1
|
Yang Z, Wan J, Zhang X, Mei J, Hao H, Liu S, Yi Y, Jiang M, He Y. Baicalin reduces sunitinib-induced cardiotoxicity in renal carcinoma PDX model by inhibiting myocardial injury, apoptosis and fibrosis. Front Pharmacol 2025; 16:1563194. [PMID: 40264678 PMCID: PMC12011809 DOI: 10.3389/fphar.2025.1563194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Sunitinib (SU), a multi-targeted tyrosine kinase inhibitor, has anticancer function but its clinical use is often limited by cardiovascular complications. Baicalin (BA) has demonstrated various pharmacological activities including antioxidant, anti-inflammatory and antiviral properties, but its potential roles in SU-induced cardiotoxicity have not been reported. In this study, we aimed to investigate the effect of BA in SU-induced cardiotoxicity in vivo by using renal carcinoma patient-derived xenograft (PDX) model. Female Nod Scid mice with renal carcinoma PDX were treated with vehicle, SU (50 mg/kg/d), BA (100 mg/kg/d), or BA combined with SU for 6 weeks. The tumor volume and weight of tumor-bearing mice were measured, and cardiovascular functions were evaluated by testing the Heart index and blood biochemical indicators, and by hematoxylin and eosin (H&E), Masson and Tunel staining. The results showed that SU therapy and combination therapy effectively inhibited the growth of renal tumors. Combination therapy inhibited SU-induced increase of creatine kinase (CK) and lactate dehydrogenase (LDH), and ameliorated the heart parameters. Moreover, BA effectively protected SU-induced cardiac dysfunction by decreasing injury, apoptosis, and fibrosis. Collectively, our results demonstrate that BA can be as a potential cardioprotective approach for cardiovascular complications during SU regimen.
Collapse
Affiliation(s)
- Zefu Yang
- Cardiovascular Medicine Department of Nanhai District People’s Hospital, Foshan, Guangdong, China
- Cardiovascular Medicine Department of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jianping Wan
- Electrophysiology Department of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Xinjin Zhang
- Cardiovascular Center, Affiliated Hospital of Yunnan University, Kunming, China
| | - Jiaqi Mei
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hua Hao
- Department of Pathology, Yangpu District Central Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sibo Liu
- The Queen MARY school, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yun Yi
- Center of Biobank, Nanchang University Second Affiliated Hospital, Jiangxi Medical College, Nanchang, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Laboratory Animal, Nanchang, China
- Nanchang Royo Biotechnology, Nanchang, China
| |
Collapse
|
2
|
Zhang Z, Wang R, Cai J, Li X, Feng X, Xu S, Jiang Z, Lin P, Huang Z, Xie Y. Baicalin alleviates lipid accumulation in adipocytes via inducing metabolic reprogramming and targeting Adenosine A1 receptor. Toxicon 2025; 258:108339. [PMID: 40188992 DOI: 10.1016/j.toxicon.2025.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Excessive lipid accumulation can lead to obesity, metabolic-associated fatty liver disease, and type 2 diabetes. However, there are currently few drugs that could effectively and safely inhibit the accumulation of intracellular lipids. In this study, we observed that baicalin significantly altered cellular respiration by reducing mitochondrial oxygen consumption while enhancing glycolytic flux, accompanied by increased phosphorylation of AMPK and ACC, suggesting an adaptation to altered energy availability. Baicalin effectively reduced lipid droplet formation and intracellular triglyceride levels in adipocytes, as marked by downregulating genes and proteins associated with lipid storage, including Cd36, Fabp4, and FASN. Transcriptomic analysis identified 2150 differentially expressed genes in baicalin-treated adipocytes, with significant enrichment in metabolic pathways such as glycolysis, gluconeogenesis, and lipid metabolism. Further analysis revealed that baicalin upregulated glycolytic and fatty acid β-oxidation (FAO) pathways while downregulating pyruvate dehydrogenase, inducing a shift toward glycolysis and FAO for energy production. Molecular docking analysis revealed that Adenosine A1 receptor (ADORA1) was the target of baicalin, which inhibited the maturation of sterol regulatory element binding protein 1 (SREBP1) and finally alleviated lipid deposition. These results demonstrate that baicalin induces metabolic reprogramming of adipocytes by inhibiting glucose aerobic metabolism while enhancing anaerobic glycolysis and FAO. Meanwhile, baicalin targets ADORA1, which subsequently influences the processing of SREBP1 and downregulates lipid biosynthesis, positioning baicalin as a potential therapeutic agent against obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Zaikuan Zhang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Runzhi Wang
- The School of Basic Medical Sciences, Harbin Medical University, Harbin, 150000, PR China
| | - Jin Cai
- The School of Basic Medical Sciences, Harbin Medical University, Harbin, 150000, PR China
| | - Xinyi Li
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaosong Feng
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shengming Xu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhihong Jiang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Peiyi Lin
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zengyi Huang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, 400016, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Medical University, Chongqing, 400016, PR China; Children's Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
3
|
Zieniuk B, Uğur Ş. The Therapeutic Potential of Baicalin and Baicalein in Breast Cancer: A Systematic Review of Mechanisms and Efficacy. Curr Issues Mol Biol 2025; 47:181. [PMID: 40136435 PMCID: PMC11941372 DOI: 10.3390/cimb47030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Cancer remains a leading cause of death globally, with breast cancer being the most commonly diagnosed cancer in women. This systematic review focuses on the therapeutic potential of baicalin and baicalein, two bioactive flavonoids derived from Scutellaria baicalensis, in breast cancer treatment. These compounds exhibit anticancer properties through mechanisms such as apoptosis induction, cell cycle arrest, and inhibition of metastasis. Baicalin and baicalein modulate key signaling pathways, including NF-κB, PI3K/AKT/mTOR, and Wnt/β-catenin, and have shown efficacy in both in vitro and in vivo models. Their synergy with chemotherapy agents and incorporation into nanotechnology-based delivery systems highlight opportunities to enhance therapeutic outcomes. However, current evidence is predominantly preclinical, with limited clinical trials to validate their safety and efficacy in humans. Challenges such as poor bioavailability and rapid metabolism also underscore the need for advanced formulation strategies. This review synthesizes current evidence on the molecular mechanisms, therapeutic efficacy, and potential applications of baicalin and baicalein in breast cancer research.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | | |
Collapse
|
4
|
Liang M, Sun X, Guo M, Wu H, Zhao L, Zhang J, He J, Ma X, Yu Z, Yong Y, Gooneratne R, Ju X, Liu X. Baicalin methyl ester prevents the LPS - induced mice intestinal barrier damage in vivo and in vitro via P65/TNF-α/MLCK/ZO-1 signal pathway. Biomed Pharmacother 2024; 180:117417. [PMID: 39298909 DOI: 10.1016/j.biopha.2024.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The effect of baicalin methyl ester (BME) on the regulation of mice intestinal barrier in the inflammatory response was studied in vivo and in vitro. Thirty six C57/BL mice were randomly divided into six groups (n = 6): control group; LPS group (LPS 3.5 mg/kg given intraperitoneal [ip] on day 7 of the study only), PBS group, and three BME groups (low: 50 mg/kg; medium: 100 mg/kg; high: 200 mg/kg) orally dosed with BME for 7d and LPS ip on day 7. All mice were sacrificed on day 8, and jejunum tissue collected for histopathology (H&E and PAS staining), protein expression of pro-inflammatory factors (TNF-α, IL-6, IL-8, IFN-γ) by ELISA, and intestinal tight junction proteins (ZO-1, occludin, claudin-1 and claudin-4) by Western Blot. Compared with the control group, LPS significantly increased the serum cytokines DAO (p < 0.01) and DLA (p < 0.01), upregulated the expression of pro-inflammatory factors, MLCK proteins (p <0.05) and increased the MLCK/ZO-1ratio (p <0.001). LPS also decreased the expression of claudin-4 (p < 0.01) in the jejunum and induced an inflammatory response damaging the jejunal mucosal barrier. Pretreatment with BME (100-200 mg/kg) significantly decreased the cytokines DAO (p < 0.05) and DLA (p < 0.01) in the serum, pro-inflammatory factors in the jejunum, significantly down-regulated the expression of MLCK (p <0.05) and the ratio of MLCK/ZO-1(p <0.001) but upregulated the expressions of ZO-1(p < 0.01), occludin (p < 0.05), claudin-1(p < 0.05) and claudin-4 (p < 0.05), and thereby restored the intestinal tissue structure, suggestive of alleviation of LPS-induced intestinal inflammation by BME. In vitro, MODE-K cells (derived from mice intestinal epithelium) were exposed to BME at 0 (control group-No LPS), 10, 20 and 40 μM BME for 24 h prior to LPS addition at 50 μg/mL for 2 h. LPS significantly increased the expression of pro-inflammatory factors, MLCK (p < 0.01) and the ratio of MLCK/ZO-1(p <0.001), decreased the expressions of ZO-1 (p < 0.05), occludin (p < 0.01), claudin-1 (p < 0.01) and claudin-4 (p < 0.01) in MODE-K cells compared with the control group. Compared with the LPS group, BME (10 - 40 μM) significantly decreased the expression of pro-inflammatory factors, MLCK (p < 0.05) and the ratio of MLCK/ZO-1(p <0.01) but increased the expressions of ZO-1(p < 0.01), occludin (p < 0.05) and claudin-4(p < 0.01) indicating an up-regulation of the expression of tight junction proteins by BME. On addition of extrinsic TNF-α plus LPS, the TNF- α level increased (p < 0.001) in MODE-K cells and the protein expression of MLCK (p < 0.01) was markedly up-regulated. Molecular docking predicted BME interacted with P65 by forming hydrogen bonds. IP-WB further confirmed that BME was directly bound to P65 protein in MODE-K cells. In conclusion, BME was able to restore the intestinal barrier through the P65 / TNF-α / MLCK / ZO-1 signaling pathway.
Collapse
Affiliation(s)
- Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Mengru Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huining Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Linlu Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jin Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jieyi He
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xingbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
5
|
Gu Y, Jin L, Wang L, Ma X, Tian M, Sohail A, Wang J, Wang D. Preparation of Baicalin Liposomes Using Microfluidic Technology and Evaluation of Their Antitumor Activity by a Zebrafish Model. ACS OMEGA 2024; 9:41289-41300. [PMID: 39398129 PMCID: PMC11465266 DOI: 10.1021/acsomega.4c03356] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Baicalin (BCL), a well-known flavonoid molecule, has numerous therapeutic applications. However, its low water solubility and bioavailability limit its applicability. Microfluidics is a new method for liposome preparation that provides efficient and rapid control of the process, improving the stability and controllability. This study used microfluidic techniques to create baicalin liposomes (BCL-LPs), first screening for optimal total flow rates (TFR) and flow rate ratios (FRR), and then optimizing the phospholipid concentration, phospholipid-to-cholesterol ratio, and Tween-80 concentration using univariate and response surface methodology approaches. The study found that the ideal phospholipid content was 9.5%, the phospholipid-to-cholesterol ratio was 9:1 (w:w), and the Tween-80 concentration was 15%. BCL-LPs achieved 95.323% ± 0.481% encapsulation efficiency under the optimum circumstances. Characterization indicated that the BCL-LPs were spherical and uniform in size, with a mean diameter of 62.32 nm ± 0.42, a polydispersity index of 0.092 ± 0.009, and a zeta potential of -25.000 mV ± 0.216. In vitro experiments found that BCL-LPs had a better slow-release effect and stability than the BCL monomer. In zebrafish bioassays, BCL-LPs performed better than BCL monomer in terms of biological activity and bioavailability. The established method provided a feasible medicine delivery platform for BCL and could apply for the transport and encapsulation of more natural compounds, expanding the applications of drug delivery systems in healthcare and cancer therapies.
Collapse
Affiliation(s)
- Yuhao Gu
- School
of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Liqiang Jin
- School
of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Li Wang
- Jinan
Vocational College of Engineering Department: Youth League Committee, Jinan 250200, China
| | - Xianzheng Ma
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Mingfa Tian
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | | | - Jianchun Wang
- Shandong
Giant E-Tech Co., Ltd., Jinan 250102, China
| | - Daijie Wang
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| |
Collapse
|
6
|
Wang S, Wang K, Li C, Chen J, Kong X. Role of flavonoids in inhibiting triple-negative breast cancer. Front Pharmacol 2024; 15:1411059. [PMID: 39257397 PMCID: PMC11384598 DOI: 10.3389/fphar.2024.1411059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Increasing incidences of metastasis or recurrence (or both) in triple-negative breast cancer (TNBC) are a growing concern worldwide, as these events are intricately linked to higher mortality rates in patients with advanced breast cancer. Flavonoids possess several pharmaceutical advantages with multi-level, multi-target, and coordinated intervention abilities for treating TNBC, making them viable for preventing tumor growth and TNBC metastasis. This review focused on the primary mechanisms by which flavonoids from traditional Chinese medicine extracts inhibit TNBC, including apoptosis, blocking of cell cycle and movement, regulation of extracellular matrix degradation, promotion of anti-angiogenesis, inhibition of aerobic glycolysis, and improvement in tumor microenvironment. This review aims to improve the knowledge of flavonoids as a promising pharmacological intervention for patients with TNBC.
Collapse
Affiliation(s)
- Shuai Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Kuanyu Wang
- The Second Department of Surgery, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Cheng Li
- The Second Department of Surgery, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jing Chen
- The Second Department of Surgery, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiangding Kong
- The Second Department of Surgery, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Tuli HS, Bhushan S, Kumar A, Aggarwal P, Sak K, Ramniwas S, Vashishth K, Behl T, Rana R, Haque S, Prieto MA. Autophagy Induction by Scutellaria Flavones in Cancer: Recent Advances. Pharmaceuticals (Basel) 2023; 16:302. [PMID: 37259445 PMCID: PMC9962484 DOI: 10.3390/ph16020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 07/28/2024] Open
Abstract
In parallel with a steady rise in cancer incidence worldwide, the scientific community is increasingly focused on finding novel, safer and more efficient modalities for managing this disease. Over the past decades, natural products have been described as a significant source of new structural leads for novel drug candidates. Scutellaria root is one of the most studied natural products because of its anticancer potential. Besides just describing the cytotoxic properties of plant constituents, their molecular mechanisms of action in different cancer types are equally important. Therefore, this review article focuses on the role of the Scutellaria flavones wogonin, baicalein, baicalin, scutellarein and scutellarin in regulating the autophagic machinery in diverse cancer models, highlighting these molecules as potential lead compounds for the fight against malignant neoplasms. The knowledge that autophagy can function as a dual-edged sword, acting in both a pro- and antitumorigenic manner, further complicates the issue, revealing an amazing property of flavonoids that behave either as anti- or proautophagic agents.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (University), Mullana, Ambala 133207, India
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Samba 181143, India
| | - Ajay Kumar
- Punjab Biotechnology Incubator (P.B.T.I.), Phase VIII, Mohali 160071, India
| | - Poonam Aggarwal
- The Basic Research Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, MD 20892, USA
| | | | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Rsearch (P.G.I.M.E.R.), Chandigarh 160012, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi 122016, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
8
|
Wei Q, Hao X, Lau BWM, Wang S, Li Y. Baicalin regulates stem cells as a creative point in the treatment of climacteric syndrome. Front Pharmacol 2022; 13:986436. [DOI: 10.3389/fphar.2022.986436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Graphical AbstractThis review summarizes the regulatory role of Baicalin on the diverse behaviors of distinct stem cell populations and emphasizes the potential applications of Baicalin and stem cell therapy in climacteric syndrome.
Collapse
|
9
|
Wang L, Feng T, Su Z, Pi C, Wei Y, Zhao L. Latest research progress on anticancer effect of baicalin and its aglycone baicalein. Arch Pharm Res 2022; 45:535-557. [DOI: 10.1007/s12272-022-01397-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
|
10
|
Pang H, Wu T, Peng Z, Tan Q, Peng X, Zhan Z, Song L, Wei B. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. J Bone Oncol 2022; 33:100415. [PMID: 35573641 PMCID: PMC9091934 DOI: 10.1016/j.jbo.2022.100415] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Baicalin causes apoptosis and autophagy through accumulating ROS to suppress PI3K/Akt/mTOR, ERK1/2 and β-catenin pathways in OS cells. Baicalin-induced autophagosome further triggers apoptosis. Baicalin-induced ROS and Ca2+ interactions induce apoptosis. Baicalin molecule targets PI3Kγ, inhibiting downstream effectors AKT and mTOR.
Baicalin, a flavonoid derivative, exerts antitumor activity in a variety of neoplasms. However, whether baicalin exerts antitumor effects on osteosarcoma cells remains to be elucidated. In this study, treatment with baicalin reduced the proliferation and invasive potential of osteosarcoma cells and reduced the mitochondrial membrane potential, which eventually caused mitochondrial apoptosis. In addition, baicalin increased intercellular Ca2+ and ROS concentrations. Baicalin-induced apoptosis was confirmed by enhanced Bax, cleaved caspase-3, and cleaved PARP levels and decreased Bcl-2 levels. The increase in LC3-II and p62 suggested that baicalin induced autophagosome formation but ultimately inhibited downstream autophagy. Moreover, apoptosis induced by baicalin was attenuated by the addition of 3-MA. Furthermore, we found that baicalin inhibited the PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. Chelation of free Ca2+ by BAPTA-AM also inhibited both apoptosis induction and ROS concentration changes. Finally, NAC pretreatment reversed baicalin treatment outcomes, including the increase in Ca2+ concentration, induction of apoptosis and autophagy, and inhibition of the pathways. Molecular docking results indicated that baicalin might interact with the structural domain of PI3Kγ. Thus, baicalin may be considered a potential candidate for osteosarcoma treatment.
Collapse
Affiliation(s)
- He Pang
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhonghua Peng
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qichao Tan
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xin Peng
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zeyu Zhan
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Corresponding authors.
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Corresponding authors.
| |
Collapse
|
11
|
Ibrahim A, Nasr M, El-Sherbiny IM. Baicalin as an emerging magical nutraceutical molecule: Emphasis on pharmacological properties and advances in pharmaceutical delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Wang A, Guo D, Cheng H, Jiang H, Liu X, Yun Z. Transcriptome Sequencing Explores the Mechanism of Baicalin on Bone Cancer Pain. J Inflamm Res 2021; 14:5999-6010. [PMID: 34815689 PMCID: PMC8605882 DOI: 10.2147/jir.s336028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Introduction Bone cancer pain is characterized by persistent pain, usually requiring drugs to relieve pain. Baicalin, a flavonoid compound extracted from Scutellaria baicalensis, which has antioxidant and analgesic effects. But, the effect of baicalin on bone cancer pain is unclear. Thus, this study aimed to explore the mechanism of baicalin on SD rats with bone cancer pain. Materials and Methods The MADB-106 breast cancer cells-induced bone pain model was constructed and carried out baicalin treatment. The therapeutic effect of baicalin on bone cancer pain model was observed by hematoxylin-eosin staining and immunofluorescence staining. We also performed transcriptome sequencing analysis of baicalin in the treatment of bone metastases. Also, RT-qPCR and ELISA were used to detect the expression levels of inflammation factors. Results After baicalin treatment, osteoclast activation was inhibited and the number of bone trabeculae was increased. Baicalin inhibited the protein expression level of inflammatory factors (IL-1β, IL-6, TNF-α and PGE2) in the bone metastases group. Based on the transcriptome sequencing of the bone metastases group and the baicalin treatment group, baicalin inhibited the expression of ALPP, DUSP1, CYR61, ALPPL2, SPP1 and TLR4. RT-qPCR was also used to validate the expression levels of these cytokine genes. Conclusion Baicalin had a certain inhibitory effect on the SD rat model of bone metastasis cancer. These insights can guide future research on the molecular mechanism of bone cancer pain and provide a theoretical basis for baicalin in the treatment of bone pain caused by breast cancer in the future.
Collapse
Affiliation(s)
- Aitao Wang
- Department of Anesthesiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, 010017, People's Republic of China
| | - Dongmei Guo
- Department of Anesthesiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, 010017, People's Republic of China
| | - Hongyu Cheng
- Department of Anesthesiology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, People's Republic of China
| | - Hui Jiang
- Department of Anesthesiology, Baotou Medical College, Baotou, Inner Mongolia, 014040, People's Republic of China
| | - Xiaojuan Liu
- Department of Anesthesiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, 010017, People's Republic of China
| | - Zhizhong Yun
- Department of Urinary Surgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, 010017, People's Republic of China
| |
Collapse
|