1
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
2
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Wang Z, Guo F, Fu G, Zhao Z, Kang N, Hou X, Zheng X. Predictive and prognostic value of aurora kinase A combined with tumor-infiltrating lymphocytes in medullary thyroid carcinoma. Front Oncol 2024; 14:1379420. [PMID: 38903715 PMCID: PMC11187078 DOI: 10.3389/fonc.2024.1379420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Background Aurora kinase A (AURKA) and tumor-infiltrating lymphocytes (TILs) are both known to play an essential role in tumorigenesis. However, the expression and prognostic value of the AURKA and TILs in medullary thyroid carcinoma (MTC) have not yet been investigated. Patients and methods Surgical specimens and clinical data of 137 patients diagnosed with MTC were collected. AURKA expression and TILs infiltration were quantified by immunohistochemistry and hematoxylin-eosin staining. Subsequently, the prognostic value of AURKA expression and TIL infiltration in MTC was evaluated. Results AURKA was highly expressed in patients with multifocal tumor, cervical lymph node metastasis, and an advanced TNM stage, indicating a high probability of recurrence. AURKA further exhibited a positive correlation with TILs (R = 0.44, P < 0.001). High expression of AURKA combined with a low numbers of TILs (AURKAhigh/TILslow) was identified as an independent prognostic factor for biochemical recurrence (odds ratio: 4.57, 95% confidence interval: 1.54-14.66, P < 0.01) and recurrence-free survival (hazard ratio: 3.64, 95% confidence interval: 1.52-8.71, P < 0.001). The combination of AURKA and TILs apparently improves the prognostic value for biochemical recurrence (area under the curve: 0.751) and structural recurrence (area under the curve: 0.836) of MTC. Notably, AURKAhigh/TILslow demonstrated a high value for prediction of distant or unresectable locoregional recurrence, with an overall accuracy of 86.9%. Conclusion AURKAhigh is associated with the MTC malignancy. The combination of AURKAhigh/TILslow was identified as novel independent prognostic marker in MTC, predicting incurable disease recurrence with high accuracy.
Collapse
Affiliation(s)
- Zhongyu Wang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Fengli Guo
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Guiming Fu
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Thyroid-otolaryngology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zewei Zhao
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ning Kang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiukun Hou
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
4
|
da Silva SF, Murta EF, Michelin MA. ICAM2 is related to good prognosis in dendritic cell immunotherapy for cancer. Immunotherapy 2024; 16:173-185. [PMID: 38126167 DOI: 10.2217/imt-2021-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Objective: To evaluate the behavior of adhesion molecules ICAM-1 and ICAM-2 in dendritic cell (DC) immunotherapy. Materials & methods: 88 female Balb/c mice were divided into experimental groups. Tumors and lymph nodes were evaluated 7 and 14 days after immunotherapy. Results: Higher mean fluorescence intensity of ICAM-1 in the lymph nodes and tumors in the tumor group at 14 days was observed. Higher mean fluorescence intensity of ICAM-2 in the tumor DC vaccine group was observed after 14 days. A positive correlation was observed in the lymph nodes with ICAM-1 against tumoral volume in the tumor group. A negative correlation was found between ICAM-2 and tumoral volume in the lymph nodes of the tumor group. Conclusion: An increase in ICAM-2 in tumor DC vaccine and a decrease in ICAM-1 suggests the DC vaccine positively influences the immune system and that ICAM-2 could be a marker of good prognosis.
Collapse
Affiliation(s)
- Saulo Fm da Silva
- Oncology Research Institute (IPON), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Eddie Fc Murta
- Oncology Research Institute (IPON), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
- Department of Gynecology and Obstetrics, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, 38.025-350, Brazil
| | - Márcia A Michelin
- Oncology Research Institute (IPON), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
- Immunology Discipline, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, 38.025-500, Brazil
| |
Collapse
|
5
|
Rodrigues RR, Freitas VS, Alves PM, Almeida Freitas RD, Souza LBD, Andrade Santos PPD. Evaluation of the presence of Th1 response through T-bet and IFN-gamma immunohistochemical expression in lower lip and oral tongue squamous cell carcinomas. Pathol Res Pract 2024; 253:155010. [PMID: 38101155 DOI: 10.1016/j.prp.2023.155010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Evaluate the immunohistochemical expression of T-bet and IFN-γ in lower lip (LLSCC) and oral tongue squamous cell carcinoma (OTSCC), verifying the presence of Th1 responses in lesions with different clinical conditions. METHODS AND MATERIALS Thirty OTSCC and 30 LLSCC were analyzed by immunohistochemistry. T-bet was quantitatively assessed by parenchyma cell and stroma quantification, and IFN-γ was semi-quantitatively analyzed: 1:0-25%; 2:26-50%; 3:51-75%; 4:> 75% immunopositive cells. Histological differentiation degrees were categorized as well differentiated (WD), moderately differentiated (MD), or poorly differentiated (PD). RESULTS OTSCC presented the highest number of T-bet+, parenchyma (p: 0.006), stroma (p: 0.156), parenchyma/stroma (p: 0.015), with no relationship to histological malignancy grade. IFN-γ higher concentrations in LLSCC were detected in parenchyma, stroma and in parenchyma/stroma (p: 0.000), as well as greater immunoreactivity in WD and MD (p: 0.001). In OTSCC, a positive and statistically significant correlation was observed between T-bet+ in parenchyma and IFN-γ in stroma(r: 0.388; p: 0.034), in addition to a statistically significant positive correlation between T-bet in parenchyma compared to stroma(r: 0.411; p: 0.024) and for IFN-γ in both parenchyma and stroma(r: 0.775; p: 0.000) in LLSCC. Higher T-bet+ was observed in OTSCCs, although higher IFN-γ was detected in LLSCCs. CONCLUSION Thus, we suggest that, even though LLSCC presented lower T-bet+, the favorable microenvironment in these lesions led to an expressive activation of IFN-γ by T-bet+, considerably acting on Th1 differentiation and in antitumor activity, which, admittedly, present less aggressive behavior, reinforcing once again the important role of this cytokine and its use in strategy to fight cancer.
Collapse
Affiliation(s)
| | - Valéria Souza Freitas
- Department of Dentistry, State University of Feira de Santana (UEFS), Feira de Santana, BA, Brazil
| | - Pollianna Muniz Alves
- Department of Dentistry, State University of Paraíba (UEPB), Campina Grande, PB, Brazil
| | | | - Lélia Batista de Souza
- Department of Oral Pathology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | |
Collapse
|
6
|
Mizoguchi K, Kawaji H, Kai M, Morisaki T, Hayashi S, Takao Y, Yamada M, Shimazaki A, Osako T, Arima N, Okido M, Oda Y, Nakamura M, Kubo M. Granzyme B Expression in the Tumor Microenvironment as a Prognostic Biomarker for Patients with Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:4456. [PMID: 37760424 PMCID: PMC10526301 DOI: 10.3390/cancers15184456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Tumor-infiltrating lymphocytes in the tumor microenvironment are important in the treatment of triple-negative breast cancer (TNBC). Cytotoxic T cells produce cytokines and cytotoxic factors, such as perforin and granzyme, which induce apoptosis by damaging target cells. To identify biomarkers of these cells, we investigated granzyme B (GZMB) in the tumor microenvironment as a biomarker of treatment response and prognosis in 230 patients with primary TNBC who underwent surgery without preoperative chemotherapy between January 2004 and December 2014. Programmed cell death ligand 1 (PD-L1) positivity was defined as a composite positive score ≥10 based on the PD-L1 immunostaining of tumor cells and immune cells. GZMB-high was defined as positivity in ≥1% of tumor-infiltrating lymphocytes (TILs). Among the 230 TNBC patients, 117 (50.9%) had CD8-positive infiltrating tumors. In the PD-L1-positive group, a Kaplan-Meier analysis showed that GZMB-high TNBC patients had better recurrence-free survival (RFS) and overall survival (OS) than GZMB-low patients and that OS was significantly longer (RFS: p = 0.0220, OS: p = 0.0254). A multivariate analysis also showed significantly better OS in PD-L1- and GZMB-high patients (hazard ratio: 0.25 (95% IC: 0.07-0.88), p = 0.03). Our findings indicate that GZMB is a useful prognostic biomarker in PD-L1-positive TNBC patients.
Collapse
Affiliation(s)
- Kimihisa Mizoguchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.M.); (H.K.); (M.K.); (T.M.); (S.H.); (Y.T.); (M.Y.)
| | - Hitomi Kawaji
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.M.); (H.K.); (M.K.); (T.M.); (S.H.); (Y.T.); (M.Y.)
| | - Masaya Kai
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.M.); (H.K.); (M.K.); (T.M.); (S.H.); (Y.T.); (M.Y.)
| | - Takafumi Morisaki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.M.); (H.K.); (M.K.); (T.M.); (S.H.); (Y.T.); (M.Y.)
| | - Saori Hayashi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.M.); (H.K.); (M.K.); (T.M.); (S.H.); (Y.T.); (M.Y.)
| | - Yuka Takao
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.M.); (H.K.); (M.K.); (T.M.); (S.H.); (Y.T.); (M.Y.)
| | - Mai Yamada
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.M.); (H.K.); (M.K.); (T.M.); (S.H.); (Y.T.); (M.Y.)
| | - Akiko Shimazaki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.M.); (H.K.); (M.K.); (T.M.); (S.H.); (Y.T.); (M.Y.)
| | - Tomofumi Osako
- Breast Center, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, Kumamoto 862-8655, Japan
| | - Nobuyuki Arima
- Department of Pathology, Kumamoto Shinto General Hospital, 3-2-65 Oe, Chuo-ku, Kumamoto 862-8655, Japan
| | - Masayuki Okido
- Department of Surgery, Hamanomachi Hospital, 3-3-1 Nagahama, Chuo-ku, Fukuoka 810-8539, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.M.); (H.K.); (M.K.); (T.M.); (S.H.); (Y.T.); (M.Y.)
| | - Makoto Kubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.M.); (H.K.); (M.K.); (T.M.); (S.H.); (Y.T.); (M.Y.)
| |
Collapse
|
7
|
Sollfrank L, Linn SC, Hauptmann M, Jóźwiak K. A scoping review of statistical methods in studies of biomarker-related treatment heterogeneity for breast cancer. BMC Med Res Methodol 2023; 23:154. [PMID: 37386356 PMCID: PMC10308726 DOI: 10.1186/s12874-023-01982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Many scientific papers are published each year and substantial resources are spent to develop biomarker-based tests for precision oncology. However, only a handful of tests is currently used in daily clinical practice, since development is challenging. In this situation, the application of adequate statistical methods is essential, but little is known about the scope of methods used. METHODS A PubMed search identified clinical studies among women with breast cancer comparing at least two different treatment groups, one of which chemotherapy or endocrine treatment, by levels of at least one biomarker. Studies presenting original data published in 2019 in one of 15 selected journals were eligible for this review. Clinical and statistical characteristics were extracted by three reviewers and a selection of characteristics for each study was reported. RESULTS Of 164 studies identified by the query, 31 were eligible. Over 70 different biomarkers were evaluated. Twenty-two studies (71%) evaluated multiplicative interaction between treatment and biomarker. Twenty-eight studies (90%) evaluated either the treatment effect in biomarker subgroups or the biomarker effect in treatment subgroups. Eight studies (26%) reported results for one predictive biomarker analysis, while the majority performed multiple evaluations, either for several biomarkers, outcomes and/or subpopulations. Twenty-one studies (68%) claimed to have found significant differences in treatment effects by biomarker level. Fourteen studies (45%) mentioned that the study was not designed to evaluate treatment effect heterogeneity. CONCLUSIONS Most studies evaluated treatment heterogeneity via separate analyses of biomarker-specific treatment effects and/or multiplicative interaction analysis. There is a need for the application of more efficient statistical methods to evaluate treatment heterogeneity in clinical studies.
Collapse
Affiliation(s)
- L Sollfrank
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Fehrbelliner Straße 39, Neuruppin, 16816, Germany
| | - S C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - M Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Fehrbelliner Straße 39, Neuruppin, 16816, Germany
| | - K Jóźwiak
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Fehrbelliner Straße 39, Neuruppin, 16816, Germany.
| |
Collapse
|
8
|
Meng X, Wang Y, Wang T, Jiao B, Shao H, Jia Q, Duan H. Particulate Matter and Its Components Induce Alteration on the T-Cell Response: A Population Biomarker Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:375-384. [PMID: 36537917 DOI: 10.1021/acs.est.2c04347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Compared with the T-cell potential of particulate matter (PM) in animal studies, comprehensive evaluation on the impairments of T-cell response and exposure-response from PM and its components in human population is limited. There were 768 participants in this study. We measured environmental PM and its polycyclic aromatic hydrocarbons (PAHs) and metals and urinary metabolite levels of PAHs and metals among population. T lymphocyte and its subpopulation (CD4+ T cells and CD8+ T cells) and the expressions of T-bet, GATA3, RORγt, and FoxP3 were measured. We explored the exposure-response of PM compositions by principal component analysis and mode of action by mediation analysis. There was a significant decreasing trend for T lymphocytes and the levels of T-bet and GATA3 with increased PM levels. Generally, there was a negative correlation between PM, urinary 1-hydroxypyrene, urinary metals, and the levels of T-bet and GATA3 expression. Additionally, CD4+ T lymphocytes were found to mediate the associations of PM2.5 with T-bet expression. PM and its bound PAHs and metals could induce immune impairments by altering the T lymphocytes and genes of T-bet and GATA3.
Collapse
Affiliation(s)
- Xiangjing Meng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Yanhua Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Ting Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hua Shao
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Qiang Jia
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
9
|
Li P, Chen X, Ping Y, Qin G, Huang L, Zhao Q, Zhang Z, Chen H, Wang L, Yang S, Zhang Y. Clinical Correlation of Function and TCR vβ Diversity of MAGE-C2–Specific CD8+ T Cell Response in Esophageal Cancer. THE JOURNAL OF IMMUNOLOGY 2022; 209:1039-1047. [DOI: 10.4049/jimmunol.2101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/08/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Melanoma-associated Ag (MAGE)-C2, an immunogenic cancer germline (testis) Ag, is highly expressed by various tumor cells, thymic medullary epithelial cells, and germ cells. In this study, we aimed to explore the immunologic properties of MAGE-C2–specific CD8+ T cells and the relationship of its TCR β-chain V region (TCR vβ) subfamily distribution to prognosis of patients with esophageal cancer. PBMCs and tumor-infiltrating lymphocytes expanded by CD3/CD28 Dynabeads and MAGE-C2 peptides in vitro resulted in the induction of lysosome-associated membrane protein-1 (LAMP-1 or CD107a) on the cell surface and the production of IFN-γ by MAGE-C2–specific CD8+ T cells. We found differential TCR vβ subfamily distribution among flow-sorted CD107a+IFN-γ+ and CD107a−IFN-γ− CD8+ T cells. The proportion of CD107a+ and/or IFN-γ+ tetramer+ CD8+ T cells was lower in patients with lymph node metastasis, late tumor stage, and poorly differentiated state (p < 0.05). T-box transcription factor was positively correlated with CD107a and IFN-γ. Kaplan–Meier analysis showed that patients whose MAGE-C2–specific CD8+ T cells expressed high CD107a and/or IFN-γ had a longer survival time when compared with patients whose MAGE-C2–specific CD8+ T cells expressed low levels of CD107a and/or IFN-γ. Moreover, analysis of TCR vβ subfamily distribution revealed that a higher frequency of TCR vβ16 in MAGE-C2–specific CD8+ T cells was positively correlated with a better prognosis. These results suggest that the presence of functional MAGE-C2–specific CD8+ T cells had an independent prognostic impact on the survival of patients with esophageal cancer.
Collapse
Affiliation(s)
- Pupu Li
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinfeng Chen
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guohui Qin
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Huang
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huanan Chen
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shengli Yang
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- *Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- †School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- ‡Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China; and
- §State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Chaudhary O, Trotta D, Wang K, Wang X, Chu X, Bradley C, Okulicz J, Maves RC, Kronmann K, Schofield CM, Blaylock JM, Deng Y, Schalper KA, Kaech SM, Agan B, Ganesan A, Emu B. Patients with HIV-associated cancers have evidence of increased T cell dysfunction and exhaustion prior to cancer diagnosis. J Immunother Cancer 2022; 10:jitc-2022-004564. [PMID: 35470232 PMCID: PMC9039380 DOI: 10.1136/jitc-2022-004564] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND People living with HIV (PLWH) have increased risk of developing cancers after controlling traditional risk factors and viral suppression. This study explores whether T cells can serve as a marker of risk for cancer among HIV-infected virally suppressed patients. METHODS A nested case control study design was pursued with 17 cancer cases and 73 controls (PLWH without cancer)ouidentified among the US Military HIV Natural History Study cohort, and were matched for CD4 + count, duration of HIV infection, and viral suppression. Cells were obtained from PLWH on an average of 12 months prior to clinical cancer diagnosis. Expression of inhibitory receptors (PD-1, CD160, CD244, Lag-3, and TIGIT), and transcription factors (T-bet, Eomesodermin, TCF-1, and (TOX) was measured on CD8 +T cells from that early time point. RESULTS We found that cases have increased expression of PD-1 +CD160+CD244+ ('triple positive') on total and effector CD8 + compared with controls (p=0.02). Furthermore, CD8 +T cells that were both PD-1 +CD160+CD244+ and T-betdimEomeshi were significantly elevated in cases at time point before cancer detection, compared with controls without cancer (p=0.008). This was driven by the finding that transcriptional factor profile of cells was altered in cancers compared with controls. Triple-positive cells were noted to retain the ability for cytotoxicity and cytokine secretion mediated by expression of CD160 and PD-1, respectively. However, triple-positive cells demonstrated high expression of TOX-1, a transcription factor associated with T cell exhaustion. CONCLUSION In conclusion, we have found a subset of dysfunctional CD8 +T cells, PD-1 +CD160+CD244+T-betdimEomeshi, that is elevated 12 months before cancer diagnosis, suggesting that peripheral T cell alterations may serve as a biomarker of increased cancer risk among PLWH.
Collapse
Affiliation(s)
- Omkar Chaudhary
- Internal Medicine; Infectious Disease, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Diane Trotta
- Flow Cytometry Facility, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kaicheng Wang
- School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Xun Wang
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Xiuping Chu
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Chip Bradley
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Jason Okulicz
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | - Ryan C Maves
- Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Karl Kronmann
- Internal Medicine, Naval Medical Center Portsmouth, Portsmouth, Virginia, USA
| | - Christina M Schofield
- Internal Medicine; Infectious Diseases, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Jason M Blaylock
- Internal Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Yanhong Deng
- School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Kurt A Schalper
- Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susan M Kaech
- Departments of Immunobiology, Salk Institute, La Jolla, California, USA
| | - Brian Agan
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Anuradha Ganesan
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Brinda Emu
- Internal Medicine; Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA,Internal Medicine; Infectious Diseases, VA Connecticut Healthcare System - West Haven Campus, West Haven, Connecticut, USA
| |
Collapse
|
11
|
van Luijk IF, Smith SM, Marte Ojeda MC, Oei AL, Kenter GG, Jordanova ES. A Review of the Effects of Cervical Cancer Standard Treatment on Immune Parameters in Peripheral Blood, Tumor Draining Lymph Nodes, and Local Tumor Microenvironment. J Clin Med 2022; 11:2277. [PMID: 35566403 PMCID: PMC9102821 DOI: 10.3390/jcm11092277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer remains a public health concern despite all the efforts to implement vaccination and screening programs. Conventional treatment for locally advanced cervical cancer consists of surgery, radiotherapy (with concurrent brachytherapy), combined with chemotherapy, or hyperthermia. The response rate to combination approaches involving immunomodulatory agents and conventional treatment modalities have been explored but remain dismal in patients with locally advanced disease. Studies exploring the immunological effects exerted by combination treatment modalities at the different levels of the immune system (peripheral blood (PB), tumor-draining lymph nodes (TDLN), and the local tumor microenvironment (TME)) are scarce. In this systemic review, we aim to define immunomodulatory and immunosuppressive effects induced by conventional treatment in cervical cancer patients to identify the optimal time point for immunotherapy administration. Radiotherapy (RT) and chemoradiation (CRT) induce an immunosuppressive state characterized by a long-lasting reduction in peripheral CD3, CD4, CD8 T cells and NK cells. At the TDLN level, CRT induced a reduction in Nrp1+Treg stability and number, naïve CD4 and CD8 T cell numbers, and an accompanying increase in IFNγ-producing CD4 helper T cells, CD8 T cells, and NK cells. Potentiation of the T-cell anti-tumor response was particularly observed in patients receiving low irradiation dosage. At the level of the TME, CRT induced a rebound effect characterized by a reduction of the T-cell anti-tumor response followed by stable radioresistant OX40 and FoxP3 Treg cell numbers. However, the effects induced by CRT were very heterogeneous across studies. Neoadjuvant chemotherapy (NACT) containing both paclitaxel and cisplatin induced a reduction in stromal FoxP3 Treg numbers and an increase in stromal and intratumoral CD8 T cells. Both CRT and NACT induced an increase in PD-L1 expression. Although there was no association between pre-treatment PD-L1 expression and treatment outcome, the data hint at an association with pro-inflammatory immune signatures, overall and disease-specific survival (OS, DSS). When considering NACT, we propose that posterior immunotherapy might further reduce immunosuppression and chemoresistance. This review points at differential effects induced by conventional treatment modalities at different immune compartments, thus, the compartmentalization of the immune responses as well as individual patient's treatment plans should be carefully considered when designing immunotherapy treatment regimens.
Collapse
Affiliation(s)
- Iske F. van Luijk
- Haaglanden Medical Center, Lijnbaan 32, 2512 VA The Hague, The Netherlands
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
| | - Sharissa M. Smith
- Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Maria C. Marte Ojeda
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
| | - Arlene L. Oei
- Laboratory for Experimental Oncology and Radiobiology, Department of Radiation Oncology, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Gemma G. Kenter
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
| | - Ekaterina S. Jordanova
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
12
|
Cuenca-Micó O, Delgado-González E, Anguiano B, Vaca-Paniagua F, Medina-Rivera A, Rodríguez-Dorantes M, Aceves C. Effects of Molecular Iodine/Chemotherapy in the Immune Component of Breast Cancer Tumoral Microenvironment. Biomolecules 2021; 11:biom11101501. [PMID: 34680134 PMCID: PMC8533888 DOI: 10.3390/biom11101501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/23/2023] Open
Abstract
Molecular iodine (I2) induces apoptotic, antiangiogenic, and antiproliferative effects in breast cancer cells. Little is known about its effects on the tumor immune microenvironment. We studied the effect of oral (5 mg/day) I2 supplementation alone (I2) or together with conventional chemotherapy (Cht+I2) on the immune component of breast cancer tumors from a previously published pilot study conducted in Mexico. RNA-seq, I2 and Cht+I2 samples showed significant increases in the expression of Th1 and Th17 pathways. Tumor immune composition determined by deconvolution analysis revealed significant increases in M0 macrophages and B lymphocytes in both I2 groups. Real-time RT-PCR showed that I2 tumors overexpress T-BET (p = 0.019) and interferon-gamma (IFNγ; p = 0.020) and silence tumor growth factor-beta (TGFβ; p = 0.049), whereas in Cht+I2 tumors, GATA3 is silenced (p = 0.014). Preliminary methylation analysis shows that I2 activates IFNγ gene promoter (by increasing its unmethylated form) and silences TGFβ in Cht+I2. In conclusion, our data showed that I2 supplements induce the activation of the immune response and that when combined with Cht, the Th1 pathways are stimulated. The molecular mechanisms involved in these responses are being analyzed, but preliminary data suggest that methylation/demethylation mechanisms could also participate.
Collapse
Affiliation(s)
- Olga Cuenca-Micó
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
| | - Evangelina Delgado-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
| | - Brenda Anguiano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14160, Mexico
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, UNAM-Juriquilla, Querétaro 76230, Mexico;
| | | | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
- Correspondence:
| |
Collapse
|
13
|
Baker AT, Abuwarwar MH, Poly L, Wilkins S, Fletcher AL. Cancer-Associated Fibroblasts and T Cells: From Mechanisms to Outcomes. THE JOURNAL OF IMMUNOLOGY 2021; 206:310-320. [PMID: 33397745 DOI: 10.4049/jimmunol.2001203] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022]
Abstract
Over the past decade, T cell immunotherapy has changed the face of cancer treatment, providing robust treatment options for several previously intractable cancers. Unfortunately, many epithelial tumors with high mortality rates respond poorly to immunotherapy, and an understanding of the key impediments is urgently required. Cancer-associated fibroblasts (CAFs) comprise the most frequent nonneoplastic cellular component in most solid tumors. Far from an inert scaffold, CAFs significantly influence tumor neogenesis, persistence, and metastasis and are emerging as a key player in immunotherapy resistance. In this review, we discuss the physical and chemical barriers that CAFs place between effector T cells and their tumor cell targets, and the therapies poised to target them.
Collapse
Affiliation(s)
- Alfie T Baker
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Mohammed H Abuwarwar
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Lylarath Poly
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Simon Wilkins
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern 3144, Victoria, Australia.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Victoria, Australia; and
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; .,Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| |
Collapse
|
14
|
Craven KE, Gökmen-Polar Y, Badve SS. CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer. Sci Rep 2021; 11:4691. [PMID: 33633150 PMCID: PMC7907367 DOI: 10.1038/s41598-021-83913-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Studies have shown that the presence of tumor infiltrating lymphocytes (TILs) in Triple Negative Breast Cancer (TNBC) is associated with better prognosis. However, the molecular mechanisms underlying these immune cell differences are not well delineated. In this study, analysis of hematoxylin and eosin images from The Cancer Genome Atlas (TCGA) breast cancer cohort failed to show a prognostic benefit of TILs in TNBC, whereas CIBERSORT analysis, which quantifies the proportion of each immune cell type, demonstrated improved overall survival in TCGA TNBC samples with increased CD8 T cells or CD8 plus CD4 memory activated T cells and in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) TNBC samples with increased gamma delta T cells. Twenty-five genes showed mutational frequency differences between the TCGA high and low T cell groups, and many play important roles in inflammation or immune evasion (ATG2B, HIST1H2BC, PKD1, PIKFYVE, TLR3, NOTCH3, GOLGB1, CREBBP). Identification of these mutations suggests novel mechanisms by which the cancer cells attract immune cells and by which they evade or dampen the immune system during the cancer immunoediting process. This study suggests that integration of mutations with CIBERSORT analysis could provide better prediction of outcomes and novel therapeutic targets in TNBC cases.
Collapse
Affiliation(s)
- Kelly E Craven
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
Zaguirre K, Kai M, Kubo M, Yamada M, Kurata K, Kawaji H, Kaneshiro K, Harada Y, Hayashi S, Shimazaki A, Morisaki T, Mori H, Oda Y, Chen S, Moriyama T, Shimizu S, Nakamura M. Validity of the prognostication tool PREDICT version 2.2 in Japanese breast cancer patients. Cancer Med 2021; 10:1605-1613. [PMID: 33452761 PMCID: PMC7940221 DOI: 10.1002/cam4.3713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction PREDICT is a prognostication tool that calculates the potential benefit of various postsurgical treatments on the overall survival (OS) of patients with nonmetastatic invasive breast cancer. Once patient, tumor, and treatment details have been entered, the tool will show the estimated 5‐, 10‐, and 15‐year OS outcomes, both with and without adjuvant therapies. This study aimed to conduct an external validation of the prognostication tool PREDICT version 2.2 by evaluating its predictive accuracy of the 5‐ and 10‐year OS outcomes among female patients with nonmetastatic invasive breast cancer in Japan. Methods All female patients diagnosed from 2001 to 2013 with unilateral, nonmetastatic, invasive breast cancer and had undergone surgical treatment at Kyushu University Hospital, Fukuoka, Japan, were selected. Observed and predicted 5‐ and 10‐year OS rates were analyzed for the validation population and the subgroups. Calibration and discriminatory accuracy were assessed using Chi‐squared goodness‐of‐fit test and area under the receiver operating characteristic curve (AUC). Results A total of 636 eligible cases were selected from 1, 213 records. Predicted and observed OS differed by 0.9% (p = 0.322) for 5‐year OS, and 2.4% (p = 0.086) for 10‐year OS. Discriminatory accuracy results for 5‐year (AUC = 0.707) and 10‐year (AUC = 0.707) OS were fairly well. Conclusion PREDICT tool accurately estimated the 5‐ and 10‐year OS in the overall Japanese study population. However, caution should be used for interpretation of the 5‐year OS outcomes in patients that are ≥65 years old, and also for the 10‐year OS outcomes in patients that are ≥65 years old, those with histologic grade 3 and Luminal A tumors, and in those considering ETx or no systemic treatment.
Collapse
Affiliation(s)
- Karen Zaguirre
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Institute of Surgery, St. Luke's Medical Center, Quezon City, Philippines
| | - Masaya Kai
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Kubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mai Yamada
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kanako Kurata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitomi Kawaji
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhisa Kaneshiro
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yurina Harada
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Hayashi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiko Shimazaki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takafumi Morisaki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitomi Mori
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sanmei Chen
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,International Medical Department, Kyushu University Hospital, Fukuoka, Japan
| | - Shuji Shimizu
- International Medical Department, Kyushu University Hospital, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Xu J, Liu Z, He K, Xiang G. T-bet transduction enhances anti-tumor efficacy of IFN-producing dendritic cell (IKDC) against hepatocellular carcinoma via apoptosis induction. Biochem Biophys Res Commun 2021; 535:80-86. [PMID: 33348079 DOI: 10.1016/j.bbrc.2020.11.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a public health challenge that requires dedication to develop new treatment options due to its high recurrence rate and poor prognosis. Interferon-producing killer dendritic cell (IKDC) is a subset of INF-γ secreting immune cells that modulates acquired immunity and possesses cytolytic ability. We modified IKDC isolated from the murine spleen with T-bet lentiviral transduction to enhance its cytotoxicity against HCC, and acquired IKDC overexpressing T-bet (T-bet-IKDC) for the first time. T-bet-IKDC has increased INF-γ secretion and surface expression of NKG2D and TRAIL. In vitro study by MTS assay and flow cytometry showed enhanced anti-tumor effect against H22 cells via apoptosis induction in a dose- and time-dependent manner. In vivo study on H22-bearing mice confirmed increased INF-γ secretion, reduced tumor size, increased caspase 3 cleavage, and up-regulation of cytotoxic molecules after T-bet-IKDC administration. The study suggested prospective application of T-bet-IKDC in future immunotherapy for HCC treatment.
Collapse
Affiliation(s)
- Jianguo Xu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Department of General Surgery, Heyuan People's Hospital, Heyuan 517001, China
| | - Zumei Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Department of Central Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, PR China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Department of General Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou 510317, China.
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Department of General Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou 510317, China.
| |
Collapse
|
17
|
Nomogram Personalizes and Visualizes the Overall Survival of Patients with Triple-Negative Breast Cancer Based on the Immune Genome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4029062. [PMID: 33299869 PMCID: PMC7709499 DOI: 10.1155/2020/4029062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/02/2020] [Accepted: 11/12/2020] [Indexed: 02/05/2023]
Abstract
Background Triple-negative breast cancer (TNBC) is usually poorly differentiated, highly invasive, susceptible to distant metastasis, and less responsive to endocrine and targeted therapy. However, immunotherapy is a promising treatment for TNBC patients recently. Methods The prognostic value of immune-related genes (IRGs) was explored by using RNA sequencing and microarray data of 123 and 107 TNBC patients from TCGA and GEO databases, respectively. Results In TCGA database, GO and KEGG pathway analysis of 119 differential IRGs indicated that they actively participate in the interaction of cytokines and receptors. A nomogram model constructed by the prognosis-related CCL25, IL29, TDGF3, GPR44, and GREM2 in the IRGs could personalize and visualize the 1-, 2-, 3-, 4-, and 5-year overall survival (OS) of TNBC patients. Moreover, TNBC patients could be defined as low-risk (risk score < 194) or high-risk (risk score ≥ 194) cohorts based on the risk score derived from the nomogram model. The results could be validated by the GSE58812 dataset. Furthermore, the risk score was an independent risk factor for TNBC patients (HR = 1.019, 95% CI 1.012-1.027, p < 0.001) and was positively related to stage (p = 0.017). Interestingly, the risk score could reflect the infiltration of B cells, CD4+ T cells, CD8+ T cells, dendritic cells, and neutrophils. Conclusion These findings provided a reference for personalized OS prediction in TNBC patients and might be potential immune biomarkers for designing novel therapy.
Collapse
|
18
|
Fountzila E, Ignatiadis M. Neoadjuvant immunotherapy in breast cancer: a paradigm shift? Ecancermedicalscience 2020; 14:1147. [PMID: 33574892 PMCID: PMC7864681 DOI: 10.3332/ecancer.2020.1147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Despite advances in clinical management, a proportion of patients with early-stage triple-negative breast cancer (TNBC) recur after local treatment. The concept of neoadjuvant systemic therapy has been widely adopted to improve clinical outcomes of patients with TNBC and other breast tumour types. Recently, promising data were reported from the first prospective phase III, randomised trial assessing neoadjuvant chemotherapy combined with the programmed cell death protein 1 (PD-1) inhibitor pembrolizumab versus placebo in patients with early-stage TNBC. The addition of pembrolizumab resulted in a significant increase in pathologic complete response (pCR) rates. Similarly, in the IMpassion031 trial, the use of atezolizumab in combination with neoadjuvant chemotherapy in patients with early-stage TNBC led to improved pCR rates compared to placebo, regardless of programmed death ligand 1 (PD-L1) expression. Ongoing trials are testing other PD-1/PD-L1 inhibitors in combination with neoadjuvant chemotherapy in TNBC and other tumour subtypes. However, not all patients benefit from the addition of immunotherapy, while a proportion of patients experiences serious adverse events. It is critical to identify predictive biomarkers of response, to accurately select patients who will benefit from immunotherapy, thus sparing the rest from ineffective treatments with unnecessary toxicity and treatment costs. In this review, we summarise the literature on reported and ongoing neoadjuvant clinical trials evaluating immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Elena Fountzila
- European University Cyprus, German Oncology Center, Agios Athanasios, 22006, Cyprus
- Second Department of Medical Oncology, Euromedica General Clinic, Thessaloniki, 54645, Greece
| | - Michail Ignatiadis
- Department of Medical Oncology & Academic Trials Promoting Team, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, 1000, Belgium
| |
Collapse
|
19
|
Microsatellite instability in Japanese female patients with triple-negative breast cancer. Breast Cancer 2020; 27:490-498. [PMID: 31907878 PMCID: PMC7196096 DOI: 10.1007/s12282-019-01043-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/25/2019] [Indexed: 01/11/2023]
Abstract
Background It is important to identify biomarkers for triple-negative breast cancers (TNBCs). Recently, pembrolizumab, an immune checkpoint inhibitor (ICI) for programmed cell death 1 (PD-1), was approved as a treatment strategy for unresectable or metastatic tumor with high-frequency microsatellite instability (MSI-H) or mismatch repair deficiency, such as malignant melanoma, non-small cell lung cancer, renal cell cancer and urothelial cancer. In addition, results from clinical trials suggested that ICI was a promising treatment for TNBCs with accumulated mutations. However, the frequency of MSI in Japanese TNBCs still remains unclear. We aimed to analyze the presence of MSI-H in TNBCs as a biomarker for ICI therapy. Methods In this study, we retrospectively evaluated the MSI of 228 TNBCs using an innovative method, MSI Analysis System Version 1.2 (Promega), consisting of 5 microsatellite markers: BAT-26, NR-21, BAT-25, MONO-27 and NR-24 without a normal tissue control. Results Among 228 tumors, 222 (97.4%) were microsatellite stable, 4 (1.7%) low-frequency MSI and 2 (0.9%) MSI-H, respectively. Two MSI-H tumors were potentially aggressive pathologically as indicated by nuclear grade 3 and high Ki-67 (> 30%), and were classified as basal-like and non-BRCA-like, but were not consistent regarding tumor-infiltrating lymphocytes, CD8 and PD-L1 expression. Conclusions Although we found that MSI-H was uncommon (0.9%) in TNBCs, potential targets for ICIs exist in TNBCs. Therefore, MSI-H breast cancer patients should be picked up using not only conventional methods but also platforms for comprehensive genomic profiling.
Collapse
|