, Harrell JC. Rewiring of the 3D genome during acquisition of carboplatin resistance in a triple-negative breast cancer patient-derived xenograft. Sci Rep 2023; 13:5420. [PMID: 37012431 PMCID: PMC10070455 DOI: 10.1038/s41598-023-32568-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Changes in the three-dimensional (3D) structure of the genome are an emerging hallmark of cancer. Cancer-associated copy number variants and single nucleotide polymorphisms promote rewiring of chromatin loops, disruption of topologically associating domains (TADs), active/inactive chromatin state switching, leading to oncogene expression and silencing of tumor suppressors. However, little is known about 3D changes during cancer progression to a chemotherapy-resistant state. We integrated chromatin conformation capture (Hi-C), RNA-seq, and whole-genome sequencing obtained from triple-negative breast cancer patient-derived xenograft primary tumors (UCD52) and carboplatin-resistant samples and found increased short-range (< 2 Mb) interactions, chromatin looping, formation of TAD, chromatin state switching into a more active state, and amplification of ATP-binding cassette transporters. Transcriptome changes suggested the role of long-noncoding RNAs in carboplatin resistance. Rewiring of the 3D genome was associated with TP53, TP63, BATF, FOS-JUN family of transcription factors and led to activation of aggressiveness-, metastasis- and other cancer-related pathways. Integrative analysis highlighted increased ribosome biogenesis and oxidative phosphorylation, suggesting the role of mitochondrial energy metabolism. Our results suggest that 3D genome remodeling may be a key mechanism underlying carboplatin resistance.
Collapse
Affiliation(s)
- Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| | - Maggie A Marshall
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Narmeen S Rashid
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA
- Department of Biology, University of Richmond, Richmond, VA, 23173, USA
| | - Jacqueline M Grible
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Aaron Valentine
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Amy L Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kavita Murthy
- Center for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Abhijit Chakraborty
- Center for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Joaquin Reyna
- Center for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Daniela Salgado Figueroa
- Center for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Laura Hinojosa-Gonzalez
- Center for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erika Da-Inn Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Brittany A Baur
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Ferhat Ay
- Center for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Department of Pediatrics, UC San Diego-School of Medicine, La Jolla, CA, 92093, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
14
|
Wehida N, Abdel-Rehim W, El Mansy H, Karmouty A, Kamel MA. A Panel of Circulating Non-Coding RNAs in the Diagnosis and Monitoring of Therapy in Egyptian Patients with Breast Cancer. Biomedicines 2023; 11:biomedicines11020563. [PMID: 36831100 PMCID: PMC9953232 DOI: 10.3390/biomedicines11020563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Non-coding RNAs (ncRNAs) have recently been identified to have a pivotal role in many diseases, including breast cancer (BC). This study aims to investigate the relative quantification of long non-coding RNA (lncRNA) H19, microRNA (miR) 675-5p, 675-3p, and miR-let 7 in breast cancer patients. Methods: The study was performed on three groups: Group 1: 30 non-intervened BC female patients about to undergo breast surgery; group 2: 30 postoperative female BC patients about to receive adjuvant anthracycline chemotherapy; and group 3: 30 apparently healthy female volunteers as the control group. Plasma samples were drawn before and after the intervention in groups 1 and 2, with a single sample drawn from group 3. The relative quantification levels were compared with healthy control subjects and were related with the clinicopathological statuses of these patients. Results: There was a statistically significant increase in H19, miR-675-5p, miR-675-3p, and miR-let 7 in the non-intervened BC patients when compared to the control group. Surgery resulted in a significant reduction in all four ncRNAs under investigation. Chemotherapy brought about a significant increase in the level of miR-let 7, with no significant effect on the remaining parameters measured. The assay discriminated normal from BC where a receiver operating characteristic for the area under the curve (ROCAUC) of miR-675-3p showed the maximal AUC of 1.000. The diagnostic sensitivity and specificity were also 100% when CA 15-3 and H19 were combined. Conclusion: The results strongly indicate that the panel of ncRNAs in this study can all potentially act as novel biomarkers whether alone or combined in the diagnosis of BC.
Collapse
Affiliation(s)
- Nadine Wehida
- Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK
- Correspondence: ; Tel.: +44-776-781-7825
| | - Wafaa Abdel-Rehim
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Hazem El Mansy
- Department of Cancer Management and Reseach, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Ahmed Karmouty
- Department of Experimental and Clinical Surgery, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| |
Collapse
|
15
|
The Role of Long Noncoding RNA (lncRNAs) Biomarkers in Renal Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010643. [PMID: 36614082 PMCID: PMC9820502 DOI: 10.3390/ijms24010643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma is one of the common cancers whose incidence and mortality are continuously growing worldwide. Initially, this type of tumour is usually asymptomatic. Due to the lack of reliable diagnostic markers, one-third of ccRCC patients already have distant metastases at the time of diagnosis. This underlines the importance of establishing biomarkers that would enable the prediction of the disease's course and the risk of metastasis. LncRNA, which modulates genes at the epigenetic, transcriptional, and post-transcriptional levels, appears promising. The actions of lncRNA involve sponging and sequestering target miRNAs, thus affecting numerous biological processes. Studies have confirmed the involvement of RNAs in various diseases, including RCC. In this review, we focused on MALAT1 (a marker of serious pathological changes and a factor in the promotion of tumorigenesis), RCAT1 (tumour promoter in RCC), DUXAP9 (a plausible marker of localized ccRCC), TCL6 (exerting tumour-suppressive effects in renal cancer), LINC00342 (acting as an oncogene), AGAP2 Antisense1 (plausible predictor of RCC progression), DLEU2 (factor promoting tumours growth via the regulation of epithelial-mesenchymal transition), NNT-AS1 (sponge of miR-22 contributing to tumour progression), LINC00460 (favouring ccRCC development and progression) and Lnc-LSG1 (a factor that may stimulate ccRCC metastasis).
Collapse
|
16
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
17
|
Hashemi M, Moosavi MS, Abed HM, Dehghani M, Aalipour M, Heydari EA, Behroozaghdam M, Entezari M, Salimimoghadam S, Gunduz ES, Taheriazam A, Mirzaei S, Samarghandian S. Long non-coding RNA (lncRNA) H19 in human cancer: From proliferation and metastasis to therapy. Pharmacol Res 2022; 184:106418. [PMID: 36038043 DOI: 10.1016/j.phrs.2022.106418] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 02/07/2023]
Abstract
Initiation and development of cancer depend on multiple factors that mutations in genes and epigenetic level can be considered as important drivers. Epigenetic factors include a large family of members and understanding their function in cancer has been a hot topic. LncRNAs are RNA molecules with no capacity in synthesis of proteins, and they have regulatory functions in cells. LncRNAs are localized in nucleus and cytoplasm, and their abnormal expression is related to development of tumor. This manuscript emphasizes on the role of lncRNA H19 in various cancers and its association with tumor hallmarks. The function of lncRNA H19 in most tumors is oncogenic and therefore, tumor cells increase its expression for promoting their progression. LncRNA H19 contributes to enhancing growth and cell cycle of cancers and by EMT induction, it is able to elevate metastasis rate. Silencing H19 induces apoptotic cell death and disrupts progression of tumors. LncRNA H19 triggers chemo- and radio-resistance in cancer cells. miRNAs are dually upregulated/down-regulated by lncRNA H19 in increasing tumor progression. Anti-cancer agents reduce lncRNA H19 in impairing tumor progression and increasing therapy sensitivity. A number of downstream targets and molecular pathways for lncRNA H19 have been detected in cancers including miRNAs, RUNX1, STAT3, β-catenin, Akt2 and FOXM1. Clinical studies have revealed potential of lncRNA H19 as biomarker and its association with poor prognosis. LncRNA H19 can be transferred to cancer cells via exosomes in enhancing their progression.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Sadat Moosavi
- Department of Biochemistry, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Hedyeh Maghareh Abed
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoumeh Aalipour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Ali Heydari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Emine Selda Gunduz
- Vocational School of Health Services, Department of First and Emergency Aid, Akdeniz University, Antalya, Turkey.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
18
|
Find new channel for overcoming chemoresistance in cancers: Role of stem cells-derived exosomal microRNAs. Int J Biol Macromol 2022; 219:530-537. [PMID: 35948201 DOI: 10.1016/j.ijbiomac.2022.07.253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
|
19
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial-mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal-epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
20
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Di S, Bai R, Lu D, Chen C, Ma T, Zou Z, Zhang Z. Long non-coding RNA MAFG-AS1 promotes proliferation and metastasis of breast cancer by modulating STC2 pathway. Cell Death Discov 2022; 8:249. [PMID: 35513366 PMCID: PMC9072673 DOI: 10.1038/s41420-022-01043-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common cancer worldwide. A number of studies proposed that long non-coding RNA plays an essential role in the regulation of invasion and metastasis of various forms of malignancy, including lung cancer, gastric cancer, and bladder cancer. In this study, a long non-coding RNA(LncRNA) MAFG-AS1 was explored in detail to understand the significance in the etiology of breast cancer. The results indicated that expression of LncRNA MAFG-AS1 in the breast cancer tissues was significantly higher than the adjacent normal breast tissues and elevated expression level of LncRNA MAFG-AS1 was correlated to the larger tumor size, negative expression of ER, PR and lymph node metastasis. The potency of breast cancer proliferation, invasion, and metastasis was inhibited in the absence of LncRNA MAFG-AS1. Mechanically, LncRNA MAFG-AS1 was mainly located in the cytoplasm. The downstream target gene of LncRNA MAFG-AS1 was STC2 which might promote cell proliferation and metastasis in breast cancer and this study provides a new potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Shihao Di
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
| | - Rumeng Bai
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
| | - Die Lu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, 215006, Suzhou, China
| | - Chunni Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), 157 West 5th Road, 710004, Xi'an, China
| | - Tianshi Ma
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
- Department of Pathology, Zhejiang Provincial People's Hospital & People's Hospital of Hangzhou Medical College, 158 Shangtang Road, 310014, Hangzhou, China
| | - Zigui Zou
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, 215006, Suzhou, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China.
| |
Collapse
|
22
|
Gp130-Mediated STAT3 Activation Contributes to the Aggressiveness of Pancreatic Cancer through H19 Long Non-Coding RNA Expression. Cancers (Basel) 2022; 14:cancers14092055. [PMID: 35565185 PMCID: PMC9100112 DOI: 10.3390/cancers14092055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The signal transducer and activator of transcription 3 (STAT3) activation correlate with the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). We demonstrated that the autocrine/paracrine interleukin-6 (IL-6) or leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway contributes to the maintenance of stemness features and membrane-type 1 matrix metalloproteinase (MT1-MMP) expression, and modulates transforming growth factor (TGF)-β1/Smad signaling-mediated epithelial-mesenchymal transition (EMT) and invasion through regulation of TGFβ-RII expression in PDAC cancer stem cell (CSC)-like cells. Furthermore, we demonstrated that p-STAT3 acts through the IL-6 or LIF/gp130/STAT3 pathway to access the active promoter region of metastasis-related long non-coding RNA H19 and contribute to its transcription in CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells exhibiting H19 expression is considered to be involved in the aggressiveness of PDAC, and inhibition of the gp130/STAT3 pathway is a promising strategy to target CSCs for the elimination of PDAC (146/150). Abstract Signaling pathways involving signal transducer and activator of transcription 3 (STAT3) play key roles in the aggressiveness of pancreatic ductal adenocarcinoma (PDAC), including their tumorigenesis, invasion, and metastasis. Cancer stem cells (CSCs) have been correlated with PDAC aggressiveness, and activation of STAT3 is involved in the regulation of CSC properties. Here, we investigated the involvement of interleukin-6 (IL-6) or the leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway and their role in pancreatic CSCs. In PDAC CSC-like cells formed by culturing on a low attachment plate, autocrine/paracrine IL-6 or LIF contributes to gp130/STAT3 pathway activation. Using a gp130 inhibitor, we determined that the gp130/STAT3 pathway contributes to the maintenance of stemness features, the expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), and the invasion of PDAC CSC-like cells. The gp130/STAT3 pathway also modulates the transforming growth factor (TGF)-β1/Smad pathway required for epithelial-mesenchymal transition induction through regulation of TGFβ-RII expression in PDAC CSC-like cells. Furthermore, chromatin immunoprecipitation assays revealed that p-STAT3 can access the active promoter region of H19 to influence this metastasis-related long non-coding RNA and contribute to its transcription in PDAC CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells may eventually facilitate invasion and metastasis, two hallmarks of malignancy. We propose that inhibition of the gp130/STAT3 pathway provides a promising strategy for targeting CSCs for the treatment of PDAC.
Collapse
|
23
|
Wang K, Li M, Duan H, Zhang T, Xu C, Yu F. SLCO4A1‐AS1 triggers the malignant behaviors of melanoma cells via sponging miR‐1306‐5p to enhance PCGF2. Exp Dermatol 2022; 31:1220-1233. [PMID: 35427425 DOI: 10.1111/exd.14577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Kai Wang
- Henan Provincial People’s Hospital International Medical Center Department of Plastic Surgery Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| | - Min Li
- Department of Dermatology Henan Provincial People’s Hospital Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| | - Hongyan Duan
- Henan Provincial People’s Hospital International Medical Center Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| | - Tong Zhang
- Henan Provincial People’s Hospital International Medical Center Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| | - Chengyang Xu
- Henan Provincial People’s Hospital International Medical Center Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| | - Feifei Yu
- Henan Provincial People’s Hospital International Medical Center Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| |
Collapse
|
24
|
Zhu YS, Zhu J. Molecular and cellular functions of long non-coding RNAs in prostate and breast cancer. Adv Clin Chem 2022; 106:91-179. [PMID: 35152976 DOI: 10.1016/bs.acc.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) are defined as noncoding RNA transcripts with a length greater than 200 nucleotides. Research over the last decade has made great strides in our understanding of lncRNAs, especially in the biology of their role in cancer. In this article, we will briefly discuss the biogenesis and characteristics of lncRNAs, then review their molecular and cellular functions in cancer by using prostate and breast cancer as examples. LncRNAs are abundant, diverse, and evolutionarily, less conserved than protein-coding genes. They are often expressed in a tumor and cell-specific manner. As a key epigenetic factor, lncRNAs can use a wide variety of molecular mechanisms to regulate gene expression at each step of the genetic information flow pathway. LncRNAs display widespread effects on cell behavior, tumor growth, and metastasis. They act intracellularly and extracellularly in an autocrine, paracrine and endocrine fashion. Increased understanding of lncRNA's role in cancer has facilitated the development of novel biomarkers for cancer diagnosis, led to greater understanding of cancer prognosis, enabled better prediction of therapeutic responses, and promoted identification of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Yuan-Shan Zhu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States.
| | - Jifeng Zhu
- Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
25
|
Long Non-Coding RNAs at the Chromosomal Risk Loci Identified by Prostate and Breast Cancer GWAS. Genes (Basel) 2021; 12:genes12122028. [PMID: 34946977 PMCID: PMC8701176 DOI: 10.3390/genes12122028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as key players in a variety of cellular processes. Deregulation of the lncRNAs has been implicated in prostate and breast cancers. Recently, germline genetic variations associated with cancer risk have been correlated with lncRNA expression and/or function. In addition, single nucleotide polymorphisms (SNPs) at well-characterized cancer-associated lncRNAs have been analyzed for their association with cancer risk. These SNPs may occur within the lncRNA transcripts or spanning regions that may alter the structure, function, and expression of these lncRNA molecules and contribute to cancer progression and may have potential as therapeutic targets for cancer treatment. Additionally, some of these lncRNA have a tissue-specific expression profile, suggesting them as biomarkers for specific cancers. In this review, we highlight some of the cancer risk-associated SNPs that modulated lncRNAs with a potential role in prostate and breast cancers and speculate on how these lncRNAs may contribute to cancer development.
Collapse
|
26
|
Huang Y, Yan Q, Yu D, Sun X, Jiang S, Li W, Jia L. Long intergenic non-protein coding RNA 960 regulates cancer cell viability, migration and invasion through modulating miR-146a-5p/interleukin 1 receptor associated kinase 1 axis in pancreatic ductal adenocarcinoma. Bioengineered 2021; 12:369-381. [PMID: 33380238 PMCID: PMC8806237 DOI: 10.1080/21655979.2020.1868742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are considered as crucial regulatory factors in cancer biology. However, the biological function of long intergenic non-protein coding RNA 960 (LINC00960) in the tumorigenesis of pancreatic ductal adenocarcinoma (PDAC) is still unknown. The goal of this study is to investigate the role of LINC00960 in PDAC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the expression levels of LINC00960 in PDAC tissues and cell lines. After transfection, the loss-of-function models of LINC00960 or interleukin 1 receptor-associated kinase 1 (IRAK1) were established with BxPC-3 cells and Colo357 cells, and the malignant phenotypes of BxPC-3 cells and Colo357 cells were detected by CCK-8 assay, BrdU assay and Transwell assay, respectively. The interactions among LINC00960, miR-146a-5p and IRAK1 were predicted by bioinformatics analysis, and verified by luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. The regulatory functions of LINC00960 and miR-146a-5p on IRAK1 were detected by Western blot. We demonstrated that the LINC00960 expression was increased in PDAC tissues and cell lines. Knocking down LINC00960 or IRAK1 could repress the viability, migration, and invasion of BxPC-3 and Colo357 cells. LINC00960 functioned as a molecular sponge for miR-146a-5p, and IRAK1 was verified as a target gene of miR-146a-5p. Additionally, LINC00960 could up-regulate IRAK1 expression via repressing miR-146a-5p, and the oncogenic properties of LINC00960 were partly reversed by miR-146a-5p. Our findings reveal that LINC00960 is a promoter of PDAC progression through regulating miR-146a-5p/IRAK1axis.
Collapse
Affiliation(s)
- Yaoxing Huang
- Department of Gastroenterology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qingqing Yan
- Department of Gastroenterology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Danchun Yu
- Department of Gastroenterology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaojuan Sun
- Department of Gastroenterology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuman Jiang
- Department of Gastroenterology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Weidong Li
- Department of Gastroenterology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lin Jia
- Department of Gastroenterology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Guan X, Dong Y, Fan Z, Zhan Y, Xie X, Xu G, Zhang Y, Guo G, Shi A. Aldehyde dehydrogenase 1 (ALDH1) immunostaining in axillary lymph node metastases is an independent prognostic factor in ALDH1-positive breast cancer. J Int Med Res 2021; 49:3000605211047279. [PMID: 34644211 PMCID: PMC8642120 DOI: 10.1177/03000605211047279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Objective To determine whether aldehyde dehydrogenase 1 (ALDH1) immunostaining in axillary lymph node metastases in patients with breast cancer is associated with poor clinical prognosis. Methods This retrospective study reviewed data from the medical records of patients with immunohistochemistry-confirmed invasive ductal carcinoma (IDC) and 1–3 metastatic lymph nodes in the ipsilateral axilla between December 2012 and July 2015. The association between ALDH1 immunostaining in axillary lymph node metastases and clinical parameters and prognosis was analysed using χ2-test, Kaplan–Meier survival analysis, univariate and multivariate Cox regression analyses. Results A total of 229 patients with IDC were enrolled in the study. The median follow-up was 61 months (range, 20–89 months). Patients with ALDH1-positive axillary lymph node metastases had significantly shorter relapse-free survival and overall survival compared with those with ALDH1-negative axillary lymph node metastases. ALDH1 immunostaining in axillary lymph node metastases was a significant predictor of poor prognosis in univariate and multivariate analyses. Conclusion This large study with long-term follow-up suggests that ALDH1 immunostaining in axillary lymph node metastases is an independent predictor of poor prognosis in patients with breast cancer. The clinical relevance of this finding should be confirmed in further well-designed prospective studies.
Collapse
Affiliation(s)
- Xin Guan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Dong
- The Second Breast Surgery Department, 377382Jilin Cancer Hospital, Jilin Cancer Hospital, Changchun, Jilin Province, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yue Zhan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xinpeng Xie
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Gege Xu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guoqiang Guo
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
28
|
Zhao R, Song J, Jin Y, Liu Y. Long noncoding RNA HOXC-AS3 enhances the progression of cervical cancer via activating ErbB signaling pathway. J Mol Histol 2021; 52:991-1006. [PMID: 34387789 DOI: 10.1007/s10735-021-10007-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022]
Abstract
Emerging evidence reveals that long noncoding RNAs (lncRNAs) contribute to human tumorigenesis. Nevertheless, the function of HOXC cluster antisense RNA 3 (HOXC-AS3) in human cervical cancer (CC) remains largely unknown. The levels of HOXC-AS3, miR-105-5p and SOS1 in CC tissues and cells were monitored by reverse transcription-polymerase chain reaction (RT-PCR) and western blot (WB). Gain- and loss-of-function experiments were conducted to verify the function of HOXC-AS3 and miR-105-5p in CC cells. Meanwhile, cell proliferation, apoptosis, migration and invasion were examined by the cell counting kit-8 (CCK8) experiment, colony formation assay, flow cytometry and Transwell assay. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were carried out to test the regulatory interaction of HOXC-AS3, miR-105-5p and SOS1. In addition, in vivo experiment was performed to certain the role of HOXC-AS3 in tumorigenesis of CC. HOXC-AS3 was overexpressed in CC tissues (vs. adjacent normal tissues) and CC cells. Besides, the higher HOXC-AS3 profile was associated with the poorer clinical prognosis of CC patients. Overexpression of HOXC-AS3 promoted cell growth, migration and invasion, hampered apoptosis, whereas knocking down HOXC-AS3 exhibited the reverse effects. MiR-105-5p was a downstream target of HOXC-AS3, and it mediated the HOXC-AS3-induced oncogenic effects. Mechanistically, the bioinformatic analysis illustrated that SOS1 was targeted by miR-105-5p. Up-regulating SOS1 heightened the growth, migration and invasion of CC cells by enhancing the ErbB signaling pathway, which was reversed by miR-105-5p. Up-regulated HOXC-AS3 aggravates CC by promoting SOS1 expression via targeting miR-105-5p.
Collapse
Affiliation(s)
- Runsheng Zhao
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng, Xiangyang, 441000, Hubei, China
| | - Jing Song
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng, Xiangyang, 441000, Hubei, China
| | - Yiqiang Jin
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng, Xiangyang, 441000, Hubei, China.
| | - Yingying Liu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng, Xiangyang, 441000, Hubei, China.
| |
Collapse
|
29
|
Lu C, Wei D, Zhang Y, Wang P, Zhang W. Long Non-Coding RNAs as Potential Diagnostic and Prognostic Biomarkers in Breast Cancer: Progress and Prospects. Front Oncol 2021; 11:710538. [PMID: 34527584 PMCID: PMC8436618 DOI: 10.3389/fonc.2021.710538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide, excluding non-melanoma skin cancer. It is now well understood that breast cancer is a heterogeneous entity that exhibits distinctive histological and biological features, treatment responses and prognostic patterns. Therefore, the identification of novel ideal diagnostic and prognostic biomarkers is of utmost importance. Long non-coding RNAs (lncRNAs) are commonly defined as transcripts longer than 200 nucleotides that lack coding potential. Extensive research has shown that lncRNAs are involved in multiple human cancers, including breast cancer. LncRNAs with dysregulated expression can act as oncogenes or tumor-suppressor genes to regulate malignant transformation processes, such as proliferation, invasion, migration and drug resistance. Intriguingly, the expression profiles of lncRNAs tend to be highly cell-type-specific, tissue-specific, disease-specific or developmental stage-specific, which makes them suitable biomarkers for breast cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Cuicui Lu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duncan Wei
- Department of Pharmacy, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
30
|
Zhang S, Zhang F, Niu Y, Yu S. Aberration of lncRNA LINC00460 is a Promising Prognosis Factor and Associated with Progression of Clear Cell Renal Cell Carcinoma. Cancer Manag Res 2021; 13:6489-6497. [PMID: 34429655 PMCID: PMC8379393 DOI: 10.2147/cmar.s322747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Long noncoding RNAs have been studied more and more as potential prognostic markers. However, the prognostic of LINC00460 in clear cell renal cell carcinoma (ccRCC) has not been explored. In this study, the potential role of LINC00460 was investigated in ccRCC. Patients and Methods One hundred thirteen pairs of ccRCC tissues and para-normal tissues were collected. The expressions of LINC00460 in these tissues and ccRCC cells were evaluated via qRT-PCR. The prognostic value of LINC00460 was accessed with the use of Kaplan–Meier analysis and Cox proportional hazards model analysis. The influence of LINC00460 on ccRCC cell proliferation, migration, and invasion was determined via cell counting kit-8 (CCK-8) and Transwell assays. Results The results revealed that LINC00460 was significantly enhanced in ccRCC tissues, as well as in ccRCC cell lines. The overexpression of LINC00460 was significantly associated with lymph node metastasis and TNM stage, and lead to poor overall survival. Knockdown of LINC00460 reduces the cell ability of proliferation, migration, and invasion. LINC00460 could sponge to miR-149-5p. Conclusion LINC00460 may be developed as a prognostic biomarker and molecular therapy target for ccRCC.
Collapse
Affiliation(s)
- Shijie Zhang
- General Surgery, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, People's Republic of China
| | - Fengyun Zhang
- Hematology and Rheumatology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, People's Republic of China
| | - Yingdong Niu
- Supply Room, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, People's Republic of China
| | - Shenglong Yu
- Urology Surgery, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, People's Republic of China
| |
Collapse
|
31
|
Zhang Y, Zhang D, Meng Q, Liu Z, Xie H, Liu L, Xu F, Chen X. Precision treatment exploration of breast cancer based on heterogeneity analysis of lncRNAs at the single-cell level. BMC Cancer 2021; 21:918. [PMID: 34388989 PMCID: PMC8361656 DOI: 10.1186/s12885-021-08617-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a complex disease with high heterogeneity, which often leads to great differences in treatment results. Current common molecular typing method is PAM50, which shows positive results for precision medicine; however, room for improvement still remains because of the different prognoses of subtypes. Therefore, in this article, we used lncRNAs, which are more tissue-specific and developmental stage-specific than other RNAs, as typing markers and combined single-cell expression profiles to retype BC, to provide a new method for BC classification and explore new precise therapeutic strategies based on this method. METHODS Based on lncRNA expression profiles of 317 single cells from 11 BC patients, SC3 was used to retype BC, and differential expression analysis and enrichment analysis were performed to identify biological characteristics of new subtypes. The results were validated for survival analysis using data from TCGA. Then, the downstream regulatory genes of lncRNA markers of each subtype were searched by expression correlation analysis, and these genes were used as targets to screen therapeutic drugs, thus proposing new precision treatment strategies according to the different subtype compositions of patients. RESULTS Seven lncRNA subtypes and their specific biological characteristics are obtained. Then, 57 targets and 210 drugs of 7 subtypes were acquired. New precision medicine strategies were proposed according to the different compositions of patient subtypes. CONCLUSIONS For patients with different subtype compositions, we propose a strategy to select different drugs for different patients, which means using drugs targeting multi subtype or combinations of drugs targeting a single subtype to simultaneously kill different cancer cells by personalized treatment, thus reducing the possibility of drug resistance and even recurrence.
Collapse
Affiliation(s)
- Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Denan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Qingkang Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Ziqi Liu
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang Province, P. R. China
| | - Hongbo Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Lei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Fei Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Xiujie Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China.
| |
Collapse
|
32
|
Wu HJ, Chu PY. Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22158113. [PMID: 34360879 PMCID: PMC8348144 DOI: 10.3390/ijms22158113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Globally, breast cancer has remained the most commonly diagnosed cancer and the leading cause of cancer death among women. Breast cancer is a highly heterogeneous and phenotypically diverse group of diseases, which require different selection of treatments. Breast cancer stem cells (BCSCs), a small subset of cancer cells with stem cell-like properties, play essential roles in breast cancer progression, recurrence, metastasis, chemoresistance and treatments. Epigenetics is defined as inheritable changes in gene expression without alteration in DNA sequence. Epigenetic regulation includes DNA methylation and demethylation, as well as histone modifications. Aberrant epigenetic regulation results in carcinogenesis. In this review, the mechanism of epigenetic regulation involved in carcinogenesis, therapeutic resistance and metastasis of BCSCs will be discussed, and finally, the therapies targeting these biomarkers will be presented.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan;
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-975611855; Fax: +886-47227116
| |
Collapse
|
33
|
Huang Z, Chu L, Liang J, Tan X, Wang Y, Wen J, Chen J, Wu Y, Liu S, Liao J, Hou R, Ding Z, Zhang Z, Liang H, Song S, Yang C, Zhang J, Guo T, Chen X, Zhang B. H19 Promotes HCC Bone Metastasis Through Reducing Osteoprotegerin Expression in a Protein Phosphatase 1 Catalytic Subunit Alpha/p38 Mitogen-Activated Protein Kinase-Dependent Manner and Sponging microRNA 200b-3p. Hepatology 2021; 74:214-232. [PMID: 33615520 DOI: 10.1002/hep.31673] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Bone is the second most frequent site of metastasis for HCC, which leads to an extremely poor prognosis. HCC bone metastasis is typically osteolytic, involving the activation of osteoclasts. Long noncoding RNA H19 plays an important role in the pathogenesis of human cancers. Nonetheless, the mechanism underlying the participation of H19 in HCC bone metastasis remains unclear. APPROACH AND RESULTS The current study established a mouse HCC bone metastasis model by using serial intracardiac injection and cell isolation to obtain cells with distinct bone metastasis ability. H19 was highly expressed in these cells and in clinical HCC bone metastasis specimens. Both osteoclastogenesis in vitro and HCC bone metastasis in vivo were promoted by H19 overexpression, whereas these processes were suppressed by H19 knockdown. H19 overexpression attenuated p38 phosphorylation and further down-regulated the expression of osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor. However, up-regulated OPG expression as well as suppressed osteoclastogenesis caused by H19 knockdown were recovered by p38 interference, indicating that p38 mitogen-activated protein kinase (MAPK)-OPG contributed to H19-promoted HCC bone metastasis. Furthermore, we demonstrated that H19 inhibited the expression of OPG by binding with protein phosphatase 1 catalytic subunit alpha (PPP1CA), which dephosphorylates p38. SB-203580-mediated inactivation of p38MAPK reversed the down-regulation of HCC bone metastasis caused by H19 knockdown in vivo. Additionally, H19 enhanced cell migration and invasion by up-regulating zinc finger E-box binding homeobox 1 through the sequestration of microRNA (miR) 200b-3p. CONCLUSIONS H19 plays a critical role in HCC bone metastasis by reducing OPG expression, which is mediated by the PPP1CA-induced inactivation of the p38MAPK pathway; and H19 also functions as a sponge for miR-200b-3p.
Collapse
Affiliation(s)
- Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Xiaolong Tan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Yu Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Sha Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Rui Hou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Shasha Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Caihong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Guo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
34
|
Cao S, Li H, Li L. LncRNA SNHG17 Contributes to the Progression of Cervical Cancer by Targeting microRNA-375-3p. Cancer Manag Res 2021; 13:4969-4978. [PMID: 34188550 PMCID: PMC8236284 DOI: 10.2147/cmar.s312469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Cervical cancer is a great threat to women’s health all over the world. Non-coding RNAs performed a wide range of functions. This study aimed to clarify the clinical significance and biological function of lncRNA SNHG17 and miRNA-375-3p (miR-375-3p) in cervical cancer (CC). Patients and Methods Blood samples from 124 CC patients and 119 healthy volunteers were collected. The relative expression of SNHG17 and miR-375-3p in CC patient serums and cells was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The receiver operating curve (ROC) was plotted for diagnostic value estimation. The CCK-8 and transwell assay were conducted to explore the function of SNHG17 on CC cells. A luciferase reporter assay was carried out to confirm the interaction of SNHG17 and miR-375-3p. Rescue experiments were performed to verify the interaction. Results SNHG17 showed an ascending expression while miR-375-3p descended in the serum of CC patients. For SNHG17 and miR-375-3p, respectively, the AUC was 0.863 and 0.869, the sensitivity was 84.7% and 75.8%, and the specificity was 78.2% and 86.6%. Knockdown of SNHG17 inhibited proliferation, migration, and invasion of CC cells. Serum SNHG17 expression was negatively correlated with miR-375-3p expression, and miR-375-3p was the target miRNA of SNHG17. Rescue experiments verified the knockdown of SNHG17 inhibited cell growth through repressing miR-375-3p expression. Conclusion SNHG17 and miR-375-3p have the potential to be diagnostic markers for CC. Overexpression of SNHG17 in CC promoted the progression of CC partly via targeting miR-375-3p, implying a novel therapeutic target for CC emerging.
Collapse
Affiliation(s)
- Shuping Cao
- Department of Gynecology, Dongying District People's Hospital, Dongying, Shandong, People's Republic of China
| | - Hongxia Li
- Department of Obstetrics, Dongying District People's Hospital, Dongying, Shandong, People's Republic of China
| | - Lei Li
- Department of Pathology, Dongying District People's Hospital, Dongying, Shandong, People's Republic of China
| |
Collapse
|
35
|
Thakur KK, Kumar A, Banik K, Verma E, Khatoon E, Harsha C, Sethi G, Gupta SC, Kunnumakkara AB. Long noncoding RNAs in triple-negative breast cancer: A new frontier in the regulation of tumorigenesis. J Cell Physiol 2021; 236:7938-7965. [PMID: 34105151 DOI: 10.1002/jcp.30463] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
In recent years, triple-negative breast cancer (TNBC) has emerged as the most aggressive subtype of breast cancer and is usually associated with increased mortality worldwide. The severity of TNBC is primarily observed in younger women, with cases ranging from approximately 12%-24% of all breast cancer cases. The existing hormonal therapies offer limited clinical solutions in completely circumventing the TNBC, with chemoresistance and tumor recurrences being the common hurdles in the path of TNBC treatment. Accumulating evidence has correlated the dysregulation of long noncoding RNAs (lncRNAs) with increased cell proliferation, invasion, migration, tumor growth, chemoresistance, and decreased apoptosis in TNBC. Various clinical studies have revealed that aberrant expression of lncRNAs in TNBC tissues is associated with poor prognosis, lower overall survival, and disease-free survival. Due to these specific characteristics, lncRNAs have emerged as novel diagnostic and prognostic biomarkers for TNBC treatment. However, the underlying mechanism through which lncRNAs perform their actions remains unclear, and extensive research is being carried out to reveal it. Therefore, understanding of mechanisms regulating the modulation of lncRNAs will be a substantial breakthrough in effective treatment therapies for TNBC. This review highlights the association of several lncRNAs in TNBC progression and treatment, along with their possible functions and mechanisms.
Collapse
Affiliation(s)
- Krishan K Thakur
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Kishore Banik
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elina Khatoon
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Choudhary Harsha
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Subash C Gupta
- Department of Biochemistry, Laboratory for Translational Cancer Research, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| |
Collapse
|
36
|
Loss of ZNF215 imprinting is associated with poor five-year survival in patients with cytogenetically abnormal-acute myeloid leukemia. Blood Cells Mol Dis 2021; 90:102577. [PMID: 34091126 DOI: 10.1016/j.bcmd.2021.102577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/05/2023]
Abstract
Genomic imprinting is a form of epigenetic regulation and imprinted genes are silenced in a parental-specific manner. Imprinting is associated with various human diseases and cancers, but its roles in leukemogenesis remains elusive. In this study, the expression of a panel of 16 human imprinted genes was investigated using real-time quantitative polymerase chain reaction and 8 of them were further validated in 114 patients newly diagnosed with cytogenetically abnormal-acute myeloid leukemia (CA-AML) and 85 healthy subjects. Our results demonstrated upregulated expression of 8 imprinted genes (C15orf2, COPG2, H19, IGF2, PEG3-AS1, PRIM2, SLC22A3 and ZNF215) was observed in patients with CA-AML (p < 0.001). Patients' survival days were negatively correlated with the expression levels of H19 (p = 0.024), PGE3-AS1 (p = 0.038), and ZNF215 (p = 0.012). Multivariate logistic regression analysis further revealed the expression level ZNF215 can be used as a predictor for five-year survival for patients with CA-AML (p = 0.009) with a hazard ratio of 0.870 (95.0% confident interval: 0.784-0.965). Our results demonstrated that loss of imprinting of imprinted genes is critical for the leukemogenesis of AML under CA condition, and loss of ZNF215 imprinting is associated with poor five-year survival of patients with CA-AML.
Collapse
|
37
|
Non-coding RNA in cancer. Essays Biochem 2021; 65:625-639. [PMID: 33860799 PMCID: PMC8564738 DOI: 10.1042/ebc20200032] [Citation(s) in RCA: 356] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Majority of the human genome is transcribed to RNAs that do not encode proteins. These non-coding RNAs (ncRNAs) play crucial roles in regulating the initiation and progression of various cancers. Given the importance of the ncRNAs, the roles of ncRNAs in cancers have been reviewed elsewhere. Thus, in this review, we mainly focus on the recent studies of the function, regulatory mechanism and therapeutic potential of the ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA (piRNA), in different type of cancers.
Collapse
|
38
|
Shahrzad MK, Gharehgozlou R, Fadaei S, Hajian P, Mirzaei HR. Vitamin D and Non-coding RNAs: New Insights into the Regulation of Breast Cancer. Curr Mol Med 2021; 21:194-210. [PMID: 32652908 DOI: 10.2174/1566524020666200712182137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Breast cancer, a life-threatening serious disease with a high incident rate among women, is responsible for thousands of cancer-associated death worldwide. Numerous investigations have evaluated the possible mechanisms related to this malignancy. Among them, non-coding RNAs (ncRNAs), i.e., microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have recently attracted attention of researchers. In addition to recent studies for evaluating the role of ncRNAs in breast cancer etiology, some investigations have revealed that vitamin D has regulatory and therapeutic roles in breast cancer. Moreover, an important link between vitamin D and ncRNAs in cancer therapy has been highlighted. Herein, the aim of this study was to discuss the available data on the mentioned link in breast cancer.
Collapse
Affiliation(s)
- Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Gharehgozlou
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Hajian
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Jahangiri L, Ishola T, Pucci P, Trigg RM, Pereira J, Williams JA, Cavanagh ML, Gkoutos GV, Tsaprouni L, Turner SD. The Role of Autophagy and lncRNAs in the Maintenance of Cancer Stem Cells. Cancers (Basel) 2021; 13:cancers13061239. [PMID: 33799834 PMCID: PMC7998932 DOI: 10.3390/cancers13061239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) represent a distinct cancer subpopulation that can influence the tumour microenvironment, in addition to cancer progression and relapse. A multitude of factors including CSC properties, long noncoding RNAs (lncRNAs), and autophagy play pivotal roles in maintaining CSCs. We discuss the methods of detection of CSCs and how our knowledge of regulatory and cellular processes, and their interaction with the microenvironment, may lead to more effective targeting of these cells. Autophagy and lncRNAs can regulate several cellular functions, thereby promoting stemness factors and CSC properties, hence understanding this triangle and its associated signalling networks can lead to enhanced therapy response, while paving the way for the development of novel therapeutic approaches. Abstract Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.
Collapse
Affiliation(s)
- Leila Jahangiri
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (T.I.); (M.L.C.); (L.T.)
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (R.M.T.); (S.D.T.)
- Correspondence: (L.J.); (G.V.G.)
| | - Tala Ishola
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (T.I.); (M.L.C.); (L.T.)
| | - Perla Pucci
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (R.M.T.); (S.D.T.)
| | - Ricky M. Trigg
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (R.M.T.); (S.D.T.)
- Department of Functional Genomics, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Joao Pereira
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - John A. Williams
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Megan L. Cavanagh
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (T.I.); (M.L.C.); (L.T.)
| | - Georgios V. Gkoutos
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX110RD, UK
- MRC Health Data Research Midlands, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Experimental Cancer Medicine Centre, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham B15 2TT, UK
- NIHR Biomedical Research Centre, Birmingham B15 2TT, UK
- Correspondence: (L.J.); (G.V.G.)
| | - Loukia Tsaprouni
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (T.I.); (M.L.C.); (L.T.)
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (R.M.T.); (S.D.T.)
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
40
|
Flores-Huerta N, Silva-Cázares MB, Arriaga-Pizano LA, Prieto-Chávez JL, López-Camarillo C. LncRNAs and microRNAs as Essential Regulators of Stemness in Breast Cancer Stem Cells. Biomolecules 2021; 11:380. [PMID: 33802575 PMCID: PMC7998729 DOI: 10.3390/biom11030380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is an aggressive disease with a high incidence in women worldwide. Two decades ago, a controversial hypothesis was proposed that cancer arises from a subpopulation of "tumor initiating cells" or "cancer stem cells-like" (CSC). Today, CSC are defined as small subset of somatic cancer cells within a tumor with self-renewal properties driven by the aberrant expression of genes involved in the maintenance of a stemness-like phenotype. The understanding of the underlying cellular and molecular mechanisms involved in the maintenance of CSC subpopulation are fundamental in the development and persistence of breast cancer. Nowadays, the hypothesis suggests that genetic and epigenetic alterations give rise to breast cancer stem cells (bCSC), which are responsible for self-renewal, tumor growth, chemoresistance, poor prognosis and low survival in patients. However, the prominence of bCSC, as well as the molecular mechanisms that regulates and promotes the malignant phenotypes, are still poorly understood. The role of non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) acting as oncogenes or tumor suppressor genes has been recently highlighted by a plethora of studies in breast cancer. These ncRNAs positively or negatively impact on different signaling pathways that govern the cancer hallmarks associated with bCSC, making them attractive targets for therapy. In this review, we present a current summary of the studies on the pivotal roles of lncRNAs and microRNAs in the regulation of genes associated to stemness of bCSC.
Collapse
Affiliation(s)
- Nadia Flores-Huerta
- Laboratorio de Oncogenómica y Proteómica del Cáncer, Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, 03100 CDMX, Mexico;
| | - Macrina B. Silva-Cázares
- Doctorado Institucional en Ingeniería y Ciencias de los Materiales, Universidad Autónoma de San Luis Potosí, 78210 San Luis Potosí, Mexico;
| | - Lourdes A. Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, 06720 CDMX, Mexico;
| | - Jessica L. Prieto-Chávez
- Laboratorio de Citometría de Flujo, Centro de Instrumentos, Coordinación de Investigación en Salud, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, 06720 CDMX, Mexico;
| | - César López-Camarillo
- Laboratorio de Oncogenómica y Proteómica del Cáncer, Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, 03100 CDMX, Mexico;
| |
Collapse
|
41
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
42
|
Wang MN, You ZH, Wang L, Li LP, Zheng K. LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.02.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Zhang W, Guan X, Tang J. The long non-coding RNA landscape in triple-negative breast cancer. Cell Prolif 2021; 54:e12966. [PMID: 33314471 PMCID: PMC7848969 DOI: 10.1111/cpr.12966] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer that has a higher risk of distant recurrence and metastasis, leading to a relatively aggressive biological behaviour and poor outcome. So far, the clinical management of TNBC is challenging because of its heterogeneity and paucity of specific targeted therapy. Recently, various studies have identified a lot of differently expressed long non-coding RNAs (lncRNAs) in TNBC. Those lncRNAs have been reported to play important roles in the multistep process of TNBC tumorigenesis. Here, we review the biological characteristics of lncRNAs, and present the current state of knowledge concerning the expression, function and regulation of lncRNAs in TNBC. Accumulating studies explored the potential lncRNAs-based therapeutics in TNBC, including the techniques of genetic modification using antisense oligonucleotides, locked nucleic acid and RNA nanotechnology. In current review, we also discuss the future prospects of studies about lncRNAs in TNBC and development of lncRNA-based strategies for clinical TNBC patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of OncologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiaoxiang Guan
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinhai Tang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
44
|
Zhou J, Zhang S, Luo M. LncRNA PCAT7 promotes the malignant progression of breast cancer by regulating ErbB/PI3K/Akt pathway. Future Oncol 2021; 17:701-710. [PMID: 33401925 DOI: 10.2217/fon-2020-0273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to explore the mechanism of lncRNA PCAT7 underlying the progression of breast cancer, which will provide a basis for accurate diagnosis and targeted treatment. Methods: Data from The Cancer Genome Atlas data associated with breast cancer were used to identify the target lncRNA. In vitro experiments were conducted to detect gene expression and the effect of the lncRNA on cancer cell activities. Results: PCAT7 was found to be highly expressed in breast cancer tissue and cells, which activated the ErbB/PI3K/Akt pathway to potentiate cancer cell proliferation, migration and invasion and suppress apoptosis. Conclusion: PCAT7 is likely to promote tumor cell activities by activating ErbB/PI3K/Akt pathway, in turn potentiating tumor malignant progression.
Collapse
Affiliation(s)
- Jiaoqun Zhou
- Department of Oncology Surgery, The First People's Hospital of Fuyang, Hangzhou, Zhejiang, 311400, China
| | - Shiwei Zhang
- Department of Oncology Surgery, The First People's Hospital of Fuyang, Hangzhou, Zhejiang, 311400, China
| | - Mingyuan Luo
- Department of Oncology Surgery, The First People's Hospital of Fuyang, Hangzhou, Zhejiang, 311400, China
| |
Collapse
|
45
|
Elias-Rizk T, El Hajj J, Segal-Bendirdjian E, Hilal G. The long non coding RNA H19 as a biomarker for breast cancer diagnosis in Lebanese women. Sci Rep 2020; 10:22228. [PMID: 33335214 PMCID: PMC7747713 DOI: 10.1038/s41598-020-79285-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Minimally invasive percutaneous image-guided biopsies are the current cornerstone in the diagnosis of breast lesions detected on mammography/ultrasonography/MRI or palpable clinically. However, apparently benign breast disease seen on benign biopsies is a limiting factor for diagnosis and a risk factor of breast cancer especially in the high-risk category patients. Hypothesizing that molecular changes often occur before morphological variations, the levels of the LncRNA H19 were measured in anonymous tissues obtained from 79 women's image guided breast biopsies, and correlated with cancer progression and aggressiveness. Using a double-blinded approach, H19 might be attributed an interesting role of a more sensitive biomarker in core breast biopsies, independently of the radiological/clinical classification and distant from the clinical management. We established different thresholds for H19 levels in normal versus proliferative, versus malignant tissues. Additionnally, H19 could act as an intra-group risk marker categorizing the biopsies in normal versus benign, versus precancerous breast tissue, and as a prognostic factor in cancerous lesions discriminating aggressive versus nonaggressive lesions. Our study suggests that the lncRNA H19 could be a potential marker for breast cancer diagnosis, prognosis and risk management.
Collapse
Affiliation(s)
- Tamina Elias-Rizk
- School of Medicine, Lebanese American University, Beirut, Lebanon
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Mar Mikhaël, Beirut, Lebanon
| | - Joelle El Hajj
- Natural Sciences Department, Lebanese American University, Beirut, Lebanon
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Mar Mikhaël, Beirut, Lebanon
| | - Evelyne Segal-Bendirdjian
- Team: Cellular Homeostasis, Cancer, and Therapies, INSERM UMR-S 1124, Université de Paris, Paris, France
- Université de Paris, Paris Sorbonne Cité, Paris, France
- BioMedTech Facilities, CNRS UMS2009/INSERM US36, Université de Paris, Paris, France
| | - George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Mar Mikhaël, Beirut, Lebanon.
| |
Collapse
|
46
|
Zhang X, Powell K, Li L. Breast Cancer Stem Cells: Biomarkers, Identification and Isolation Methods, Regulating Mechanisms, Cellular Origin, and Beyond. Cancers (Basel) 2020; 12:E3765. [PMID: 33327542 PMCID: PMC7765014 DOI: 10.3390/cancers12123765] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, breast cancer (BC) is still a major cause of cancer-related mortality in women. Breast cancer stem cells (BCSCs) are a small but significant subpopulation of heterogeneous breast cancer cells demonstrating strong self-renewal and proliferation properties. Accumulating evidence has proved that BCSCs are the driving force behind BC tumor initiation, progression, metastasis, drug resistance, and recurrence. As a heterogeneous disease, BC contains a full spectrum of different BC subtypes, and different subtypes of BC further exhibit distinct subtypes and proportions of BCSCs, which correspond to different treatment responses and disease-specific outcomes. This review summarized the current knowledge of BCSC biomarkers and their clinical relevance, the methods for the identification and isolation of BCSCs, and the mechanisms regulating BCSCs. We also discussed the cellular origin of BCSCs and the current advances in single-cell lineage tracing and transcriptomics and their potential in identifying the origin and lineage development of BCSCs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| | | | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| |
Collapse
|
47
|
Liu S, Xu DS, Li M, Zhang Y, Li Q, Li TT, Ren LQ. Icariin attenuates endothelial-mesenchymal transition via H19/miR-148b-3p/ELF5 in ox-LDL-stimulated HUVECs. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:464-475. [PMID: 33510936 PMCID: PMC7809175 DOI: 10.1016/j.omtn.2020.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/27/2020] [Indexed: 01/04/2023]
Abstract
Atherosclerosis is the main cause of cardio-cerebrovascular diseases. Endothelial-mesenchymal transition plays an important role in atherosclerosis. Icariin has a protective effect on atherosclerosis; however, the underlying mechanism remains unclear. In this study, we explored the molecular mechanism underlying the protective function of icariin in oxidized low-density lipoprotein-stimulated human umbilical vein endothelial cells. H19, a long non-coding RNA, was identified to be downregulated in the background of the oxidized low-density lipoprotein-induced endothelial-mesenchymal transition in human umbilical vein endothelial cells. Icariin upregulated H19 expression and inhibited the transformation of endothelial cells into interstitial cells. Overexpression of H19 affected endothelial-mesenchymal transition in oxidized low-density lipoprotein-stimulated human umbilical vein endothelial cells, whereas H19 knockdown reversed endothelial protective effects of icariin and reduced human umbilical vein endothelial cell migration. Knockdown of H19 significantly downregulated oxidized low-density lipoprotein-induced E74-like factor 5 and upregulated miR-148b-3p, which was reversed by icariin. Thus, icariin may play a protective role in atherosclerosis, and H19 may be a potential therapeutic target.
Collapse
Affiliation(s)
- Shan Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| | - Dong-Sheng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Min Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| | - Yang Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| | - Qi Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China.,The Third Hospital Affiliated of Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Teng-Teng Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Qun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
48
|
Olivero CE, Dimitrova N. Identification and characterization of functional long noncoding RNAs in cancer. FASEB J 2020; 34:15630-15646. [PMID: 33058262 PMCID: PMC7756267 DOI: 10.1096/fj.202001951r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as key regulators in a variety of cellular processes that influence disease states. In particular, many lncRNAs are genetically or epigenetically deregulated in cancer. However, whether lncRNA alterations are passengers acquired during cancer progression or can act as tumorigenic drivers is a topic of ongoing investigation. In this review, we examine the current methodologies underlying the identification of cancer-associated lncRNAs and highlight important considerations for evaluating their biological significance as cancer drivers.
Collapse
Affiliation(s)
- Christiane E. Olivero
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
49
|
Wang H, Yu S, Peng H, Shu Y, Zhang W, Zhu Q, Wu Y, Xu Y, Yan J, Xiang H. Long noncoding RNA Linc00337 functions as an E2F1 co-activator and promotes cell proliferation in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2020; 39:216. [PMID: 33054826 PMCID: PMC7557102 DOI: 10.1186/s13046-020-01725-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) Linc00337 has been implicated in lung, gastric, colorectal and esophageal squamous cell carcinoma progression via various mechanisms; however, its clinicopathological significance and role in pancreatic ductal adenocarcinoma (PDAC) progression remains largely unknown. METHODS Multiple approaches such as bioinformatic analysis, Transfection, quantitative real-time-PCR, Western blotting, animal studies, RNA-immunoprecipitation (RIP), RNA-pulldown and RNA-Fluorescence in situ hybridization (RNA-FISH) and were utilized to explore the role of Linc00337 in PDAC. RESULTS Here we identified Linc00337 is an oncogenic lncRNA during PDAC progression. We found that the expression of Linc00337 is elevated in PDAC tissues and the higher Linc00337 predicts dismal prognosis. Functionally, Linc00337 promotes PDAC cell proliferation and cell cycle transition both in vitro and in vivo. Mechanistically, Linc00337 binds to E2F1 and functions as an E2F1 coactivator to trigger the targets expression during PDAC progression. CONCLUSION Our results demonstrate a reciprocal regulation mechanism between Linc00337 and E2F1 in PDAC progression and report the clinical value of Linc00337 for PDAC prognosis and treatment.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Movement
- Cell Proliferation
- E2F1 Transcription Factor/genetics
- E2F1 Transcription Factor/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- RNA, Long Noncoding/genetics
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Huakai Wang
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Shiyong Yu
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Huan Peng
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Yijun Shu
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Wenjie Zhang
- Department of General Surgery, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, No. 1655, Kongjiang Road, Shanghai, 200092, China
| | - Qi Zhu
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Yingxia Wu
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Yijun Xu
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China
| | - Jiqi Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Honggang Xiang
- Department of General Surgery Pudong New Area People's Hospital Pudong New Area, No. 490, South Chuanhuan Road, Shanghai, 201200, China.
| |
Collapse
|
50
|
Zhang C, Luo Y, Cao J, Wang X, Miao Z, Shao G. Exosomal lncRNA FAM225A accelerates esophageal squamous cell carcinoma progression and angiogenesis via sponging miR-206 to upregulate NETO2 and FOXP1 expression. Cancer Med 2020; 9:8600-8611. [PMID: 33006432 PMCID: PMC7666726 DOI: 10.1002/cam4.3463] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 01/01/2023] Open
Abstract
Esophageal cancer is one of the leading causes of cancer‐related deaths worldwide. FAM225A is a novel lncRNA, only has been explored in nasopharyngeal carcinoma tumorigenesis. This study aims to investigate the regulatory mechanism of FAM225A in esophageal squamous cell carcinoma (ESCC). We discovered that FAM225A exhibited higher expression in ESCC. The silence of FAM225A attenuated cell viability, migration, and invasion, but facilitated cell apoptosis in ESCC. Exosome‐mediated transfer of lncRNA FAM225A could participate in ESCC progression. In addition, we found that miR‐206 bound to FAM225A. Moreover, we further demonstrated that FAM225A absorbed miR‐206 to upregulate NETO2 and FOXP1 expression, and FOXP1 acted as a transcription factor to enhance FAM225A expression. Eventually, it was revealed that the overexpression of NETO2 or FOXP1 rescued the effects of FAM225A repression on ESCC progression. Our results suggested that FAM225A upregulated NETO2 and FOXP1 expression by sponging miR‐206 to accelerate ESCC progression and angiogenesis. These results determined the biological role of lncRNA FAM225A in ESCC tumorigenesis, and FAM225A may be a promising biomarker for ESCC treatment.
Collapse
Affiliation(s)
- Chunyu Zhang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, P.R. China
| | - Yan Luo
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, P.R. China
| | - Jingjing Cao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, P.R. China
| | - Xiaoyu Wang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, P.R. China
| | - Zhiwei Miao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, P.R. China
| | - Guoqing Shao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, P.R. China
| |
Collapse
|