1
|
Chen Z, Sun Y, Yang N, Nan J, Cao L, Zhao L, Liu S, Xu J, Li Y, He X, Wu Y, Gao J, Chen Z, Cao L, Zhang Y, Li Y, Xu Q, Jiang S, Cao J, Wei F, Mao X, Zhang Z, Wang Y, Lei J. High altitudes, deeper insights: multicenter cardiovascular magnetic resonance study on hypertrophic cardiomyopathy. Eur Radiol 2024:10.1007/s00330-024-11305-2. [PMID: 39741217 DOI: 10.1007/s00330-024-11305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 01/02/2025]
Abstract
OBJECTIVES Altitude is a known factor in cardiovascular disease, but its impact on hypertrophic cardiomyopathy (HCM) patients remains unclear. This study aimed to determine whether living at high altitudes affects the extent of late gadolinium enhancement (LGE) and left ventricular (LV) strain in HCM patients. METHODS This retrospective cross-sectional study was conducted across four hospitals located at different altitudes in China. A total of 256 HCM patients who underwent cardiac magnetic resonance (CMR) imaging between May 2019 and November 2021 were included. Patients were categorized into two groups: the high-altitude group (median interquartile range [IQR]: 1520.00 [1520.00, 1917.00] meters, n = 132) and the low-altitude group (86.45 [43.50, 150.75] meters, n = 124). The extent of LGE and global LV strain were assessed and compared between these groups. RESULTS The median age of the study population was 55 years (IQR: 46-63), with 59% of participants being male. The high-altitude group exhibited a significantly greater extent of LGE compared to the low-altitude group (median [IQR]: 8.10 [4.78, 19.98]% vs. 6.20 [1.89, 13.81]%; p = 0.008). Multivariable analysis identified altitude as an independent predictor of increased LGE extent (β = 4.41; 95% CI: 2.04 to 6.78; p < 0.001). Additionally, altitude was positively associated with LV strain in the longitudinal, circumferential, and radial directions (all p < 0.050). CONCLUSION HCM patients living at higher altitudes exhibit a significant increase in LGE extent and more favorable LV strain parameters. KEY POINTS Question Does altitude affect the extent of late gadolinium enhancement (LGE) and left ventricular strain in patients with hypertrophic cardiomyopathy (HCM)? Findings High altitude is associated with a significantly greater extent of LGE and less impairment in global longitudinal strain in HCM patients. Clinical relevance HCM patients living at higher altitudes exhibit a significant increase in LGE extent and the mismatch of left ventricular strains. Doctors should consider these findings to tailor treatment and follow-up plans for HCM patients living in high altitudes.
Collapse
Affiliation(s)
- Zixian Chen
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yue Sun
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Yang
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Jiang Nan
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Likun Cao
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shengliang Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jizhe Xu
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuxi Li
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Xiangui He
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yi Wu
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Jian Gao
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Zixuan Chen
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Liang Cao
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yaping Zhang
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yanyu Li
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shu Jiang
- Department of Radiology, The Yancheng Clinical College of Xuzhou Medical University and The First People's Hospital of Yancheng, Yancheng, China
| | - Jian Cao
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fangying Wei
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Xiaojie Mao
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Zhuoli Zhang
- Departments of Radiological Sciences, University of California, Irvine, USA
| | - Yining Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Junqiang Lei
- The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China.
| |
Collapse
|
2
|
Wang NN, Yu SF, Chen DM, Hu QL, Han CX, Yang XY, Huang XY, Ding BY, Wu QY, Su R, Li H, Ma HL, Liu M, Zhang DL. The recovery of decreased executive attention in Tibetan migrants at high-altitude. Eur J Neurosci 2024; 60:6525-6542. [PMID: 39421897 DOI: 10.1111/ejn.16573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Attention is one of the basic cognitive functions sensitive to high altitude, and most studies have focussed on exposure times of approximately 3 years; however, it is unclear how attention changes in migrants who have lived and worked at high altitude for nearly 20 years. We explored the dynamics of attentional networks and neurophysiological mechanisms in migrants over 3-20 years using the Attentional Network Test combined with Electrocardiograph and Electroencephalography and found a consistent quadratic correlation between exposure and executive control efficiency, P3 amplitude and heart rate variability (HRV), with a decrease followed by an increase/relative stability, with approximately 10 years being the breakpoint. However, neither linear nor quadratic trajectories were observed for the alerting and orienting network. Mediation analysis revealed that the P3 amplitude mediated the decrease and increase in executive control efficiency with exposure time depends on the breakpoint. Correlations between HRV and executive control efficiency and P3 amplitude suggest that U-shaped changes in executive control in migrants may be related to body homeostasis maintained by the autonomic nervous system, and that P3 amplitude may serve as a neurophysiological marker of migrants' adaptation/recovery from high-altitude exposure.
Collapse
Affiliation(s)
- Nian-Nian Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Si-Fang Yu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Dong-Mei Chen
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Quan-Ling Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Chen-Xiao Han
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Xi-Yue Yang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Xiao-Yan Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Bi-Yu Ding
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Qing-Ya Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Su
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Hao Li
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Hai-Lin Ma
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Ming Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - De-Long Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Educational Sciences, Kashi University, Kashi, China
| |
Collapse
|
3
|
Deng MD, Zhang XJ, Feng Q, Wang R, He F, Yang FW, Liu XM, Sun FF, Tao J, Li S, Chen Z. The impact of high-altitude migration on cardiac structure and function: a 1-year prospective study. Front Physiol 2024; 15:1459031. [PMID: 39282085 PMCID: PMC11392884 DOI: 10.3389/fphys.2024.1459031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction The trend of human migration to terrestrial high altitudes (HA) has been increasing over the years. However, no published prospective studies exist with follow-up periods exceeding 1 month to investigate the cardiac change. This prospective study aimed to investigate the changes in cardiac structure and function in healthy young male lowlanders following long-term migration to HA. Methods A total of 122 Chinese healthy young males were divided into 2 groups: those migrating to altitudes between 3600 m and 4000 m (low HA group, n = 65) and those migrating to altitudes between 4000 m and 4700 m (high HA group, n = 57). Traditional echocardiographic parameters were measured at sea level, 1 month and 1 year after migration to HA. Results All 4 cardiac chamber dimensions, areas, and volumes decreased after both 1 month and 1 year of HA exposure. This reduction was more pronounced in the high HA group than in the low HA group. Bi-ventricular diastolic function decreased after 1 month of HA exposure, while systolic function decreased after 1 year. Notably, these functional changes were not significantly influenced by altitude differences. Dilation of the pulmonary artery and a progressive increase in pulmonary artery systolic pressure were observed with both increasing exposure time and altitude. Additionally, a decreased diameter of the inferior vena cava and reduced bicuspid and tricuspid blood flow velocity indicated reduced blood flow following migration to the HA. Discussion 1 year of migration to HA is associated with decreased blood volume and enhanced hypoxic pulmonary vasoconstriction. These factors contribute to reduced cardiac chamber size and slight declines in bi-ventricular function.
Collapse
Affiliation(s)
- Ming-Dan Deng
- Department of Ultrasound, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xin-Jie Zhang
- Department of Ultrasound, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qin Feng
- Department of Ultrasound, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Rui Wang
- Department of Ultrasound, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Fen He
- Department of Ultrasound, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Feng-Wu Yang
- Department of Ultrasound, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xian-Mei Liu
- Department of Ultrasound, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Fei-Fei Sun
- Department of Ultrasound, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jie Tao
- Department of Ultrasound, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Shuang Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhong Chen
- Department of Ultrasound, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Mereles D, Rudolph J, Greiner S, Aurich M, Frey N, Katus HA, Bärtsch P, Dehnert C. Acute changes in cardiac dimensions, function, and longitudinal mechanics in healthy individuals with and without high-altitude induced pulmonary hypertension at 4559 m. Echocardiography 2024; 41:e15786. [PMID: 38400544 DOI: 10.1111/echo.15786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND High-altitude pulmonary hypertension (HAPH) has a prevalence of approximately 10%. Changes in cardiac morphology and function at high altitude, compared to a population that does not develop HAPH are scarce. METHODS Four hundred twenty-one subjects were screened in a hypoxic chamber inspiring a FiO2 = 12% for 2 h. In 33 subjects an exaggerated increase in systolic pulmonary artery pressure (sPAP) could be confirmed in two independent measurements. Twenty nine of these, and further 24 matched subjects without sPAP increase were examined at 4559 m by Doppler echocardiography including global longitudinal strain (GLS). RESULTS SPAP increase was higher in HAPH subjects (∆ = 10.2 vs. ∆ = 32.0 mm Hg, p < .001). LV eccentricity index (∆ = .15 vs. ∆ = .31, p = .009) increased more in HAPH. D-shaped LV (0 [0%] vs. 30 [93.8%], p = .00001) could be observed only in the HAPH group, and only in those with a sPAP ≥50 mm Hg. LV-EF (∆ = 4.5 vs. ∆ = 6.7%, p = .24) increased in both groups. LV-GLS (∆ = 1.2 vs. ∆ = 1.1 -%, p = .60) increased slightly. RV end-diastolic (∆ = 2.20 vs. ∆ = 2.7 cm2 , p = .36) and end-systolic area (∆ = 2.1 vs. ∆ = 2.7 cm2 , p = .39), as well as RA end-systolic area index (∆ = -.9 vs. ∆ = .3 cm2 /m2 , p = .01) increased, RV-FAC (∆ = -2.9 vs. ∆ = -4.7%, p = .43) decreased, this was more pronounced in HAPH, RV-GLS (∆ = 1.6 vs. ∆ = -.7 -%, p = .17) showed marginal changes. CONCLUSIONS LV and LA dimensions decrease and left ventricular function increases at high-altitude in subjects with and without HAPH. RV and RA dimensions increase, and RV longitudinal strain increases or remains unchanged in subjects with HAPH. Changes are negligible in those without HAPH.
Collapse
Affiliation(s)
- Derliz Mereles
- Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens Rudolph
- Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Greiner
- Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Aurich
- Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Bärtsch
- Internal Medicine VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Dehnert
- Internal Medicine VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
- University Centre for Prevention and Sports Medicine, University Clinic Balgrist, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Peng W, Li H, Xia C, Guo Y, Xu X, Zeng W, Liu K, Che Q, Jiang Y, Xiang K, Zhou X, Li G, Li Z. Cardiovascular indicators associated with ventricular remodeling in chronic high-altitude disease: a cardiovascular MRI study. Eur Radiol 2023; 33:6267-6277. [PMID: 37036481 DOI: 10.1007/s00330-023-09574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE This study aimed to assess biventricular function and mechanics in patients with the chronic high-altitude disease (CHAD) using cardiovascular MRI and explore the possible risk factors associated with ventricular remodeling. METHODS In this prospective study, consecutive CHAD patients and healthy controls at high-altitude (HA) and at sea level (SL) underwent cardiovascular MRI. Right ventricular (RV) and left ventricular (LV) function and global strain parameters were compared. To identify risk factors associated with ventricular remodeling, multiple linear regression analyses were used. RESULTS A total of 33 patients with CHAD (42.97 years ± 11.80; 23 men), 33 HA (41.18 years ± 8.58; 21 men), and 33 SL healthy controls (43.48 years ± 13.40; 21 men) were included. A Significantly decreased biventricular ejection fraction was observed in patients (all p < 0.05). Additionally, the HA group displayed lower magnitudes of biventricular longitudinal peak strain (PS) (RV, - 13.67% ± 4.05 vs. - 16.22% ± 3.03; LV, - 14.68% ± 2.20 vs. - 16.19% ± 2.51; both p < 0.05), but a higher LV circumferential PS (- 20.74% ± 2.02 vs. - 19.17% ± 2.34, p < 0.05) than the SL group. Moreover, multiple linear regression analyses revealed that HGB (β = 0.548) was related to the LV remodeling index, whereas BUN (β = 0.570) was associated with the RV remodeling index. CONCLUSIONS With the deterioration of RV function in patients with CHAD, LV function was also impaired concomitantly. Hypoxia-induced erythrocytosis may contribute to LV impairment, while BUN was considered an independent risk factor for RV remodeling. KEY POINTS • A significantly lower biventricular ejection fraction was observed in patients, with a decreased magnitude of left ventricular (LV) peak systolic strain rate (radial and circumferential) and peak diastolic strain rate (all p < 0.05). • High-altitude healthy natives showed a lower biventricular longitudinal peak strain (all p < 0.05). • Hemoglobin was related to LV remodeling (β = 0.548), while BUN (β = 0.570) was independently associated with RV remodeling in CHAD patients.
Collapse
Affiliation(s)
- Wanlin Peng
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Hongwei Li
- Department of Cardiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South ren Min Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Ren Min Road, Chengdu, 610041, Sichuan, China
| | - Xu Xu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Wen Zeng
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Keling Liu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Qianqiu Che
- Department of Cardiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Yuexin Jiang
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Kejin Xiang
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, 200126, China
| | - Gang Li
- Department of Radiology, The People's Hospital of Ningnan County Sichuan Province, Ningnan, 615400, Sichuan, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Doutreleau S, Ulliel-Roche M, Hancco I, Bailly S, Oberholzer L, Robach P, Brugniaux JV, Pichon A, Stauffer E, Perger E, Parati G, Verges S. Cardiac remodelling in the highest city in the world: effects of altitude and chronic mountain sickness. Eur J Prev Cardiol 2022; 29:2154-2162. [PMID: 35929776 DOI: 10.1093/eurjpc/zwac166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023]
Abstract
AIMS A unique Andean population lives in the highest city of the world (La Rinconada, 5100 m, Peru) and frequently develops a maladaptive syndrome, termed chronic mountain sickness (CMS). Both extreme altitude and CMS are a challenge for the cardiovascular system. This study aims to evaluate cardiac remodelling and pulmonary circulation at rest and during exercise in healthy and CMS highlanders. METHODS AND RESULTS Highlanders living permanently at 3800 m (n = 23) and 5100 m (n = 55) with (n = 38) or without CMS (n = 17) were compared with 18 healthy lowlanders. Rest and exercise echocardiography were performed to describe cardiac remodelling, pulmonary artery pressure (PAP), and pulmonary vascular resistance (PVR). Total blood volume (BV) and haemoglobin mass were determined in all people. With the increase in the altitude of residency, the right heart dilated with an impairment in right ventricle systolic function, while the left heart exhibited a progressive concentric remodelling with Grade I diastolic dysfunction but without systolic dysfunction. Those modifications were greater in moderate-severe CMS patients. The mean PAP was higher both at rest and during exercise in healthy highlanders at 5100 m. The moderate-severe CMS subjects had a higher PVR at rest and a larger increase in PAP during exercise. The right heart remodelling was correlated with PAP, total BV, and SpO2. CONCLUSION Healthy dwellers at 5100 m exhibit both right heart dilatation and left ventricle concentric remodelling with diastolic dysfunction. Those modifications are even more pronounced in moderate-severe CMS subjects and could represent the limit of the heart's adaptability before progression to heart failure.
Collapse
Affiliation(s)
- Stéphane Doutreleau
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Mathilde Ulliel-Roche
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Ivan Hancco
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Sébastien Bailly
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Laura Oberholzer
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Paul Robach
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France.,National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Julien V Brugniaux
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Aurélien Pichon
- Laboratoire MOVE EA 6314, Faculté des Sciences du Sport, Université de Poitiers, Poitiers, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team 'Vascular Biology and Red Blood Cell', Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Gianfranco Parati
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Samuel Verges
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| |
Collapse
|
7
|
Williams AM, Levine BD, Stembridge M. A change of heart: Mechanisms of cardiac adaptation to acute and chronic hypoxia. J Physiol 2022; 600:4089-4104. [PMID: 35930370 PMCID: PMC9544656 DOI: 10.1113/jp281724] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last 100 years, high-altitude researchers have amassed a comprehensive understanding of the global cardiac responses to acute, prolonged and lifelong hypoxia. When lowlanders are exposed to hypoxia, the drop in arterial oxygen content demands an increase in cardiac output, which is facilitated by an elevated heart rate at the same time as ventricular volumes are maintained. As exposure is prolonged, haemoconcentration restores arterial oxygen content, whereas left ventricular filling and stroke volume are lowered as a result of a combination of reduced blood volume and hypoxic pulmonary vasoconstriction. Populations native to high-altitude, such as the Sherpa in Asia, exhibit unique lifelong or generational adaptations to hypoxia. For example, they have smaller left ventricular volumes compared to lowlanders despite having larger total blood volume. More recent investigations have begun to explore the mechanisms underlying such adaptive responses by combining novel imaging techniques with interventions that manipulate cardiac preload, afterload, and/or contractility. This work has revealed the contributions and interactions of (i) plasma volume constriction; (ii) sympathoexcitation; and (iii) hypoxic pulmonary vasoconstriction with respect to altering cardiac loading, or otherwise preserving or enhancing biventricular systolic and diastolic function even amongst high altitude natives with excessive erythrocytosis. Despite these advances, various areas of investigation remain understudied, including potential sex-related differences in response to high altitude. Collectively, the available evidence supports the conclusion that the human heart successfully adapts to hypoxia over the short- and long-term, without signs of myocardial dysfunction in healthy humans, except in very rare cases of maladaptation.
Collapse
Affiliation(s)
- Alexandra M. Williams
- Department of Cellular and Physiological Sciences, Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Benjamin D. Levine
- Institute for Exercise and Environmental MedicineThe University of Texas Southwestern Medical CenterDallasTXUSA
| | - Mike Stembridge
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
| |
Collapse
|
8
|
Yang S, Tian C, Yang F, Chen Q, Geng R, Liu C, Wu X, Lam WK. Cardiorespiratory function, resting metabolic rate and heart rate variability in coal miners exposed to hypobaric hypoxia in highland workplace. PeerJ 2022; 10:e13899. [PMID: 36061757 PMCID: PMC9438770 DOI: 10.7717/peerj.13899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/23/2022] [Indexed: 01/19/2023] Open
Abstract
Background Owing to intermittent/acute exposure to hypobaric hypoxia, highland miners may often suffer, the physiological characteristics between highland and lowland miners, however, are rarely reported. The objective of this study was to compare the physiological characteristics of coal miners working at disparate altitudes. Methods Twenty-three male coal mining workers acclimating to high altitude for 30 ± 6 days in Tibet (highland group; approx. 4500 m above sea level; 628.39 millibar), and 22 male coal mining workers in Hebei (lowland group; less than 100 m above sea level; 1021.82 millibar) were recruited. Tests were conducted to compare ventilatory parameters, circulation parameters, resting metabolic rate (RMR), and heart rate variability (HRV) indices between the two groups in resting state. Results Ventilation volume per minute (VE) of the highland group was markedly raised compared to that of the lowland group (11.70 ± 1.57 vs. 8.94 ± 1.97 L/min, p = 0.000). In the meanwhile, O2 intake per heart beat (VO2/HR) was strikingly decreased (3.54 ± 0.54 vs. 4.36 ± 0.69 ml/beat, p = 0.000). Resting metabolic rate relevant to body surface area (RMR/BSA) was found no significant difference between the two groups. Evident reduction in standard deviation of NN intervals (SDNN) and remarkable increase in ratio of low- and high- frequency bands (LF/HF) were manifest in highland miners compared to that of lowland ones (110.82 ± 33.34 vs. 141.44 ± 40.38, p = 0.008 and 858.86 ± 699.24 vs. 371.33 ± 171.46, p = 0.003; respectively). Conclusions These results implicate that long-term intermittent exposure to high altitude can lead miners to an intensified respiration, a compromised circulation and a profound sympathetic-parasympathetic imbalance, whereas the RMR in highland miners does not distinctly decline.
Collapse
Affiliation(s)
- Sanjun Yang
- Department of Physical Education, China University of Mining and Technology-Beijing, Beijing, China
| | - Chunhu Tian
- Department of Physical Education, China University of Mining and Technology-Beijing, Beijing, China
| | - Fan Yang
- Sports Science Research Center, Li Ning Center, Beijing, China
| | - Qi Chen
- The University of International Business and Economics, Beijing, China
| | - Ruiyuan Geng
- Department of Physical Education, China University of Mining and Technology-Beijing, Beijing, China
| | - Chunyan Liu
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xinrong Wu
- School of Emergency Management and Safety Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Wing-Kai Lam
- Sports Information and External Affairs Centre, Hong Kong Sports Institute, Sha Tin, Hong Kong, China
| |
Collapse
|
9
|
Mamazhakypov A, Sartmyrzaeva M, Kushubakova N, Duishobaev M, Maripov A, Sydykov A, Sarybaev A. Right Ventricular Response to Acute Hypoxia Exposure: A Systematic Review. Front Physiol 2022; 12:786954. [PMID: 35095556 PMCID: PMC8791628 DOI: 10.3389/fphys.2021.786954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Acute hypoxia exposure is associated with an elevation of pulmonary artery pressure (PAP), resulting in an increased hemodynamic load on the right ventricle (RV). In addition, hypoxia may exert direct effects on the RV. However, the RV responses to such challenges are not fully characterized. The aim of this systematic review was to describe the effects of acute hypoxia on the RV in healthy lowland adults. Methods: We systematically reviewed PubMed and Web of Science and article references from 2005 until May 2021 for prospective studies evaluating echocardiographic RV function and morphology in healthy lowland adults at sea level and upon exposure to simulated altitude or high-altitude. Results: We included 37 studies in this systematic review, 12 of which used simulated altitude and 25 were conducted in high-altitude field conditions. Eligible studies reported at least one of the RV variables, which were all based on transthoracic echocardiography assessing RV systolic and diastolic function and RV morphology. The design of these studies significantly differed in terms of mode of ascent to high-altitude, altitude level, duration of high-altitude stay, and timing of measurements. In the majority of the studies, echocardiographic examinations were performed within the first 10 days of high-altitude induction. Studies also differed widely by selectively reporting only a part of multiple RV parameters. Despite consistent increase in PAP documented in all studies, reports on the changes of RV function and morphology greatly differed between studies. Conclusion: This systematic review revealed that the study reports on the effects of acute hypoxia on the RV are controversial and inconclusive. This may be the result of significantly different study designs, non-compliance with international guidelines on RV function assessment and limited statistical power due to small sample sizes. Moreover, the potential impact of other factors such as gender, age, ethnicity, physical activity, mode of ascent and environmental factors such as temperature and humidity on RV responses to hypoxia remained unexplored. Thus, this comprehensive overview will promote reproducible research with improved study designs and methods for the future large-scale prospective studies, which eventually may provide important insights into the RV response to acute hypoxia exposure.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Meerim Sartmyrzaeva
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
- Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyzstan
| | - Nadira Kushubakova
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
- Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyzstan
| | - Melis Duishobaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
- Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyzstan
| | - Abdirashit Maripov
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
- Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyzstan
| | - Akylbek Sydykov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Akpay Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
- Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyzstan
- *Correspondence: Akpay Sarybaev
| |
Collapse
|
10
|
Wang M, Liu M, Huang J, Fan D, Liu S, Yu T, Huang K, Wei X, Lei Q. Long-Term High-Altitude Exposure Does Not Increase the Incidence of Atrial Fibrillation Associated with Organic Heart Diseases. High Alt Med Biol 2021; 22:285-292. [PMID: 34143663 DOI: 10.1089/ham.2020.0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wang, Man, Mengxue Liu, Jia Huang, Dan Fan, Shengzhong Liu, Tao Yu, Keli Huang, Xinchuan Wei, and Qian Lei. Long-term high-altitude exposure does not increase the incidence of atrial fibrillation associated with organic heart diseases. High Alt Med Biol. 00:000-000, 2021.- Background: Atrial fibrillation (AF) is one of the most common arrhythmias and is associated with several complications following cardiac surgery. However, the differences in the incidence of AF associated with organic heart diseases between highland and lowland populations have not been comprehensively studied. Methods: In this retrospective study, a total of 2,316 highland and lowland patients who underwent cardiac surgery between January 2013 and December 2018 in a single center were enrolled. According to the altitude of residence, patients were divided into high-altitude (>1,500 m) and low-altitude (<1,500 m) groups. A propensity score matching analysis was performed to estimate the association of lifetime high-altitude exposure with AF. Results: Among the enrolled patients, 239 (10.9%) were from a high-altitude plateau, while 1,946 (89.1%) were from a low-altitude area. There were statistical differences in age, gender, European System for Cardiac Operative Risk Evaluation, and other factors, between the two groups (p < 0.05). According to the propensity score, 237 patients in the high-altitude group were successfully matched to 237 patients in the low-altitude group without significant difference in baseline data (p > 0.05). Among the matched patients, 125 patients (26.4%) suffered from AF, with 66 (27.8%) in the high-altitude group and 59 (24.9%) in the low-altitude group. The incidence of AF was statistically similar between the two groups and not significantly influenced by long-term high-altitude exposure (odds ratio 1.07; 95% confidence interval 0.71-1.60, p > 0.05). Conclusion: Long-term high-altitude exposure did not significantly increase the occurrence of AF in patients with organic heart diseases. Clinical Trial No. ChiCTR1900028612.
Collapse
Affiliation(s)
- Man Wang
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengxue Liu
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Huang
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Fan
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengzhong Liu
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yu
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keli Huang
- Department of Cardiac Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinchuan Wei
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Lei
- Anesthesia and Operation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Atrial performance in healthy subjects following high altitude exposure at 4100 m: 2D speckle-tracking strain analysis. Int J Cardiovasc Imaging 2021; 37:1891-1902. [PMID: 33547622 PMCID: PMC8255257 DOI: 10.1007/s10554-021-02173-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022]
Abstract
High altitude (HA) exposure has been considered as a cardiac stress and might impair ventricular diastolic function. Atrial contraction is involved in ventricular passive filling, however the atrial performance to HA exposure is poorly understood. This study aimed to evaluate the effect of short-term HA exposure on bi-atrial function. Physiological and 2D-echocardiographic data were collected in 82 healthy men at sea level (SL, 400 m) and 4100 m after an ascent within 7 days. Atrial function was measured using volumetric and speckle-tracking analyses during reservoir, conduit and contractile phases of cardiac cycle. Following HA exposure, significant decreases of reservoir and conduit function indexes were observed in bi-atria, whereas decreases of contractile function indexes were observed in right atrium (RA), estimated via RA active emptying fraction (SL 41.7 ± 13.9% vs. HA 35.4 ± 12.2%, p = 0.001), strain during the contractile phase [SL 13.5 (11.4, 17.8) % vs. HA 12.3 (9.3, 15.9) %, p = 0.003], and peak strain rate during the contractile phase [SL − 1.76 (− 2.24, − 1.48) s−1 vs. HA − 1.57 (− 2.01, − 1.23) s−1, p = 0.002], but not in left atrium (LA). In conclusion, short-term HA exposure of healthy individuals impairs bi-atrial performance, mostly observed in RA. Especially, atrial contractile function decreases in RA rather than LA, which seems not to compensate for decreased ventricular filling after HA exposure. Our findings may provide a novel evidence for right-sided heart dysfunction to HA exposure.
Collapse
|
12
|
Medina-Lezama J, Herrera-Enriquez K, Narvaez-Guerra O, Chirinos JA. Influence of altitude on hypertension phenotypes and responses to antihypertensive therapy: Review of the literature and design of the INTERVENCION trial. J Clin Hypertens (Greenwich) 2020; 22:1757-1762. [PMID: 32941700 DOI: 10.1111/jch.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 11/29/2022]
Abstract
Systemic arterial hypertension constitutes the leading cause of mortality worldwide, and affects people living at different altitudes above sea level (AASL). AASL has a major impact on cardiovascular function and various biologic pathways that regulate blood pressure-related phenotypes, but whether it affects the clinical response to antihypertensive therapy is unknown. The hemodynamic adaptations observed among lowlanders acutely exposed to high altitude (HA) is distinct from those observed among HA dwellers. However, the phenotypic patterns of hypertension and the response to standard antihypertensive agents among adults chronically exposed to different AASL are poorly understood. The authors describe the protocol for the INTERVENCION trial, a randomized clinical trial designed to assess the effects of three first-line antihypertensive monotherapies (a thiazide diuretic, an angiotensin receptor blocker, and a calcium channel blocker) on peripheral and central blood pressure, in-office blood pressure, and ambulatory blood pressure hemodynamics of hypertensive patients living at different AASL (low altitude, intermediate altitude, and high altitude). The primary end point is the reduction in 24-hour brachial systolic blood pressure. The INTERVENCION trial will provide the first clinical trial data regarding the influence of AASL on the response to antihypertensive monotherapy, as well as the hemodynamic characteristics of arterial hypertension at different AASL.
Collapse
Affiliation(s)
- Josefina Medina-Lezama
- PREVENCION Research Institute, Santa Maria Catholic University School of Medicine, Arequipa, Peru
| | - Karela Herrera-Enriquez
- PREVENCION Research Institute, Santa Maria Catholic University School of Medicine, Arequipa, Peru.,Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, Maryland, USA
| | - Offdan Narvaez-Guerra
- PREVENCION Research Institute, Santa Maria Catholic University School of Medicine, Arequipa, Peru.,Department of Internal Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Julio A Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Dawkins TG, Curry BA, Drane AL, Lord RN, Richards C, Brown M, Pugh CJA, Lodge F, Yousef Z, Stembridge M, Shave RE. Stimulus-specific functional remodeling of the left ventricle in endurance and resistance-trained men. Am J Physiol Heart Circ Physiol 2020; 319:H632-H641. [PMID: 32772543 DOI: 10.1152/ajpheart.00233.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Left ventricular (LV) structural remodeling following athletic training has been evidenced through training-specific changes in wall thickness and geometry. Whether the LV response to changes in hemodynamic load also adapts in a training-specific manner is unknown. Using echocardiography, we examined LV responses of endurance-trained (n = 15), resistance-trained (n = 14), and nonathletic men (n = 13) to 1) 20, 40, and 60% one repetition-maximum (1RM), leg-press exercise and 2) intravascular Gelofusine infusion (7 mL/kg) with passive leg raise. While resting heart rate was lower in endurance-trained participants versus controls (P = 0.001), blood pressure was similar between groups. Endurance-trained individuals had lower wall thickness but greater LV mass relative to body surface area versus controls, with no difference between resistance-trained individuals and controls. Leg press evoked a similar increase in blood pressure; however, resistance-trained participants preserved stroke volume (SV; -3 ± 8%) versus controls at 60% 1RM (-15 ± 7%, P = 0.001). While the maintenance of SV was related to the change in longitudinal strain across all groups (R = 0.537; P = 0.007), time-to-peak strain was maintained in resistance-trained but delayed in endurance-trained individuals (1 vs. 12% delay; P = 0.021). Volume infusion caused a similar increase in end-diastolic volume (EDV) and SV across groups, but leg raise further increased EDV only in endurance-trained individuals (5 ± 5 to 8 ± 5%; P = 0.018). Correlation analysis revealed a relationship between SV and longitudinal strain following infusion and leg raise (R = 0.334, P = 0.054); however, we observed no between-group differences in longitudinal myocardial mechanics. In conclusion, resistance-trained individuals better maintained SV during pressure loading, whereas endurance-trained individuals demonstrated greater EDV reserve during volume loading. These data provide novel evidence of training-specific LV functional remodeling.NEW & NOTEWORTHY Training-specific functional remodeling of the LV in response to different loading conditions has been recently suggested, but not experimentally tested in the same group of individuals. Our data provide novel evidence of a dichotomous, training-specific LV adaptive response to hemodynamic pressure or volume loading.
Collapse
Affiliation(s)
- Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Bryony A Curry
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Aimee L Drane
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Rachel N Lord
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Cory Richards
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Megan Brown
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Christopher J A Pugh
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Freya Lodge
- Department of Cardiology, University Hospital of Wales, Cardiff, United Kingdom
| | - Zaheer Yousef
- Department of Cardiology, University Hospital of Wales, Cardiff, United Kingdom
| | - Michael Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Rob E Shave
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, Canada
| |
Collapse
|
14
|
Williams AM, Ainslie PN, Anholm JD, Gasho C, Subedi P, Stembridge M. Left Ventricular Twist Is Augmented in Hypoxia by β 1-Adrenergic-Dependent and β 1-Adrenergic-Independent Factors, Without Evidence of Endocardial Dysfunction. Circ Cardiovasc Imaging 2020; 12:e008455. [PMID: 31060374 DOI: 10.1161/circimaging.118.008455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Left ventricular (LV) twist mechanics are augmented with both acute and chronic hypoxemia. Although the underlying mechanisms remain unknown, sympathetic activation and a direct effect of hypoxemia on the myocardium have been proposed, the latter of which may produce subendocardial dysfunction that is masked by larger subepicardial torque. This study therefore sought to (1) determine the individual and combined influences of β1-AR (β1-adrenergic receptor) stimulation and peripheral O2 saturation (Spo2) on LV twist in acute and chronic hypoxia and (2) elucidate whether endocardial versus epicardial mechanics respond differently to hypoxia. METHODS Twelve males (27±4 years) were tested near sea level in acute hypoxia (Spo2=82±4%) and following 3 to 6 days at 5050 m (high altitude; Spo2=83±3%). In both settings, participants received infusions of β1-AR blocker esmolol and volume-matched saline (double-blind, randomized). LV mechanics were assessed with 2-dimensional speckle-tracking echocardiography, and region-specific analysis to compare subendocardial and subepicardial mechanics. RESULTS At sea level, compared with baseline (14.8±3.0°) LV twist was reduced with esmolol (11.2±3.3°; P=0.007) and augmented during hypoxia (19.6±4.9°; P<0.001), whereas esmolol+hypoxia augmented twist compared with esmolol alone (16.5±3.3°; P<0.001). At 5050 m, LV twist was increased compared with sea level (19.5±5.4°; P=0.004), and reduced with esmolol (13.0±3.8°; P<0.001) and Spo2 normalization (12.8±3.4°; P<0.001). Moreover, esmolol+normalized Spo2 lowered twist further than esmolol alone (10.5±3.1°; P=0.036). There was no mechanics-derived evidence of endocardial dysfunction with hypoxia at sea level or high altitude. CONCLUSIONS These findings suggest LV twist is augmented in hypoxia via β1-AR-dependent and β1-AR-independent mechanisms (eg, α1-AR stimulation), but does not appear to reflect endocardial dysfunction.
Collapse
Affiliation(s)
- Alexandra M Williams
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, Canada (A.M.W., P.N.A.).,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada (A.M.W.)
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, Canada (A.M.W., P.N.A.)
| | - James D Anholm
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada (A.M.W.)
| | - Chris Gasho
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada (A.M.W.)
| | - Prajan Subedi
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada (A.M.W.)
| | - Mike Stembridge
- Pulmonary and Critical Care Section, VA Loma Linda Healthcare System, Loma Linda, CA (J.D.A., C.G., P.S.)
| |
Collapse
|
15
|
Soria R, Egger M, Scherrer U, Bender N, Rimoldi SF. Pulmonary arterial pressure at rest and during exercise in chronic mountain sickness: a meta-analysis. Eur Respir J 2019; 53:13993003.02040-2018. [PMID: 31023845 DOI: 10.1183/13993003.02040-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/21/2019] [Indexed: 01/22/2023]
Abstract
Up to 10% of the more than 140 million high-altitude dwellers worldwide suffer from chronic mountain sickness (CMS). Patients suffering from this debilitating problem often display increased pulmonary arterial pressure (PAP), which may contribute to exercise intolerance and right heart failure. However, there is little information on the usual PAP in these patients.We systematically reviewed and meta-analysed all data published in English or Spanish until June 2018 on echocardiographic estimations of PAP at rest and during mild exercise in CMS patients.Nine studies comprising 287 participants fulfilled the inclusion criteria. At rest, the point estimate from meta-analysis of the mean systolic PAP was 27.9 mmHg (95% CI 26.3-29.6 mmHg). These values are 11% (+2.7 mmHg) higher than those previously meta-analysed in apparently healthy high-altitude dwellers. During mild exercise (50 W) the difference in mean systolic PAP between patients and high-altitude dwellers was markedly more accentuated (48.3 versus 36.3 mmHg) than at rest.These findings indicate that in patients with CMS PAP is moderately increased at rest, but markedly increased during mild exercise, which will be common with activities of daily living.
Collapse
Affiliation(s)
- Rodrigo Soria
- Dept of Cardiology and Clinical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.,Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Urs Scherrer
- Dept of Cardiology and Clinical Research, Inselspital, University of Bern, Bern, Switzerland.,Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile
| | - Nicole Bender
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,These two authors contributed equally to this work
| | - Stefano F Rimoldi
- Dept of Cardiology and Clinical Research, Inselspital, University of Bern, Bern, Switzerland .,These two authors contributed equally to this work
| |
Collapse
|
16
|
Narvaez-Guerra O, Herrera-Enriquez K, Medina-Lezama J, Chirinos JA. Systemic Hypertension at High Altitude. Hypertension 2019; 72:567-578. [PMID: 30354760 DOI: 10.1161/hypertensionaha.118.11140] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Offdan Narvaez-Guerra
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Karela Herrera-Enriquez
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Josefina Medina-Lezama
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine and Hospital of the University of Pennsylvania, Philadelphia (J.A.C.)
| |
Collapse
|
17
|
Stembridge M, Levine B. Cardiac performance with chronic hypoxia: mechanisms regulating stroke volume. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2018.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Yang Y, Zha-Xi DJ, Mao W, Zhi G, Feng B, Chen YD. Comparison of Echocardiographic Parameters Between Healthy Highlanders in Tibet and Lowlanders in Beijing. High Alt Med Biol 2018; 19:259-264. [PMID: 30118327 DOI: 10.1089/ham.2017.0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Yang, Ying, Duo-Ji Zha-Xi, Wei Mao, Guang Zhi, Bin Feng, and Yun-Dai Chen. Comparison of echocardiographic parameters between healthy highlanders in Tibet and lowlanders in Beijing. High Alt Med Biol. 19:259-264, 2018.-The hearts of highlanders exhibit distinct features compared with the hearts of lowlanders. However, previous findings have not been verified in a large-scale Tibetan population study. The aim of this study was to present differences in echocardiography results among healthy native Tibetans, acclimatized Han highlanders, and Han lowlanders at sea level. A total of 1820 healthy Tibetans and 224 healthy Han highlanders were drawn from a representative sample of residents in Tibet. Echocardiography was performed on each participant at the sampled local medical centers. Echocardiographic data from 2332 healthy Han lowlanders were obtained from a database of a medical examination center in Beijing. Using propensity score matching to balance differences in demographic features, we evaluated the effects of altitude and ethnicity in three paired comparisons. The results revealed that the great arteries were larger in the Han population than in the Tibetan population regardless of altitude (all p < 0.05). No differences were found in the right atrium between different altitudes and ethnicities. The diameters and thicknesses of the right ventricle (RV) were larger in the Tibetans than in the Han lowlanders (i.e., 30.0 mm (26.0, 34.0) versus 28.6 mm (25.5, 31.8) for the basal right ventricular linear dimension). The left heart in diastole was largest in the Han lowlanders (i.e., 46.3 ± 3.9 mm versus 43.0 mm [40.0, 44.0] in Han highlanders and 45.8 mm [43.0, 48.8] versus 42.0 mm [39.0, 45.0] in Tibetans for the diameter of the left ventricle [LV] at end-diastole). Moreover, the interventricular septum was thicker in the high-altitude population than in the low-altitude population (all p < 0.05). Compared with the Tibetans, the Han highlanders exhibited enhanced ventricular functions (65.0% [60.0, 69.0] versus 68.0% [63.0, 69.0] for LV ejection fraction and 22.0 mm [20.0, 26.0] versus 24.0 mm [21.0, 27.0] for tricuspid annular plane systolic excursion, both p < 0.05). In conclusion, a small left heart and a large RV may be consequences of hypoxic exposure at high altitudes irrespective of ethnic origin.
Collapse
Affiliation(s)
- Ying Yang
- 1 Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Duo-Ji Zha-Xi
- 2 Department of Ultrasound Diagnosis, Tibet Second People's Hospital , Lhasa, Tibet, China
| | - Wei Mao
- 3 Department of Internal Medicine, People's Hospital of Duilongdeqing County , Lhasa, Tibet, China
| | - Guang Zhi
- 4 Department of Cardiology, Chinese PLA General Hospital , Beijing, China
| | - Bin Feng
- 4 Department of Cardiology, Chinese PLA General Hospital , Beijing, China
| | - Yun-Dai Chen
- 4 Department of Cardiology, Chinese PLA General Hospital , Beijing, China
| |
Collapse
|
19
|
Differential responses of autonomic function in sea level residents, acclimatized lowlanders at >3500 m and Himalayan high altitude natives at >3500 m: A cross-sectional study. Respir Physiol Neurobiol 2018; 254:40-48. [DOI: 10.1016/j.resp.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 11/22/2022]
|
20
|
Maufrais C, Rupp T, Bouzat P, Doucende G, Verges S, Nottin S, Walther G. Heart mechanics at high altitude: 6 days on the top of Europe. Eur Heart J Cardiovasc Imaging 2018; 18:1369-1377. [PMID: 28329216 DOI: 10.1093/ehjci/jew286] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/10/2016] [Indexed: 12/23/2022] Open
Abstract
Aims The aim of this study was to analyse the underlying mechanisms of left and right ventricular (LV and RV) functional alterations during several days in high-altitude hypoxia. Methods and results Resting evaluations of LV and RV function and mechanics were assessed by Speckle Tracking Echocardiography on 11 subjects at sea level (SLPRE), 3 ± 2 h after helicopter transport to high altitude (D0), at day 2 (D2), day 4 (D4) and day 6 (D6) at 4350 m and 5 ± 2 h after return to sea level (SLPOST). Subjects experienced acute mountain sickness (AMS) during the first days at 4350 m. LV systolic function, RV systolic and diastolic function, LV and RV strains and LV synchrony were unchanged at high altitude. Peak twist was increased at D0, continued to increase until D6 (SLPRE: 9.0 ± 5.1deg; D6: 13.0 ± 4.0deg, P < 0.05), but was normalized at SLPOST. Early filling decreased at high altitude with a nadir at D2 (SLPRE: 78 ± 13 cm s-1; D2: 66 ± 11 cm s-1, P < 0.05). LV filling pressures index was decreased at high altitude with the minimum value obtained at D2 and remained reduced at SLPOST. Untwisting, an important factor of LV filling, was not decreased but was delayed at 4350 m. Conclusions High-altitude exposure impaired LV diastolic function with the greatest effect observed at D2, concomitantly with the occurrence of AMS. The LV early filling impairments resulted from an increased RV afterload, a decrease in LV filling pressure and a delayed LV untwist. However, the increased LV twist probably acted as a compensatory mechanism to maintain cardiac performance during high-altitude hypoxia.
Collapse
Affiliation(s)
- Claire Maufrais
- U1042, INSERM, Domaine de la Merci, F-38700, La Tronche - Grenoble, France.,Laboratoire HP2, Grenoble Alpes Université, Avenue Kimberley, F-38434, Echirolles - Grenoble, France
| | - Thomas Rupp
- U1042, INSERM, Domaine de la Merci, F-38700, La Tronche - Grenoble, France.,Laboratoire HP2, Grenoble Alpes Université, Avenue Kimberley, F-38434, Echirolles - Grenoble, France.,Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, 27 rue Marcoz F-73000, Chambéry, France
| | - Pierre Bouzat
- Grenoble Institute of Neurosciences, INSERM U1216, Chemin Fortuné Ferrini, F-38700 La Tronche - Grenoble, France.,Pôle Anesthésie Réanimation, CHU de Grenoble, Avenue Maquis du Grésivaudan, F-38700 La Tronche - Grenoble, France
| | - Gregory Doucende
- Laboratoire Performance et Santé en Altitude, Université de Perpignan, 7 Avenue Pierre de Coubertin, F-66120, Font-Romeu, France
| | - Samuel Verges
- U1042, INSERM, Domaine de la Merci, F-38700, La Tronche - Grenoble, France.,Laboratoire HP2, Grenoble Alpes Université, Avenue Kimberley, F-38434, Echirolles - Grenoble, France
| | - Stéphane Nottin
- Avignon University, LAPEC EA4278, 74 Rue Louis Pasteur, F-84000, Avignon, France
| | - Guillaume Walther
- Avignon University, LAPEC EA4278, 74 Rue Louis Pasteur, F-84000, Avignon, France
| |
Collapse
|
21
|
Stembridge M, Ainslie PN, Boulet LM, Anholm J, Subedi P, Tymko MM, Willie CK, Cooper SM, Shave R. The independent effects of hypovolaemia and pulmonary vasoconstriction on ventricular function and exercise capacity during acclimatisation to 3800 m. J Physiol 2018; 597:1059-1072. [PMID: 29808473 DOI: 10.1113/jp275278] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We sought to determine the isolated and combined influence of hypovolaemia and hypoxic pulmonary vasoconstriction on the decrease in left ventricular (LV) function and maximal exercise capacity observed under hypobaric hypoxia. We performed echocardiography and maximal exercise tests at sea level (344 m), and following 5-10 days at the Barcroft Laboratory (3800 m; White Mountain, California) with and without (i) plasma volume expansion to sea level values and (ii) administration of the pulmonary vasodilatator sildenafil in a double-blinded and placebo-controlled trial. The high altitude-induced reduction in LV filling and ejection was abolished by plasma volume expansion but to a lesser extent by sildenafil administration; however, neither intervention had a positive effect on maximal exercise capacity. Both hypovolaemia and hypoxic pulmonary vasoconstriction play a role in the reduction of LV filling at 3800 m, but the increase in LV filling does not influence exercise capacity at this moderate altitude. ABSTRACT We aimed to determine the isolated and combined contribution of hypovolaemia and hypoxic pulmonary vasoconstriction in limiting left ventricular (LV) function and exercise capacity under chronic hypoxaemia at high altitude. In a double-blinded, randomised and placebo-controlled design, 12 healthy participants underwent echocardiography at rest and during submaximal exercise before completing a maximal test to exhaustion at sea level (SL; 344 m) and after 5-10 days at 3800 m. Plasma volume was normalised to SL values, and hypoxic pulmonary vasoconstriction was reversed by administration of sildenafil (50 mg) to create four unique experimental conditions that were compared with SL values: high altitude (HA), Plasma Volume Expansion (HA-PVX), Sildenafil (HA-SIL) and Plasma Volume Expansion with Sildenafil (HA-PVX-SIL). High altitude exposure reduced plasma volume by 11% (P < 0.01) and increased pulmonary artery systolic pressure (19.6 ± 4.3 vs. 26.0 ± 5.4, P < 0.001); these differences were abolished by PVX and SIL respectively. LV end-diastolic volume (EDV) and stroke volume (SV) were decreased upon ascent to high altitude, but were comparable to sea level in the HA-PVX trial. LV EDV and SV were also elevated in the HA-SIL and HA-PVX-SIL trials compared to HA, but to a lesser extent. Neither PVX nor SIL had a significant effect on the LV EDV and SV response to exercise, or the maximal oxygen consumption or peak power output. In summary, at 3800 m both hypovolaemia and hypoxic pulmonary vasoconstriction contribute to the decrease in LV filling, but restoring LV filling does not confer an improvement in maximal exercise performance.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Lindsey M Boulet
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - James Anholm
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Prajan Subedi
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Michael M Tymko
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Christopher K Willie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Stephen-Mark Cooper
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Rob Shave
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK.,Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
22
|
Abstract
INTRODUCTION Altitude is associated with a decrease in partial pressure of oxygen. Hypoxia induces pulmonary vasoconstriction with subsequent fixed increase in pulmonary artery pressure, and eventual right heart failure. CURRENT KNOWLEDGE High altitude exposure is associated with an increase in pulmonary artery pressure that is proportional to initial vasoconstriction. Echocardiographic evaluations on a large number of subjects show that the altitude-induced increase in pulmonary pressure is generally modest and does not exceed the 25mmHg that are diagnostic of pulmonary hypertension. This does not greatly increase right ventricular afterload, so that imaging of the right ventricle only shows some alterations of indices of systolic or diastolic function, but preserved contractile reserve during exercise. In less than 1% of cases, hypoxic vasoconstriction is strong and may be a cause of severe pulmonary hypertension and right heart failure. PERSPECTIVES The prognostic relevance of altitude-induced pulmonary hypertension and associated cardiac function alterations is not known. Treatment of hypoxic pulmonary hypertension relies on evacuation to a lower altitude, oxygen and pulmonary vasodilators. These treatment strategies have not been rigorously evaluated. CONCLUSIONS Altitude may be a cause of right heart failure. This uncommon complication of altitude exposure requires further epidemiological and therapeutic studies.
Collapse
|
23
|
Bhatnagar A. Response by Bhatnagar to Letter Regarding Article, "Environmental Determinants of Cardiovascular Disease". Circ Res 2017; 121:e81-e82. [PMID: 28963194 DOI: 10.1161/circresaha.117.311811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Cardiovascular imaging 2015 in the International Journal of Cardiovascular Imaging. Int J Cardiovasc Imaging 2016; 32:697-709. [PMID: 27086358 DOI: 10.1007/s10554-016-0877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Stembridge M, Ainslie PN, Donnelly J, MacLeod NT, Joshi S, Hughes MG, Sherpa K, Shave R. Cardiac structure and function in adolescent Sherpa; effect of habitual altitude and developmental stage. Am J Physiol Heart Circ Physiol 2016; 310:H740-6. [PMID: 26801313 DOI: 10.1152/ajpheart.00938.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/16/2016] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to examine ventricular structure and function in Sherpa adolescents to determine whether age-specific differences in oxygen saturation (SpO2 ) and pulmonary artery systolic pressure (PASP) influence cardiac adaptation to chronic hypoxia early in life. Two-dimensional, Doppler, and speckle-tracking echocardiography were performed on adolescent (9-16 yr) highland Sherpa (HLS; 3,840 m; n = 26) and compared with age-matched lowland Sherpa (LLS; 1,400 m; n = 10) and lowland Caucasian controls (LLC; sea level; n = 30). The HLS were subdivided into pre- and postadolescence; SpO2 was also recorded. Only HLS exhibited a smaller relative left ventricular (LV) end-diastolic volume; however, both HLS and LLS demonstrated a lower peak LV untwisting velocity compared with LLC (92 ± 26 and 100 ± 45 vs. 130 ± 43°/s, P < 0.05). Although SpO2 was similar between groups, PASP was higher in post- vs. preadolescent HLS (30 ± 5 vs. 25 ± 5 mmHg, P < 0.05), which negatively correlated with right ventricular strain rate (r = 0.50, P < 0.01). Much like their adult counterparts, HLS and LLS adolescents exhibit slower LV diastolic relaxation, despite residing at different altitudes. These findings suggest fundamental differences exist in the diastolic function of Sherpa that are present at an early age and may be retained after migration to lower altitudes. The higher PASP in postadolescent Sherpa is in contrast to previous reports of lowland children at high altitude and, unlike that in lowlanders, was not explained by differences in SpO2 ; thus different regulatory mechanisms seem to exist between these two distinct populations.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom;
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada
| | - Joseph Donnelly
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Suchita Joshi
- Patan Academy of Health Sciences, Kathmandu, Nepal; and
| | - Michael G Hughes
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom
| | | | - Rob Shave
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|