1
|
Wu K, Ge XX, Duan XF, Li JQ, Wang K, Chen QH, Huang ZM, Zhang WY, Wu Y, Li Q. Wip1 phosphatase activator QGC-8-52 specifically sensitizes p53-negative cancer cells to chemotherapy while protecting normal cells. Drug Resist Updat 2025; 79:101196. [PMID: 39787991 DOI: 10.1016/j.drup.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
PP2C serine-threonine phosphatase Wip1 plays an important role in normal tissue homeostasis, stress signaling and pathogenesis of various human diseases. It is an attractive drug target for cancer treatment and inhibition of its expression or activity constitute a novel therapeutic intervention strategy to prevent the development of various cancers. However, previous strategies for Wip1 suppression may be ineffective in cancers lacking p53. Here, we have characterized the activity of a novel Wip1 phosphatase activator, QGC-8-52, in preclinical models of breast malignancies. QGC-8-52 significantly sensitizes the cancer cell lines with p53 deletion to chemotherapeutic agents. This effect was mediated by the Wip1-FOXO3a interaction and subsequent dephosphorylation of Thr487 that resulted, in response to anticancer treatment, in enhancing the transcription activity of FOXO3a on the proapoptotic TRAIL gene. The sensitizing effect of Wip1 activation on chemotherapeutic drugs only targeted cancer cells lacking p53. The activation of Wip1 in normal cells provided protection from anticancer drug-induced apoptosis by reducing the strength of upstream signaling to p53. Therefore, during the treatment of anticancer drugs, the activated Wip1 phosphatase boosts the apoptosis of p53-negative tumors and protects normal tissues. Our findings may represent an effective and safe therapeutic strategy for cancers with p53 deletion.
Collapse
Affiliation(s)
- Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charls Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA; School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Xiao-Xiao Ge
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Xiao-Fan Duan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Jie-Qing Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Zhi-Min Huang
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charls Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Qun Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China.
| |
Collapse
|
2
|
Lagorgette L, Bogdanova DA, Belotserkovskaya EV, Garrido C, Demidov ON. PP2C phosphatases-terminators of suicidal thoughts. Cell Death Dis 2024; 15:919. [PMID: 39702569 DOI: 10.1038/s41419-024-07269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Cell death and related signaling pathways are essential during development and in various physiological and pathological conditions. Post-translational modifications such as ubiquitination and phosphorylation play an important role in these signaling pathways. The involvement of kinases - enzymes that catalyze protein phosphorylation - in cell death signaling has been extensively studied. On the other hand, not many studies have been devoted to analyzing the role in cell death of phosphatases, enzymes involved in the removal of phosphorylated residues added to proteins by kinases. Obviously, the two opposite reactions, phosphorylation and dephosphorylation, are equally important in the regulation of protein functions and subsequently in the execution of the cell death program. Here, we have summarized recent work on the involvement of serine-threonine PP2C phosphatases in cell death pathways, senescence and autophagy, focusing in particular on the most studied phosphatase PPM1D (PP2Cδ) as an example of the regulatory role of PP2Cs in cell death. The review should help to draw attention to the importance of PP2C family phosphatases in cell death checkpoints and to discover new targets for drug development.
Collapse
Affiliation(s)
- Lisa Lagorgette
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer », University of Burgundy, Dijon, France
- University of Burgundy, Faculty of Medicine and Pharmacy, Dijon, France
| | - Daria A Bogdanova
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius University of Science and Technology, Sochi, Russia
- Institute of Cytology RAS, St. Petersburg, Russia
| | | | - Carmen Garrido
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer », University of Burgundy, Dijon, France
- University of Burgundy, Faculty of Medicine and Pharmacy, Dijon, France
- Center for Cancer Georges-François Leclerc, Dijon, France
| | - Oleg N Demidov
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer », University of Burgundy, Dijon, France.
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius University of Science and Technology, Sochi, Russia.
- Institute of Cytology RAS, St. Petersburg, Russia.
| |
Collapse
|
3
|
Takahashi K, Nakada D, Goodell M. Distinct landscape and clinical implications of therapy-related clonal hematopoiesis. J Clin Invest 2024; 134:e180069. [PMID: 39352380 PMCID: PMC11444158 DOI: 10.1172/jci180069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Therapy-related clonal hematopoiesis (t-CH) is defined as clonal hematopoiesis detected in individuals previously treated with chemotherapy and/or radiation therapy. With the increased use of genetic analysis in oncological care, the detection of t-CH among cancer patients is becoming increasingly common. t-CH arises through the selective bottleneck imposed by chemotherapies and potentially through direct mutagenesis from chemotherapies, resulting in a distinct mutational landscape enriched with mutations in DNA damage-response pathway genes such as TP53, PPM1D, and CHEK2. Emerging evidence sheds light on the mechanisms of t-CH development and potential strategies to mitigate its emergence. Due to its unique characteristics that predominantly affect cancer patients, t-CH has clinical implications distinct from those of CH in the general population. This Review discusses the potential mechanisms of t-CH development, its mutational landscape, mutant-drug relationships, and its clinical significance. We highlight the distinct nature of t-CH and call for intensified research in this field.
Collapse
Affiliation(s)
- Koichi Takahashi
- Departments of Leukemia and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Margaret Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Schleicher WE, Hoag B, De Dominici M, DeGregori J, Pietras EM. CHIP: a clonal odyssey of the bone marrow niche. J Clin Invest 2024; 134:e180068. [PMID: 39087468 PMCID: PMC11290965 DOI: 10.1172/jci180068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the selective expansion of hematopoietic stem and progenitor cells (HSPCs) carrying somatic mutations. While CHIP is typically asymptomatic, it has garnered substantial attention due to its association with the pathogenesis of multiple disease conditions, including cardiovascular disease (CVD) and hematological malignancies. In this Review, we will discuss seminal and recent studies that have advanced our understanding of mechanisms that drive selection for mutant HSPCs in the BM niche. Next, we will address recent studies evaluating potential relationships between the clonal dynamics of CHIP and hematopoietic development across the lifespan. Next, we will examine the roles of systemic factors that can influence hematopoietic stem cell (HSC) fitness, including inflammation, and exposures to cytotoxic agents in driving selection for CHIP clones. Furthermore, we will consider how - through their impact on the BM niche - lifestyle factors, including diet, exercise, and psychosocial stressors, might contribute to the process of somatic evolution in the BM that culminates in CHIP. Finally, we will review the role of old age as a major driver of selection in CHIP.
Collapse
Affiliation(s)
| | - Bridget Hoag
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marco De Dominici
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James DeGregori
- Division of Hematology, Department of Medicine, and
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
5
|
Furukawa K, Hatakeyama K, Terashima M, Urakami K, Koseki Y, Fujiya K, Tanizawa Y, Bando E, Yamaguchi K. Molecular features and prognostic factors of locally advanced microsatellite instability-high gastric cancer. Gastric Cancer 2024; 27:760-771. [PMID: 38744779 DOI: 10.1007/s10120-024-01506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) tumors are distinct molecular subtypes in gastric cancer. However, a few studies have comprehensively reported the molecular features of MSI-H tumors and their prognostic factors in locally advanced gastric cancer. This study aimed to clarify the molecular features and prognostic factors of locally advanced MSI-H gastric cancer. METHODS This study included 499 patients with locally advanced gastric cancer who underwent radical gastrectomy. We evaluated the MSI status and compared with previously published whole-exome sequencing, panel sequencing, and gene expression profiling data. Clinicopathological characteristics and molecular profiles were compared between patients with MSI-H and microsatellite stable (MSS) gastric cancer. A subgroup analysis of survival was performed in patients with MSI-H gastric cancer. RESULTS MSI-H tumors were detected in 79 of 499 patients (15.8%). MSI-H tumors were associated with an increased tumor mutational burden, MLH1 downregulation, CD274 (PD-L1) upregulation, and enrichment of cell cycle pathways. Among patients with MSI-H gastric cancer, the disease-specific survival (DSS) tended to be better in the surgery plus tegafur, gimeracil, and oteracil potassium (S-1) adjuvant chemotherapy group than in the surgery alone group, especially for stage III patients. Furthermore, DSS was better in the T cell-inflamed gene expression signature-high group, and it tended to be worse in the non-solid type poorly differentiated adenocarcinoma group. CONCLUSIONS The molecular features and prognostic factors of locally advanced MSI-H gastric cancer were clarified. S-1 adjuvant chemotherapy appears to be beneficial, and the T cell-inflamed gene expression signature and histopathological type are prognostic factors in MSI-H tumors.
Collapse
Affiliation(s)
- Kenichiro Furukawa
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yusuke Koseki
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Fujiya
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yutaka Tanizawa
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Etsuro Bando
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
6
|
Ten A, Kumeiko V, Farniev V, Gao H, Shevtsov M. Tumor Microenvironment Modulation by Cancer-Derived Extracellular Vesicles. Cells 2024; 13:682. [PMID: 38667297 PMCID: PMC11049026 DOI: 10.3390/cells13080682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in the process of tumorigenesis, regulating the growth, metabolism, proliferation, and invasion of cancer cells, as well as contributing to tumor resistance to the conventional chemoradiotherapies. Several types of cells with relatively stable phenotypes have been identified within the TME, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), neutrophils, and natural killer (NK) cells, which have been shown to modulate cancer cell proliferation, metastasis, and interaction with the immune system, thus promoting tumor heterogeneity. Growing evidence suggests that tumor-cell-derived extracellular vesicles (EVs), via the transfer of various molecules (e.g., RNA, proteins, peptides, and lipids), play a pivotal role in the transformation of normal cells in the TME into their tumor-associated protumorigenic counterparts. This review article focuses on the functions of EVs in the modulation of the TME with a view to how exosomes contribute to the transformation of normal cells, as well as their importance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vladislav Farniev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str., 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str., 22, 81675 Munich, Germany
| |
Collapse
|
7
|
Collie GW, Clark MA, Keefe AD, Madin A, Read JA, Rivers EL, Zhang Y. Screening Ultra-Large Encoded Compound Libraries Leads to Novel Protein-Ligand Interactions and High Selectivity. J Med Chem 2024; 67:864-884. [PMID: 38197367 PMCID: PMC10823476 DOI: 10.1021/acs.jmedchem.3c01861] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
The DNA-encoded library (DEL) discovery platform has emerged as a powerful technology for hit identification in recent years. It has become one of the major parallel workstreams for small molecule drug discovery along with other strategies such as HTS and data mining. For many researchers working in the DEL field, it has become increasingly evident that many hits and leads discovered via DEL screening bind to target proteins with unique and unprecedented binding modes. This Perspective is our attempt to analyze reports of DEL screening with the purpose of providing a rigorous and useful account of the binding modes observed for DEL-derived ligands with a focus on binding mode novelty.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Zhang
- X-Chem,
Inc., Waltham, Massachusetts 02453, United States
| |
Collapse
|
8
|
Wang T, Li X, Liao G, Wang Z, Han X, Gu J, Mu X, Qiu J, Qian Y. AFB1 Triggers Lipid Metabolism Disorders through the PI3K/Akt Pathway and Mediates Apoptosis Leading to Hepatotoxicity. Foods 2024; 13:163. [PMID: 38201191 PMCID: PMC10778638 DOI: 10.3390/foods13010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
As the most prevalent mycotoxin in agricultural products, aflatoxin B1 not only causes significant economic losses but also poses a substantial threat to human and animal health. AFB1 has been shown to increase the risk of hepatocellular carcinoma (HCC) but the underlying mechanism is not thoroughly researched. Here, we explored the toxicity mechanism of AFB1 on human hepatocytes following low-dose exposure based on transcriptomics and lipidomics. Apoptosis-related pathways were significantly upregulated after AFB1 exposure in all three hES-Hep, HepaRG, and HepG2 hepatogenic cell lines. By conducting a comparative analysis with the TCGA-LIHC database, four biomarkers (MTCH1, PPM1D, TP53I3, and UBC) shared by AFB1 and HCC were identified (hazard ratio > 1), which can be used to monitor the degree of AFB1-induced hepatotoxicity. Simultaneously, AFB1 induced abnormal metabolism of glycerolipids, sphingolipids, and glycerophospholipids in HepG2 cells (FDR < 0.05, impact > 0.1). Furthermore, combined analysis revealed strong regulatory effects between PIK3R1 and sphingolipids (correlation coefficient > 0.9), suggesting potential mediation by the phosphatidylinositol 3 kinase (PI3K) /protein kinase B (AKT) signaling pathway within mitochondria. This study revealed the dysregulation of lipid metabolism induced by AFB1 and found novel target genes associated with AFB-induced HCC development, providing reliable evidence for elucidating the hepatotoxicity of AFB as well as assessing food safety risks.
Collapse
Affiliation(s)
- Tiancai Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiabing Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Guangqin Liao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zishuang Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoxu Han
- National Center of Technology Innovation for Dairy, Hohhot 010100, China;
| | - Jingyi Gu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiyan Mu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
9
|
Seipel K, Frey M, Nilius H, Akhoundova D, Banz Y, Bacher U, Pabst T. Low-Frequency PPM1D Gene Mutations Affect Treatment Response to CD19-Targeted CAR T-Cell Therapy in Large B-Cell Lymphoma. Curr Oncol 2023; 30:10463-10476. [PMID: 38132396 PMCID: PMC10742331 DOI: 10.3390/curroncol30120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Chimeric antigen receptor T (CAR T)-cell therapy has become a standard treatment option for patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Mutations in the PPM1D gene, a frequent driver alteration in clonal hematopoiesis (CH), lead to a gain of function of PPM1D/Wip1 phosphatase, impairing p53-dependent G1 checkpoint and promoting cell proliferation. The presence of PPM1D mutations has been correlated with reduced response to standard chemotherapy in lymphoma patients. In this study, we analyzed the impact of low-frequency PPM1D mutations on the safety and efficacy of CD19-targeted CAR T-cell therapy in a cohort of 85 r/r DLBCL patients. In this cohort, the prevalence of PPM1D gene mutations was 20% with a mean variant allele frequency (VAF) of 0.052 and a median VAF of 0.036. CAR T-induced cytokine release syndrome (CRS) and immune effector cell-associated neuro-toxicities (ICANS) occurred at similar frequencies in patients with and without PPM1D mutations. Clinical outcomes were globally worse in the PPM1D mutated (PPM1Dmut) vs. PPM1D wild type (PPM1Dwt) subset. While the prevalent treatment outcome within the PPM1Dwt subgroup was complete remission (56%), the majority of patients within the PPM1Dmut subgroup had only partial remission (60%). Median progression-free survival (PFS) was 3 vs. 12 months (p = 0.07) and median overall survival (OS) was 5 vs. 37 months (p = 0.004) for the PPM1Dmut and PPM1Dwt cohort, respectively. Our data suggest that the occurrence of PPM1D mutations in the context of CH may predict worse outcomes after CD19-targeted CAR T-cell therapy in patients with r/r DLBCL.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/therapeutic use
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Treatment Outcome
- Antigens, CD19/genetics
- Antigens, CD19/therapeutic use
- Protein Phosphatase 2C/genetics
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland;
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Michèle Frey
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Henning Nilius
- Department of Clinical Chemistry, University of Bern, 3010 Bern, Switzerland;
| | - Dilara Akhoundova
- Department for Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland;
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Yara Banz
- Institute of Tissue Medicine and Pathology (IGMP), University of Bern, 3010 Bern, Switzerland;
| | - Ulrike Bacher
- Department of Hematology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| |
Collapse
|
10
|
Chapman OS, Luebeck J, Sridhar S, Wong ITL, Dixit D, Wang S, Prasad G, Rajkumar U, Pagadala MS, Larson JD, He BJ, Hung KL, Lange JT, Dehkordi SR, Chandran S, Adam M, Morgan L, Wani S, Tiwari A, Guccione C, Lin Y, Dutta A, Lo YY, Juarez E, Robinson JT, Korshunov A, Michaels JEA, Cho YJ, Malicki DM, Coufal NG, Levy ML, Hobbs C, Scheuermann RH, Crawford JR, Pomeroy SL, Rich JN, Zhang X, Chang HY, Dixon JR, Bagchi A, Deshpande AJ, Carter H, Fraenkel E, Mischel PS, Wechsler-Reya RJ, Bafna V, Mesirov JP, Chavez L. Circular extrachromosomal DNA promotes tumor heterogeneity in high-risk medulloblastoma. Nat Genet 2023; 55:2189-2199. [PMID: 37945900 PMCID: PMC10703696 DOI: 10.1038/s41588-023-01551-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Circular extrachromosomal DNA (ecDNA) in patient tumors is an important driver of oncogenic gene expression, evolution of drug resistance and poor patient outcomes. Applying computational methods for the detection and reconstruction of ecDNA across a retrospective cohort of 481 medulloblastoma tumors from 465 patients, we identify circular ecDNA in 82 patients (18%). Patients with ecDNA-positive medulloblastoma were more than twice as likely to relapse and three times as likely to die within 5 years of diagnosis. A subset of tumors harbored multiple ecDNA lineages, each containing distinct amplified oncogenes. Multimodal sequencing, imaging and CRISPR inhibition experiments in medulloblastoma models reveal intratumoral heterogeneity of ecDNA copy number per cell and frequent putative 'enhancer rewiring' events on ecDNA. This study reveals the frequency and diversity of ecDNA in medulloblastoma, stratified into molecular subgroups, and suggests copy number heterogeneity and enhancer rewiring as oncogenic features of ecDNA.
Collapse
Affiliation(s)
- Owen S Chapman
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Sunita Sridhar
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Pediatrics, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Ivy Tsz-Lo Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Deobrat Dixit
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Shanqing Wang
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Gino Prasad
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Meghana S Pagadala
- Medical Scientist Training Program, University of California San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Jon D Larson
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Britney Jiayu He
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Joshua T Lange
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | | | - Miriam Adam
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ling Morgan
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Sameena Wani
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Ashutosh Tiwari
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Caitlin Guccione
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Yingxi Lin
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Aditi Dutta
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Yan Yuen Lo
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA
| | - Edwin Juarez
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - James T Robinson
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - John-Edward A Michaels
- Papé Pediatric Research Institute, Department of Pediatrics and Knight Cancer Insitute, Oregon Health and Sciences University, Portland, OR, USA
| | - Yoon-Jae Cho
- Papé Pediatric Research Institute, Department of Pediatrics and Knight Cancer Insitute, Oregon Health and Sciences University, Portland, OR, USA
| | - Denise M Malicki
- Division of Pathology, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Nicole G Coufal
- Department of Pediatrics, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Michael L Levy
- Division of Pathology, UC San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Charlotte Hobbs
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - John R Crawford
- Department of Pediatrics, University of California Irvine and Children's Hospital Orange County, Irvine, CA, USA
| | - Scott L Pomeroy
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeremy N Rich
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jesse R Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anindya Bagchi
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | | | - Hannah Carter
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Robert J Wechsler-Reya
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Jill P Mesirov
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Lukas Chavez
- Department of Medicine, University of California San Diego, San Diego, CA, USA.
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA.
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital and Healthcare Center, San Diego, CA, USA.
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
11
|
Apaydin T, Zonis S, Zhou C, Valencia CW, Barrett R, Strous GJ, Mol JA, Chesnokova V, Melmed S. WIP1 is a novel specific target for growth hormone action. iScience 2023; 26:108117. [PMID: 37876819 PMCID: PMC10590974 DOI: 10.1016/j.isci.2023.108117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
DNA damage repair (DDR) is mediated by phosphorylating effectors ATM kinase, CHK2, p53, and γH2AX. We showed earlier that GH suppresses DDR by suppressing pATM, resulting in DNA damage accumulation. Here, we show GH acting through GH receptor (GHR) inducing wild-type p53-inducible phosphatase 1 (WIP1), which dephosphorylated ATM and its effectors in normal human colon cells and three-dimensional human intestinal organoids. Mice bearing GH-secreting xenografts exhibited induced colon WIP1 with suppressed pATM and γH2AX. WIP1 was also induced in buffy coats derived from patients with elevated GH from somatotroph adenomas. In contrast, decreased colon WIP1 was observed in GHR-/- mice. WIP1 inhibition restored ATM phosphorylation and reversed GH-induced DNA damage. We elucidated a novel GH signaling pathway activating Src/AMPK to trigger HIPK2 nuclear-cytoplasmic relocation and suppressing WIP1 ubiquitination. Concordantly, blocking either AMPK or Src abolished GH-induced WIP1. We identify WIP1 as a specific target for GH-mediated epithelial DNA damage accumulation.
Collapse
Affiliation(s)
- Tugce Apaydin
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Svetlana Zonis
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cuiqi Zhou
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Wong Valencia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ger J. Strous
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, the Netherlands
| | - Vera Chesnokova
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shlomo Melmed
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
12
|
Belotserkovskaya E, Golotin V, Uyanik B, Demidov ON. Clonal haematopoiesis - a novel entity that modifies pathological processes in elderly. Cell Death Discov 2023; 9:345. [PMID: 37726289 PMCID: PMC10509183 DOI: 10.1038/s41420-023-01590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Progress in the development of new sequencing techniques with wider accessibility and higher sensitivity of the protocol of deciphering genome particularities led to the discovery of a new phenomenon - clonal haematopoiesis. It is characterized by the presence in the bloodstream of elderly people a minor clonal population of cells with mutations in certain genes, but without any sign of disease related to the hematopoietic system. Here we will review this recent advancement in the field of clonal haematopoiesis and how it may affect the disease's development in old age.
Collapse
Affiliation(s)
| | - Vasily Golotin
- Institute of Cytology RAS, 4 Tikhoretskii prospect, St. Petersburg, 194064, Russia
- Saint Petersburg bra-nch of "VNIRO" ("Gos-NOIRH" named after L.S. Berg), Saint Petersburg, Russia
| | - Burhan Uyanik
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, 7 Boulevard Jeanne d'Arc, Dijon, 21000, France
| | - Oleg N Demidov
- Institute of Cytology RAS, 4 Tikhoretskii prospect, St. Petersburg, 194064, Russia.
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, 7 Boulevard Jeanne d'Arc, Dijon, 21000, France.
- Sirius University of Science and Technology, 1 Olimpiiskii pr-t, Sochi, 354340, Russian Federation.
| |
Collapse
|
13
|
Liu C, Kuang S, Wu L, Cheng Q, Gong X, Wu J, Zhang L. Radiotherapy and radio-sensitization in H3 K27M -mutated diffuse midline gliomas. CNS Neurosci Ther 2023. [PMID: 37157237 DOI: 10.1111/cns.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed. METHODS We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement. RESULTS Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance. CONCLUSIONS The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Kuang
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Cheng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wu
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Meller A, De Oliveira S, Davtyan A, Abramyan T, Bowman GR, van den Bedem H. Discovery of a cryptic pocket in the AI-predicted structure of PPM1D phosphatase explains the binding site and potency of its allosteric inhibitors. Front Mol Biosci 2023; 10:1171143. [PMID: 37143823 PMCID: PMC10151774 DOI: 10.3389/fmolb.2023.1171143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 05/06/2023] Open
Abstract
Virtual screening is a widely used tool for drug discovery, but its predictive power can vary dramatically depending on how much structural data is available. In the best case, crystal structures of a ligand-bound protein can help find more potent ligands. However, virtual screens tend to be less predictive when only ligand-free crystal structures are available, and even less predictive if a homology model or other predicted structure must be used. Here, we explore the possibility that this situation can be improved by better accounting for protein dynamics, as simulations started from a single structure have a reasonable chance of sampling nearby structures that are more compatible with ligand binding. As a specific example, we consider the cancer drug target PPM1D/Wip1 phosphatase, a protein that lacks crystal structures. High-throughput screens have led to the discovery of several allosteric inhibitors of PPM1D, but their binding mode remains unknown. To enable further drug discovery efforts, we assessed the predictive power of an AlphaFold-predicted structure of PPM1D and a Markov state model (MSM) built from molecular dynamics simulations initiated from that structure. Our simulations reveal a cryptic pocket at the interface between two important structural elements, the flap and hinge regions. Using deep learning to predict the pose quality of each docked compound for the active site and cryptic pocket suggests that the inhibitors strongly prefer binding to the cryptic pocket, consistent with their allosteric effect. The predicted affinities for the dynamically uncovered cryptic pocket also recapitulate the relative potencies of the compounds (τb = 0.70) better than the predicted affinities for the static AlphaFold-predicted structure (τb = 0.42). Taken together, these results suggest that targeting the cryptic pocket is a good strategy for drugging PPM1D and, more generally, that conformations selected from simulation can improve virtual screening when limited structural data is available.
Collapse
Affiliation(s)
- Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO, United States
| | | | - Aram Davtyan
- Atomwise, Inc., San Francisco, CA, United States
| | | | - Gregory R. Bowman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Henry van den Bedem
- Atomwise, Inc., San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| |
Collapse
|
15
|
Meller A, de Oliveira S, Davtyan A, Abramyan T, Bowman GR, van den Bedem H. Discovery of a cryptic pocket in the AI-predicted structure of PPM1D phosphatase explains the binding site and potency of its allosteric inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533829. [PMID: 36993233 PMCID: PMC10055338 DOI: 10.1101/2023.03.22.533829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Virtual screening is a widely used tool for drug discovery, but its predictive power can vary dramatically depending on how much structural data is available. In the best case, crystal structures of a ligand-bound protein can help find more potent ligands. However, virtual screens tend to be less predictive when only ligand-free crystal structures are available, and even less predictive if a homology model or other predicted structure must be used. Here, we explore the possibility that this situation can be improved by better accounting for protein dynamics, as simulations started from a single structure have a reasonable chance of sampling nearby structures that are more compatible with ligand binding. As a specific example, we consider the cancer drug target PPM1D/Wip1 phosphatase, a protein that lacks crystal structures. High-throughput screens have led to the discovery of several allosteric inhibitors of PPM1D, but their binding mode remains unknown. To enable further drug discovery efforts, we assessed the predictive power of an AlphaFold-predicted structure of PPM1D and a Markov state model (MSM) built from molecular dynamics simulations initiated from that structure. Our simulations reveal a cryptic pocket at the interface between two important structural elements, the flap and hinge regions. Using deep learning to predict the pose quality of each docked compound for the active site and cryptic pocket suggests that the inhibitors strongly prefer binding to the cryptic pocket, consistent with their allosteric effect. The predicted affinities for the dynamically uncovered cryptic pocket also recapitulate the relative potencies of the compounds (τ b =0.70) better than the predicted affinities for the static AlphaFold-predicted structure (τ b =0.42). Taken together, these results suggest that targeting the cryptic pocket is a good strategy for drugging PPM1D and, more generally, that conformations selected from simulation can improve virtual screening when limited structural data is available.
Collapse
Affiliation(s)
- Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 660 S Euclid Ave, St. Louis, MO, 63110
- Medical Scientist Training Program, Washington University in St. Louis, 660 S Euclid Ave., St. Louis, MO, 63110
| | - Saulo de Oliveira
- Atomwise, Inc., 717 Market Street, Suite 800, San Francisco, California 94103
| | - Aram Davtyan
- Atomwise, Inc., 717 Market Street, Suite 800, San Francisco, California 94103
| | - Tigran Abramyan
- Atomwise, Inc., 717 Market Street, Suite 800, San Francisco, California 94103
| | - Gregory R. Bowman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Henry van den Bedem
- Atomwise, Inc., 717 Market Street, Suite 800, San Francisco, California 94103
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
16
|
Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev 2023; 103:649-716. [PMID: 36049115 PMCID: PMC9639777 DOI: 10.1152/physrev.00004.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.
Collapse
Affiliation(s)
- Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
17
|
Robello M, Zheng H, Saha M, George Rosenker KM, Debnath S, Kumar JP, Tagad HD, Mazur SJ, Appella E, Appella DH. Alkyl-substituted N-methylaryl-N'-aryl-4-aminobenzamides: A new series of small molecule inhibitors for Wip1 phosphatase. Eur J Med Chem 2022; 243:114763. [PMID: 36179402 PMCID: PMC9664485 DOI: 10.1016/j.ejmech.2022.114763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022]
Abstract
The wild-type p53 induced phosphatase 1 (Wip1), a member of the serine/threonine-specific PP2C family, is overexpressed in numerous human cancers. Wip1 dephosphorylates p53 as well as several kinases (such as p38 MAPK, ATM, Chk1, and Chk2) in the DNA damage response pathway that are responsible for maintaining genomic stability and preventing oncogenic transformation. As a result, Wip1 is an attractive target for synthetic inhibitors that could be further developed into therapeutics to treat some cancers. In this study, we report a series of alkyl-substituted N-methylaryl-N'-aryl-4-aminobenzamides and their inhibitory activity of the Wip1 phosphatase. A straightforward synthetic route was developed to synthesize the target compounds from commercially available starting materials. Three different portions (R1, R2, R3) of the core scaffold were extensively modified to examine structure-activity relationships. This study revealed interesting trends about a new molecular scaffold to inhibit Wip1.
Collapse
Affiliation(s)
- Marco Robello
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Hongchao Zheng
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Mrinmoy Saha
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Kara M George Rosenker
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Subrata Debnath
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Jay Prakash Kumar
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Harichandra D Tagad
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Ettore Appella
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Daniel H Appella
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States.
| |
Collapse
|
18
|
Zhou S, Xi Y, Chen Y, Fu F, Yan W, Li M, Wu Y, Luo A, Li Y, Wang S. Low WIP1 Expression Accelerates Ovarian Aging by Promoting Follicular Atresia and Primordial Follicle Activation. Cells 2022; 11:cells11233920. [PMID: 36497179 PMCID: PMC9736686 DOI: 10.3390/cells11233920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
Our previous study demonstrated that ovarian wild-type P53-induced phosphatase 1 (WIP1) expression decreased with age. We hypothesized that WIP1 activity was related to ovarian aging. The role of WIP1 in regulating ovarian aging and its mechanisms remain to be elucidated. Adult female mice with or without WIP1 inhibitor (GSK2830371) treatment were divided into three groups (Veh, GSK-7.5, GSK-15) to evaluate the effect of WIP1 on ovarian endocrine and reproductive function and the ovarian reserve. In vitro follicle culture and primary granulosa cell culture were applied to explore the mechanisms of WIP1 in regulating follicular development. This study revealed that WIP1 expression in atretic follicle granulosa cells is significantly lower than that in healthy follicles. Inhibiting WIP1 phosphatase activity in mice induced irregular estrous cycles, caused fertility declines, and decreased the ovarian reserve through triggering excessive follicular atresia and primordial follicle activation. Primordial follicle depletion was accelerated via PI3K-AKT-rpS6 signaling pathway activation. In vitro follicle culture experiments revealed that inhibiting WIP1 activity impaired follicular development and oocyte quality. In vitro granulosa cell experiments further indicated that downregulating WIP1 expression promoted granulosa cell death via WIP1-p53-BAX signaling pathway-mediated apoptosis. These findings suggest that appropriate WIP1 expression is essential for healthy follicular development, and decreased WIP1 expression accelerates ovarian aging by promoting follicular atresia and primordial follicle activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ya Li
- Correspondence: (Y.L.); (S.W.); Tel.: +86-27-83663078 (Y.L. & S.W.)
| | - Shixuan Wang
- Correspondence: (Y.L.); (S.W.); Tel.: +86-27-83663078 (Y.L. & S.W.)
| |
Collapse
|
19
|
Kim SW, Lee S, Shin S, Lee ST. Rare Gene Rearrangement t(11;22)(q23;q13)/ KMT2A-EP300 in Therapy-related Acute Myeloid Leukemia: A Case Report. Ann Lab Med 2022; 42:693-696. [PMID: 35765879 PMCID: PMC9277037 DOI: 10.3343/alm.2022.42.6.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Seo Wan Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Seungjae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| |
Collapse
|
20
|
Hu H, Zhang T, Wu Y, Deng M, Deng H, Yang X. Cross-regulation between microRNAs and key proteins of signaling pathways in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2022; 16:753-765. [PMID: 35833844 DOI: 10.1080/17474124.2022.2101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a subtype of primary liver cancer and a major cause of death. Although miRNA plays an important role in hepatocellular carcinoma, the specific regulatory network remains unclear. Therefore, this paper comprehensively describes the miRNA-related signaling pathways in HCC and the possible interactions among different signaling pathways. The aim is to lay the foundation for the discovery of new molecular targets and multi-target therapy. AREAS COVERED Based on miRNA, HCC, and signaling pathways, the literature was searched on Web of Science and PubMed. Then, common targets between different signaling pathways were found from KEGG database, and possible cross-regulation mechanisms were further studied. In this review, we elaborated from two aspects, respectively, laying a foundation for studying the regulatory mechanism and potential targets of miRNA in HCC. EXPERT OPINION Non-coding RNAs have become notable molecules in cancer research in recent years, and many types of targeted drugs have emerged. From the outset, molecular targets and signal pathways are interlinked, which suggests that signal pathways and regulatory networks should be concerned in basic research, which also provides a strong direction for future mechanism research.
Collapse
Affiliation(s)
- Haihong Hu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Taolan Zhang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiwen Wu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Meina Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Huiling Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Yang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, China
| |
Collapse
|
21
|
Development of Antibody-like Proteins Targeting the Oncogenic Ser/Thr Protein Phosphatase PPM1D. Processes (Basel) 2022. [DOI: 10.3390/pr10081501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PPM1D, a protein Ser/Thr phosphatase, is overexpressed in various cancers and functions as an oncogenic protein by inactivating the p53 pathway. Therefore, molecules that bind PPM1D are expected to be useful anti-cancer agents. In this study, we constructed a phage display library based on the antibody-like small molecule protein adnectin and screened for PPM1D-specific binding molecules. We identified two adnectins, PMDB-1 and PMD-24, that bind PPM1D specific B-loop and PPM1D430 as targets, respectively. Specificity analyses of these recombinant proteins using other Ser/Thr protein phosphatases showed that these molecules bind to only PPM1D. Expression of PMDB-1 in breast cancer-derived MCF-7 cells overexpressing endogenous PPM1D stabilized p53, indicating that PMDB-1 functions as an inhibitor of PPM1D. Furthermore, MTT assay exhibited that MCF-7 cells expressing PMDB-1 showed inhibition of cell proliferation. These data suggest that the adnectin PMDB-1 identified in this study can be used as a lead compound for anti-cancer drugs targeting intracellular PPM1D.
Collapse
|
22
|
Miller PG, Sathappa M, Moroco JA, Jiang W, Qian Y, Iqbal S, Guo Q, Giacomelli AO, Shaw S, Vernier C, Bajrami B, Yang X, Raffier C, Sperling AS, Gibson CJ, Kahn J, Jin C, Ranaghan M, Caliman A, Brousseau M, Fischer ES, Lintner R, Piccioni F, Campbell AJ, Root DE, Garvie CW, Ebert BL. Allosteric inhibition of PPM1D serine/threonine phosphatase via an altered conformational state. Nat Commun 2022; 13:3778. [PMID: 35773251 PMCID: PMC9246869 DOI: 10.1038/s41467-022-30463-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/02/2022] [Indexed: 02/02/2023] Open
Abstract
PPM1D encodes a serine/threonine phosphatase that regulates numerous pathways including the DNA damage response and p53. Activating mutations and amplification of PPM1D are found across numerous cancer types. GSK2830371 is a potent and selective allosteric inhibitor of PPM1D, but its mechanism of binding and inhibition of catalytic activity are unknown. Here we use computational, biochemical and functional genetic studies to elucidate the molecular basis of GSK2830371 activity. These data confirm that GSK2830371 binds an allosteric site of PPM1D with high affinity. By further incorporating data from hydrogen deuterium exchange mass spectrometry and sedimentation velocity analytical ultracentrifugation, we demonstrate that PPM1D exists in an equilibrium between two conformations that are defined by the movement of the flap domain, which is required for substrate recognition. A hinge region was identified that is critical for switching between the two conformations and was directly implicated in the high-affinity binding of GSK2830371 to PPM1D. We propose that the two conformations represent active and inactive forms of the protein reflected by the position of the flap, and that binding of GSK2830371 shifts the equilibrium to the inactive form. Finally, we found that C-terminal truncating mutations proximal to residue 400 result in destabilization of the protein via loss of a stabilizing N- and C-terminal interaction, consistent with the observation from human genetic data that nearly all PPM1D mutations in cancer are truncating and occur distal to residue 400. Taken together, our findings elucidate the mechanism by which binding of a small molecule to an allosteric site of PPM1D inhibits its activity and provides insights into the biology of PPM1D.
Collapse
Affiliation(s)
- Peter G Miller
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Murugappan Sathappa
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jamie A Moroco
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Wei Jiang
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Yue Qian
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Sumaiya Iqbal
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Qi Guo
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Andrew O Giacomelli
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Subrata Shaw
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Camille Vernier
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Besnik Bajrami
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Cerise Raffier
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Adam S Sperling
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher J Gibson
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Josephine Kahn
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cyrus Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Matthew Ranaghan
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Alisha Caliman
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Merissa Brousseau
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Robert Lintner
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | | | - David E Root
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Colin W Garvie
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA.
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
23
|
Elsaid HH, Badary OA, Shouman SA, Elmazar M, El-Khatib AS. Enhanced antitumor activity of combined methotrexate and histone deacetylase inhibitor valproic acid on mammary cancer in vitro and in vivo. Can J Physiol Pharmacol 2022; 100:915-925. [PMID: 35679619 DOI: 10.1139/cjpp-2021-0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) act as antiproliferative agents by promoting differentiation and inducing apoptosis. Valproic acid (VPA) is an HDACI that shows promising chemotherapeutic effect in several tumor cells. The present study aimed to investigate the inhibitory effect of VPA on the viability of mammary cancer cells and its enhancing effect with methotrexate (MTX) in vitro and in vivo. Treatment with VPA or MTX alone induced concentration-dependent cytotoxic effects in two breast cancer cell lines. VPA significantly increased the cytotoxicity of MTX 3 times against MCF7. VPA addition to MTX, however, did not produce any significant changes on MTX cytotoxicity against MDA-MB231. VPA (150 and 200 mg/kg) significantly inhibited the growth of IP and SC Ehrlich ascites carcinoma tumor mouse models and improved results were achieved for tumor inhibition when VPA was combined with MTX (1 and 2 mg/kg) in vivo. The antitumor activity was not associated with a significant increase in toxicity or mice mortality rate. All these findings suggest that the combination of MTX and VPA may have clinical and/or adjuvant therapeutic application in the treatment of mammary cancer.
Collapse
Affiliation(s)
- Hadia Hosny Elsaid
- The British University in Egypt, 120633, Department of Pharmacology and Biochemistry, El Shorouk, Cairo, Egypt;
| | - Osama A Badary
- The British University in Egypt, 120633, Department of Clinical Pharmacy Practice, El Shorouk, Cairo, Egypt;
| | - Samia A Shouman
- National Cancer Institute Cairo University, 68804, Cairo, Egypt;
| | - Mohey Elmazar
- The British University in Egypt, 120633, Department of Pharmacology and Biochemistry, Cairo,, Cairo, Egypt;
| | - Aiman S El-Khatib
- Cairo University Faculty of Pharmacy, 110154, Pharmacology and Toxicology, Cairo, Egypt;
| |
Collapse
|
24
|
Leem J, Bai GY, Oh JS. The Capacity to Repair Sperm DNA Damage in Zygotes is Enhanced by Inhibiting WIP1 Activity. Front Cell Dev Biol 2022; 10:841327. [PMID: 35478962 PMCID: PMC9037036 DOI: 10.3389/fcell.2022.841327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Maintaining genome integrity in germ cells is essential not only for successful fertilization and embryo development, but also to ensure proper transmission of genetic information across generations. However, unlike oocytes, sperm are incapable of repairing DNA damage. Therefore, sperm DNA damage is repaired after fertilization in zygotes using maternal DNA repair factors. In this study, we found that zygotic repair of paternal DNA damage is enhanced by inhibiting WIP1 activity. Oxidative stress induced DNA damage in sperm and severely impaired motility. Although DNA damage in sperm did not compromise fertilization, it increased DNA damage in the paternal pronucleus of zygotes. However, WIP1 inhibition during fertilization reduced DNA damage in the paternal pronucleus, improving the rate of two-cell development, and subsequent zygotic genome activation. Therefore, our results suggest that WIP1 inhibition could enhance maternal DNA repair capacity and thereby decrease paternal DNA damage in zygotes.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Guang-Yu Bai
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
25
|
Hong Z, Liu T, Wan L, Fa P, Kumar P, Cao Y, Prasad CB, Qiu Z, Joseph L, Hongbing W, Li Z, Wang QE, Guo P, Guo D, Yilmaz AS, Lu L, Papandreou I, Jacob NK, Yan C, Zhang X, She QB, Ma Z, Zhang J. Targeting Squalene Epoxidase Interrupts Homologous Recombination via the ER Stress Response and Promotes Radiotherapy Efficacy. Cancer Res 2022; 82:1298-1312. [PMID: 35045984 PMCID: PMC8983553 DOI: 10.1158/0008-5472.can-21-2229] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Over 50% of all patients with cancer are treated with radiotherapy. However, radiotherapy is often insufficient as a monotherapy and requires a nontoxic radiosensitizer. Squalene epoxidase (SQLE) controls cholesterol biosynthesis by converting squalene to 2,3-oxidosqualene. Given that SQLE is frequently overexpressed in human cancer, this study investigated the importance of SQLE in breast cancer and non-small cell lung cancer (NSCLC), two cancers often treated with radiotherapy. SQLE-positive IHC staining was observed in 68% of breast cancer and 56% of NSCLC specimens versus 15% and 25% in normal breast and lung tissue, respectively. Importantly, SQLE expression was an independent predictor of poor prognosis, and pharmacologic inhibition of SQLE enhanced breast and lung cancer cell radiosensitivity. In addition, SQLE inhibition enhanced sensitivity to PARP inhibition. Inhibition of SQLE interrupted homologous recombination by suppressing ataxia-telangiectasia mutated (ATM) activity via the translational upregulation of wild-type p53-induced phosphatase (WIP1), regardless of the p53 status. SQLE inhibition and subsequent squalene accumulation promoted this upregulation by triggering the endoplasmic reticulum (ER) stress response. Collectively, these results identify a novel tumor-specific radiosensitizer by revealing unrecognized cross-talk between squalene metabolites, ER stress, and the DNA damage response. Although SQLE inhibitors have been used as antifungal agents in the clinic, they have not yet been used as antitumor agents. Repurposing existing SQLE-inhibiting drugs may provide new cancer treatments. SIGNIFICANCE Squalene epoxidase inhibitors are novel tumor-specific radiosensitizers that promote ER stress and suppress homologous recombination, providing a new potential therapeutic approach to enhance radiotherapy efficacy.
Collapse
Affiliation(s)
- Zhipeng Hong
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, P.R. China
| | - Tao Liu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Lingfeng Wan
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Pengyan Fa
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Pankaj Kumar
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Yanan Cao
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Chandra Bhushan Prasad
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Zhaojun Qiu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Liu Joseph
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Wang Hongbing
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Ayse Selen Yilmaz
- Department of Biomedical Informatics, College of Medicine, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Lanchun Lu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Naduparambil K Jacob
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Qing-Bai She
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Zhefu Ma
- Department Breast Surgery and Plastic Surgery, Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
- Department Breast & Thyroid Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| |
Collapse
|
26
|
Feng H, Wang N, Zhang N, Liao HH. Alternative autophagy: mechanisms and roles in different diseases. Cell Commun Signal 2022; 20:43. [PMID: 35361231 PMCID: PMC8973741 DOI: 10.1186/s12964-022-00851-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
As an important mechanism to maintain cellular homeostasis, autophagy exerts critical functions via degrading misfolded proteins and damaged organelles. Recent years, alternative autophagy, a new type of autophagy has been revealed, which shares similar morphology with canonical autophagy but is independent of Atg5/Atg7. Investigations on different diseases showed the pivotal role of alternative autophagy during their physio-pathological processes, including heart diseases, neurodegenerative diseases, oncogenesis, inflammatory bowel disease (IBD), and bacterial infection. However, the studies are limited and the precise roles and mechanisms of alternative autophagy are far from clear. It is necessary to review current research on alternative autophagy and get some hint in order to provide new insight for further study. Video Abstract.
Collapse
Affiliation(s)
- Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Nian Wang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
27
|
Imamura T, Okamura Y, Ohshima K, Uesaka K, Sugiura T, Ito T, Yamamoto Y, Ashida R, Ohgi K, Otsuka S, Ohnami S, Nagashima T, Hatakeyama K, Kakuda Y, Sugino T, Urakami K, Akiyama Y, Yamaguchi K. Hepatocellular carcinoma after a sustained virological response by direct-acting antivirals harbors TP53 inactivation. Cancer Med 2022; 11:1769-1786. [PMID: 35174643 PMCID: PMC9041076 DOI: 10.1002/cam4.4571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction The genomic characteristics of hepatocellular carcinoma (HCC) after a sustained virological response (SVR) and its differences according to whether an SVR was achieved by treatment with direct‐acting antivirals (DAA) or interferon (IFN) are still not fully understood. Methods Sixty‐nine surgically resected HCCs from patients with hepatitis C virus infection were analyzed by gene expression profiling and whole‐exome sequencing. Results Among the 69 HCC patients, 34 HCCs in which an SVR was not achieved at the time of surgery were classified as HCV‐positive, and 35 HCCs in which an SVR was achieved at the time of surgery were classified as HCV‐SVR. According to the HCV treatment, 35 HCV‐SVR HCCs were classified into two groups: eight tumors with DAA (HCV‐SVR‐DAA) and 24 tumors with interferon (HCV‐SVR‐IFN). The frequency of samples with ARID2 mutations was significantly lower in HCV‐SVR than in HCV‐positive tumors (p = 0.048). In contrast, the frequency of samples with PREX2 mutations was significantly higher in HCV‐SVR samples than in HCV‐positive samples (p = 0.048). Among the patients with HCV‐SVR, the frequency of samples with TP53 mutations was significantly higher in HCV‐SVR‐DAA tumors than in HCV‐SVR‐IFN tumors (p = 0.030). TP53 inactivation scores in HCV‐SVR‐DAA tumors were found to be significantly enhanced in comparison to HCV‐SVR‐IFN tumors (p = 0.022). In addition, chromosomal instability and PI3K/AKT/mTOR pathway signatures were enhanced in HCV‐SVR‐DAA tumors. HCV‐SVR‐DAA was significantly associated with portal vein invasion (p = 0.003) in comparison to HCV‐SVR‐IFN. Conclusion Our dataset potentially serves as a fundamental resource for the genomic characteristics of HCV‐SVR‐DAA tumors. Our comprehensive genetic profiling by WES revealed significant differences in the mutation rate of several driver genes between HCV‐positive tumors and HCV‐SVR tumors. Furthermore, it was revealed that the frequency of samples with mutations in TP53 was significantly higher in HCV‐SVR‐DAA tumors than in HCV‐SVR‐IFN tumors.
Collapse
Affiliation(s)
- Taisuke Imamura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yukiyasu Okamura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan.,Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takaaki Ito
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yusuke Yamamoto
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Ryo Ashida
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Katsuhisa Ohgi
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Shimpei Otsuka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,SRL, Inc., Tokyo, Japan
| | - Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuko Kakuda
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|
28
|
Leem J, Bai GY, Kim JS, Oh JS. Increased WIP1 Expression With Aging Suppresses the Capacity of Oocytes to Respond to and Repair DNA Damage. Front Cell Dev Biol 2022; 9:810928. [PMID: 35004701 PMCID: PMC8740286 DOI: 10.3389/fcell.2021.810928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023] Open
Abstract
If fertilization does not occur for a prolonged time after ovulation, oocytes undergo a time-dependent deterioration in quality in vivo and in vitro, referred to as postovulatory aging. The DNA damage response is thought to decline with aging, but little is known about how mammalian oocytes respond to the DNA damage during in vitro postovulatory aging. Here we show that increased WIP1 during in vitro postovulatory aging suppresses the capacity of oocytes to respond to and repair DNA damage. During in vitro aging, oocytes progressively lost their capacity to respond to DNA double-strand breaks, which corresponded with an increase in WIP1 expression. Increased WIP1 impaired the amplification of γ-H2AX signaling, which reduced the DNA repair capacity. WIP1 inhibition restored the DNA repair capacity, which prevented deterioration in oocyte quality and improved the fertilization and developmental competence of aged oocytes. Importantly, WIP1 was also found to be high in maternally aged oocytes, and WIP1 inhibition enhanced the DNA repair capacity of maternally aged oocytes. Therefore, our results demonstrate that increased WIP1 is responsible for the age-related decline in DNA repair capacity in oocytes, and WIP1 inhibition could restore DNA repair capacity in aged oocytes.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Guang-Yu Bai
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
29
|
Jung Y, Kraikivski P, Shafiekhani S, Terhune SS, Dash RK. Crosstalk between Plk1, p53, cell cycle, and G2/M DNA damage checkpoint regulation in cancer: computational modeling and analysis. NPJ Syst Biol Appl 2021; 7:46. [PMID: 34887439 PMCID: PMC8660825 DOI: 10.1038/s41540-021-00203-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Different cancer cell lines can have varying responses to the same perturbations or stressful conditions. Cancer cells that have DNA damage checkpoint-related mutations are often more sensitive to gene perturbations including altered Plk1 and p53 activities than cancer cells without these mutations. The perturbations often induce a cell cycle arrest in the former cancer, whereas they only delay the cell cycle progression in the latter cancer. To study crosstalk between Plk1, p53, and G2/M DNA damage checkpoint leading to differential cell cycle regulations, we developed a computational model by extending our recently developed model of mitotic cell cycle and including these key interactions. We have used the model to analyze the cancer cell cycle progression under various gene perturbations including Plk1-depletion conditions. We also analyzed mutations and perturbations in approximately 1800 different cell lines available in the Cancer Dependency Map and grouped lines by genes that are represented in our model. Our model successfully explained phenotypes of various cancer cell lines under different gene perturbations. Several sensitivity analysis approaches were used to identify the range of key parameter values that lead to the cell cycle arrest in cancer cells. Our resulting model can be used to predict the effect of potential treatments targeting key mitotic and DNA damage checkpoint regulators on cell cycle progression of different types of cancer cells.
Collapse
Affiliation(s)
- Yongwoon Jung
- grid.30760.320000 0001 2111 8460Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Pavel Kraikivski
- Academy of Integrated Science, Division of Systems Biology, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Sajad Shafiekhani
- grid.411705.60000 0001 0166 0922Department of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Scott S. Terhune
- grid.30760.320000 0001 2111 8460Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226 USA ,grid.30760.320000 0001 2111 8460Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Ranjan K. Dash
- grid.30760.320000 0001 2111 8460Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226 USA ,grid.30760.320000 0001 2111 8460Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226 USA ,grid.30760.320000 0001 2111 8460Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| |
Collapse
|
30
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein Kinases/Phosphatases. Life (Basel) 2021; 11:life11090957. [PMID: 34575106 PMCID: PMC8467178 DOI: 10.3390/life11090957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Protein phosphorylation is one of the most widely observed and important post-translational modification (PTM) processes. Protein phosphorylation is regulated by protein kinases, each of which covalently attaches a phosphate group to an amino acid side chain on a serine (Ser), threonine (Thr), or tyrosine (Tyr) residue of a protein, and by protein phosphatases, each of which, conversely, removes a phosphate group from a phosphoprotein. These reversible enzyme activities provide a regulatory mechanism by activating or deactivating many diverse functions of proteins in various cellular processes. In this review, their structures and substrate recognition are described and summarized, focusing on Ser/Thr protein kinases and protein Ser/Thr phosphatases, and the regulation of protein structures by phosphorylation. The studies reviewed here and the resulting information could contribute to further structural, biochemical, and combined studies on the mechanisms of protein phosphorylation and to drug discovery approaches targeting protein kinases or protein phosphatases.
Collapse
|
32
|
Yu Z, Song Y, Cai M, Jiang B, Zhang Z, Wang L, Jiang Y, Zou L, Liu X, Yu N, Mao X, Peng C, Liu S. PPM1D is a potential prognostic biomarker and correlates with immune cell infiltration in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:21294-21308. [PMID: 34470916 PMCID: PMC8457582 DOI: 10.18632/aging.203459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Background: Protein phosphatase magnesium-dependent 1 delta (PPM1D), also referred to as wild-type p53-induced phosphatase 1 (Wip1) or protein phosphatase 2C delta (PP2Cδ), is an oncogenic nuclear serine/threonine phosphatase belonging to the PP2C family. However, the knowledge regarding PPM1D mRNA expression, tumor immunity, and the prognosis in hepatocellular carcinoma (HCC) is scanty. Methods: We analyzed PPM1D, including its expression in both the normal and tumor tissue using the Sangerbox database and Tumor Immune Estimation Resource (TIMER). We evaluated its correlation with prognosis in different tumor types by the Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA). The correlations between PPM1D and the cancer immune infiltrates were determined using TIMER. The correlations between PPM1D expression and gene marker sets of the immune infiltrates were established by both the TIMER and GEPIA. Immunohistochemistry was performed to detect the expression of Wip1 protein encoded by PPM1D in HCC, and the relationship between Wip1 expression and the prognosis of HCC were analyzed. Results: We found out that PPM1D mRNA expression was significantly higher in several human cancers, including HCC, than in the corresponding normal human tissues. The PPM1D mRNA high expression in HCC was significantly correlated with poor prognosis. The expression was associated with progression-free survival (PFS) in multiple HCC patients’ cohorts (PFS HR = 1.5, P = 0.0066). This was especially in early stage (stage 1) and AJCC_T 1 of HCC. Besides, PPM1D mRNA expression indicated a positive correlation with tumor-infiltrating Monocytes, tumor-associated macrophages (TAMs), M1 Macrophage, M2 Macrophage, dendritic cells (DCs), T-helper (Th) and Treg. Wip1 was higher in HCC than paracancerous tissue. High expression of Wip1 was associated with poor prognosis of HCC. Conclusion: Our findings suggested that PPM1D mRNA is critical in activating tumor immunity. Besides, they implied that PPM1D could be a potential prognostic biomarker for cancer progression. Moreover, it correlated with tumor immune cell infiltration in HCC.
Collapse
Affiliation(s)
- Zhangtao Yu
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China.,Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Mengting Cai
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Zhihua Zhang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Le Wang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Yu Jiang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Lianhong Zou
- Hunan Provincial Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China
| | - Xiehong Liu
- Hunan Provincial Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China
| | - Nanhui Yu
- Hunan Provincial Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China
| | - Xianhai Mao
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China.,Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| |
Collapse
|
33
|
Metal dependent protein phosphatase PPM family in cardiac health and diseases. Cell Signal 2021; 85:110061. [PMID: 34091011 PMCID: PMC9107372 DOI: 10.1016/j.cellsig.2021.110061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
Protein phosphorylation and dephosphorylation is central to signal transduction in nearly every aspect of cellular function, including cardiovascular regulation and diseases. While protein kinases are often regarded as the molecular drivers in cellular signaling with high specificity and tight regulation, dephosphorylation mediated by protein phosphatases is also gaining increasing appreciation as an important part of the signal transduction network essential for the robustness, specificity and homeostasis of cell signaling. Metal dependent protein phosphatases (PPM, also known as protein phosphatases type 2C, PP2C) belong to a highly conserved family of protein phosphatases with unique biochemical and molecular features. Accumulating evidence also indicates important and specific functions of individual PPM isoform in signaling and cellular processes, including proliferation, senescence, apoptosis and metabolism. At the physiological level, abnormal PPM expression and activity have been implicated in major human diseases, including cancer, neurological and cardiovascular disorders. Finally, inhibitors for some of the PPM members have been developed as a potential therapeutic strategy for human diseases. In this review, we will focus on the background information about the biochemical and molecular features of major PPM family members, with emphasis on their demonstrated or potential roles in cardiac pathophysiology. The current challenge and potential directions for future investigations will also be highlighted.
Collapse
|
34
|
Ho KH, Huang TW, Liu AJ, Shih CM, Chen KC. Cancer Essential Genes Stratified Lung Adenocarcinoma Patients with Distinct Survival Outcomes and Identified a Subgroup from the Terminal Respiratory Unit Type with Different Proliferative Signatures in Multiple Cohorts. Cancers (Basel) 2021; 13:2128. [PMID: 33924966 PMCID: PMC8124388 DOI: 10.3390/cancers13092128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Heterogeneous features of lung adenocarcinoma (LUAD) are used to stratify patients into terminal respiratory unit (TRU), proximal-proliferative (PP), and proximal-inflammatory (PI) subtypes. A more-accurate subtype classification would be helpful for future personalized medicine. However, these stratifications are based on genes with variant expression levels without considering their tumor-promoting roles. We attempted to identify cancer essential genes for LUAD stratification and their clinical and biological differences. Methods: Essential genes in LUAD were identified using genome-scale CRIPSR screening of RNA sequencing data from Project Achilles and The Cancer Genome Atlas (TCGA). Patients were stratified using consensus clustering. Survival outcomes, genomic alterations, signaling activities, and immune profiles within clusters were investigated using other independent cohorts. Findings: Thirty-six genes were identified as essential to LUAD, and there were used for stratification. Essential gene-classified clusters exhibited distinct survival rates and proliferation signatures across six cohorts. The cluster with the worst prognosis exhibited TP53 mutations, high E2F target activities, and high tumor mutation burdens, and harbored tumors vulnerable to topoisomerase I and poly(ADP ribose) polymerase inhibitors. TRU-type patients could be divided into clinically and molecularly different subgroups based on these essential genes. Conclusions: Our study showed that essential genes to LUAD not only defined patients with different survival rates, but also refined preexisting subtypes.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (K.-H.H.); (T.-W.H.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Tzu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (K.-H.H.); (T.-W.H.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei 10629, Taiwan;
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (K.-H.H.); (T.-W.H.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (K.-H.H.); (T.-W.H.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
35
|
Seumen CHT, Grimm TM, Hauck CR. Protein phosphatases in TLR signaling. Cell Commun Signal 2021; 19:45. [PMID: 33882943 PMCID: PMC8058998 DOI: 10.1186/s12964-021-00722-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are critical sensors for the detection of potentially harmful microbes. They are instrumental in initiating innate and adaptive immune responses against pathogenic organisms. However, exaggerated activation of TLR receptor signaling can also be responsible for the onset of autoimmune and inflammatory diseases. While positive regulators of TLR signaling, such as protein serine/threonine kinases, have been studied intensively, only little is known about phosphatases, which counterbalance and limit TLR signaling. In this review, we summarize protein phosphorylation events and their roles in the TLR pathway and highlight the involvement of protein phosphatases as negative regulators at specific steps along the TLR-initiated signaling cascade. Then, we focus on individual phosphatase families, specify the function of individual enzymes in TLR signaling in more detail and give perspectives for future research. A better understanding of phosphatase-mediated regulation of TLR signaling could provide novel access points to mitigate excessive immune activation and to modulate innate immune signaling.![]() Video Abstract
Collapse
Affiliation(s)
- Clovis H T Seumen
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany
| | - Tanja M Grimm
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
36
|
Al Hinai ASA, Grob T, Rijken M, Kavelaars FG, Zeilemaker A, Erpelinck-Verschueren CAJ, Sanders MA, Löwenberg B, Jongen-Lavrencic M, Valk PJM. PPM1D mutations appear in complete remission after exposure to chemotherapy without predicting emerging AML relapse. Leukemia 2021; 35:2693-2697. [PMID: 33589749 DOI: 10.1038/s41375-021-01155-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Adil S A Al Hinai
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,National Genetic Center, Ministry of Health, Muscat, Sultanate of Oman
| | - Tim Grob
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Melissa Rijken
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - François G Kavelaars
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annelieke Zeilemaker
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Mathijs A Sanders
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mojca Jongen-Lavrencic
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
p21 WAF1/CIP1 promotes p53 protein degradation by facilitating p53-Wip1 and p53-Mdm2 interaction. Biochem Biophys Res Commun 2021; 543:23-28. [PMID: 33503543 DOI: 10.1016/j.bbrc.2021.01.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/20/2021] [Indexed: 12/28/2022]
Abstract
Downregulation of the p53 tumor suppressor in cancers is frequently accompanied by the upregulation of Wip1 (a phosphatase) and Mdm2 (an E3 ubiquitin ligase). Mdm2 binds and ubiquitinates p53, promoting its degradation by the proteasome. As the p53/Mdm2 interaction is alleviated by the phosphorylation of the serine-15 (S15) residue of p53, Wip1, which can directly dephosphorylate phospho-S15, facilitates the Mdm2-mediated degradation of p53. Here, we found that p21WAF1/CIP1, previously shown to bind p53 and Mdm2, reduces the cellular levels of p53 protein by decreasing its stability. This is accompanied by a decrease in p53-S15 phosphorylation levels. In agreement, p21 promotes the p53/Wip1 interaction. Additionally, p21 interacts with Wip1, forming a trimeric complex of p53, p21, and Wip1. Studies using a p21 deletion mutant that cannot bind p53 revealed that the p53/p21 complex is more efficient than p53 alone in facilitating the binding of p53 to Wip1 and Mdm2. These findings indicate that p21 is a novel negative regulator of p53 stability and therefore, may be used as a target to restore p53 activity by preventing the action of Wip1 and Mdm2 on p53.
Collapse
|
38
|
Phosphatase magnesium-dependent 1 δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochem Pharmacol 2020; 184:114362. [PMID: 33309518 DOI: 10.1016/j.bcp.2020.114362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Aberrations in DNA damage response genes are recognized mediators of tumorigenesis and resistance to chemo- and radiotherapy. While protein phosphatase magnesium-dependent 1 δ (PPM1D), located on the long arm of chromosome 17 at 17q22-23, is a key regulator of cellular responses to DNA damage, amplification, overexpression, or mutation of this gene is important in a wide range of pathologic processes. In this review, we describe the physiologic function of PPM1D, as well as its role in diverse processes, including fertility, development, stemness, immunity, tumorigenesis, and treatment responsiveness. We highlight both the advances and limitations of current approaches to targeting malignant processes mediated by pathogenic alterations in PPM1D with the goal of providing rationale for continued research and development of clinically viable treatment approaches for PPM1D-associated diseases.
Collapse
|
39
|
Husby S, Hjermind Justesen E, Grønbæk K. Protein phosphatase, Mg 2+/Mn 2+-dependent 1D (PPM1D) mutations in haematological cancer. Br J Haematol 2020; 192:697-705. [PMID: 33616916 DOI: 10.1111/bjh.17120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023]
Abstract
Until recently, the protein phosphatase, Mg2+/Mn2+-dependent 1D (PPM1D) gene had not been examined in haematological cancer, but several studies have now explored the functional role of this gene and its aberrations. It is often mutated in the context of clonal haemopoiesis (including in patients with lymphoma, myeloproliferative neoplasms and myelodysplastic syndrome) and mutations have been associated with exposure to cytotoxic and radiation therapy, development of therapy-related neoplasms and inferior survival. The vast majority of PPM1D mutations found in haematopoietic cells are of the nonsense or frameshift type and located within terminal exon 6. These genetic defects are rarely found in the blood of healthy individuals. PPM1D encodes the PPM1D phosphatase [also named wild-type p53-induced phosphatase 1 (WIP1)], which negatively regulates signalling molecules within the DNA damage response pathway, including tumour suppressor p53. Clonal expansion of PPM1D mutant haematopoietic cells can potentially be prevented with inhibitors; however, human trials are awaited. In the present review, we provide a review of the literature regarding PPM1D and its role in haematological cancer.
Collapse
Affiliation(s)
- Simon Husby
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Emma Hjermind Justesen
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Wu CE, Pan YR, Yeh CN, Lunec J. Targeting P53 as a Future Strategy to Overcome Gemcitabine Resistance in Biliary Tract Cancers. Biomolecules 2020; 10:biom10111474. [PMID: 33113997 PMCID: PMC7690712 DOI: 10.3390/biom10111474] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gemcitabine-based chemotherapy is the current standard treatment for biliary tract cancers (BTCs) and resistance to gemcitabine remains the clinical challenge. TP53 mutation has been shown to be associated with poor clinicopathologic characteristics and survival in patients with BTCs, indicating that p53 plays an important role in the treatment of these cancers. Herein, we comprehensively reviewed previous BTC preclinical research and early clinical trials in terms of p53, as well as novel p53-targeted treatment, alone or in combination with either chemotherapy or other targeted therapies in BTCs. Preclinical studies have demonstrated that p53 mutations in BTCs are associated with enhanced gemcitabine resistance, therefore targeting p53 may be a novel therapeutic strategy for treatment of BTCs. Directly targeting mutant p53 by p53 activators, or indirectly by targeting cell cycle checkpoint proteins (Chk1, ataxia telangiectasia related (ATR), and Wee1) leading to synthetic lethality, may be potential future strategies for gemcitabine-resistant p53 mutated BTCs. In contrast, for wild-type p53 BTCs, activation of p53 by inhibition of its negative regulators (MDM2 and wild-type p53-induced phosphatase 1 (WIP1)) may be alternative options. Combination therapies consisting of standard cytotoxic drugs and novel small molecules targeting p53 and related signaling pathways may be the future key standard approach to beat cancer.
Collapse
Affiliation(s)
- Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Yi-Ru Pan
- Department of General Surgery and Liver Research Center, Chang Gung Memorial Hospital, Linkou branch, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chun-Nan Yeh
- Department of General Surgery and Liver Research Center, Chang Gung Memorial Hospital, Linkou branch, Chang Gung University, Taoyuan 333, Taiwan;
- Correspondence: (C.-N.Y.); (J.L.); Tel.: +886-3-3281200 (ext. 3219) (C.-N.Y.); +44-(0)-191-208-4420 (J.L.); Fax: +886-3-3285818 (C.-N.Y.); +44-(0)-191-208-4301 (J.L.)
| | - John Lunec
- Newcastle University Cancer Centre, Bioscience Institute, Medical Faculty, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (C.-N.Y.); (J.L.); Tel.: +886-3-3281200 (ext. 3219) (C.-N.Y.); +44-(0)-191-208-4420 (J.L.); Fax: +886-3-3285818 (C.-N.Y.); +44-(0)-191-208-4301 (J.L.)
| |
Collapse
|
41
|
Development of Specific Inhibitors for Oncogenic Phosphatase PPM1D by Using Ion-Responsive DNA Aptamer Library. Catalysts 2020. [DOI: 10.3390/catal10101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Ser/Thr protein phosphatase PPM1D is an oncogenic protein. In normal cells, however, PPM1D plays essential roles in spermatogenesis and immune response. Hence, it is necessary to develop novel PPM1D inhibitors without side effects on normal cells. Stimuli-responsive molecules are suitable for the spatiotemporal regulation of inhibitory activity. (2) Methods: In this study, we designed an ion-responsive DNA aptamer library based on G-quadruplex DNA that can change its conformation and function in response to monovalent cations. (3) Results: Using this library, we identified the PPM1D specific inhibitor M1D-Q5F aptamer. The M1D-Q5F aptamer showed anti-cancer activity against breast cancer MCF7 cells. Interestingly, the induction of the structural change resulting in the formation of G-quadruplex upon stimulation by monovalent cations led to the enhancement of the inhibitory activity and binding affinity of M1D-Q5F. (4) Conclusions: These data suggest that the M1D-Q5F aptamer may act as a novel stimuli-responsive anti-cancer agent.
Collapse
|
42
|
Wang J, Wang G, Cheng D, Huang S, Chang A, Tan X, Wang Q, Zhao S, Wu D, Liu AT, Yang S, Xiang R, Sun P. Her2 promotes early dissemination of breast cancer by suppressing the p38-MK2-Hsp27 pathway that is targetable by Wip1 inhibition. Oncogene 2020; 39:6313-6326. [PMID: 32848211 PMCID: PMC7541706 DOI: 10.1038/s41388-020-01437-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Cancer can metastasize from early lesions without detectable tumors. Despite extensive studies on metastasis in cancer cells from patients with detectable primary tumors, mechanisms for early metastatic dissemination are poorly understood. Her2 promotes breast cancer early dissemination by inhibiting p38, but the downstream pathway in this process was unknown. Using early lesion breast cancer models, we demonstrate that the effect of p38 suppression by Her2 on early dissemination is mediated by MK2 and Hsp27. The early disseminating cells in the MMTV-Her2 breast cancer model are Her2highp-p38lowp-MK2lowp-Hsp27low, which also exist in human breast carcinoma tissues. Suppression of p38 and MK2 by Her2 reduces MK2-mediated Hsp27 phosphorylation, and unphosphorylated Hsp27 binds to β-catenin and enhances its phosphorylation by Src, leading to β-catenin activation and disseminating phenotypes in early lesion breast cancer cells. Pharmacological inhibition of MK2 promotes, while inhibition of a p38 phosphatase Wip1 suppresses, early dissemination in vivo. These findings identify Her2-mediated suppression of the p38-MK2-Hsp27 pathway as a novel mechanism for cancer early dissemination, and provide a basis for new therapies targeting early metastatic dissemination in Her2+ breast cancer.
Collapse
Affiliation(s)
- Juan Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Guanwen Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Dongmei Cheng
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Shan Huang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Antao Chang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Xiaoming Tan
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA.,Department of Respiratory Disease, South Campus, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Qiong Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Shaorong Zhao
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Dan Wu
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Andy T Liu
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA.,University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuang Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.
| | - Peiqing Sun
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA.
| |
Collapse
|
43
|
Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, Li X, Babur O, Hsu TK, Lichtarge O, Weinstein JN, Akbani R, Wheeler DA. Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep 2020; 28:1370-1384.e5. [PMID: 31365877 DOI: 10.1016/j.celrep.2019.07.001] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
The TP53 tumor suppressor gene is frequently mutated in human cancers. An analysis of five data platforms in 10,225 patient samples from 32 cancers reported by The Cancer Genome Atlas (TCGA) enables comprehensive assessment of p53 pathway involvement in these cancers. More than 91% of TP53-mutant cancers exhibit second allele loss by mutation, chromosomal deletion, or copy-neutral loss of heterozygosity. TP53 mutations are associated with enhanced chromosomal instability, including increased amplification of oncogenes and deep deletion of tumor suppressor genes. Tumors with TP53 mutations differ from their non-mutated counterparts in RNA, miRNA, and protein expression patterns, with mutant TP53 tumors displaying enhanced expression of cell cycle progression genes and proteins. A mutant TP53 RNA expression signature shows significant correlation with reduced survival in 11 cancer types. Thus, TP53 mutation has profound effects on tumor cell genomic structure, expression, and clinical outlook.
Collapse
Affiliation(s)
- Lawrence A Donehower
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Thierry Soussi
- Sorbonne Université, UPMC University Paris 06, 75005 Paris, France; Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden; INSERM, U1138, Équipe 11, Centre de Recherche des Cordeliers, Paris, France
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andre Schultz
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ozgun Babur
- Computational Biology Program, Oregon Health and Science University, Portland, OR 97239, USA
| | - Teng-Kuei Hsu
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
44
|
Hatakeyama K, Nagashima T, Ohshima K, Ohnami S, Ohnami S, Shimoda Y, Naruoka A, Maruyama K, Iizuka A, Ashizawa T, Mochizuki T, Urakami K, Akiyama Y, Yamaguchi K. Characterization of tumors with ultralow tumor mutational burden in Japanese cancer patients. Cancer Sci 2020; 111:3893-3901. [PMID: 32662546 PMCID: PMC7540986 DOI: 10.1111/cas.14572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor mutational burden analysis using whole‐exome sequencing highlights features of tumors with various mutations or known driver alterations. Cancers with few changes in the exon regions have unclear characteristics, even though low‐mutated tumors are often detected in pan‐cancer analysis. In the present study, we analyzed tumors with low tumor mutational burden listed in the Japanese version of The Cancer Genome Atlas, a data set of 5020 primary solid tumors. Our analysis revealed that detection rates of known driver mutations and copy number variation were decreased in samples with tumor mutational burden below 1.0 (ultralow tumor), compared with those in samples with low tumor mutational burden (≤5 mutations/Mb). This trend was also observed in The Cancer Genome Atlas data set. In the ultralow tumor mutational burden tumors, expression analysis showed decreased TP53 inactivation and chromosomal instability. TP53 inactivation frequently correlated with PI3K/mTOR‐related gene expression, implying suppression of the PI3K/mTOR pathway in ultralow tumor mutational burden tumors. In common with mutational burden, the T cell‐inflamed gene expression profiling signature was a potential marker for prediction of an immune checkpoint inhibitor response, and some ultralow tumor mutational burden tumor populations highly expressed this signature. Our analysis focused on how these tumors could provide insight into tumors with low somatic alteration that are difficult to detect solely using whole‐exome sequencing.
Collapse
Affiliation(s)
- Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,SRL Inc, Tokyo, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,SRL Inc, Tokyo, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Koji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akira Iizuka
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tadashi Ashizawa
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yasuto Akiyama
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | |
Collapse
|
45
|
Shi L, Tian Q, Feng C, Zhang P, Zhao Y. The biological function and the regulatory roles of wild-type p53-induced phosphatase 1 in immune system. Int Rev Immunol 2020; 39:280-291. [PMID: 32696682 DOI: 10.1080/08830185.2020.1795153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) belongs to the protein phosphatase 2C (PP2C) family and is a mammalian serine/threonine specific protein phosphatase to dephosphorylate numerous signaling molecules. Mammalian WIP1 regulates a wide array of targeting molecules and plays key regulatory roles in many cell processes such as DNA damage and repair, cell proliferation, differentiation, apoptosis, and senescence. WIP1 promotes the formation and development of tumors as an oncogene and a negative regulator of p53. It is also involved in the regulation of aging, neurological diseases and immune diseases. Recent studies demonstrated the critical roles of WIP1 in the differentiation and function of immune cells including T cells, neutrophils and macrophages. In the present manuscript, we briefly summarized the expression patterns, biological function and the target molecules and signal pathways of WIP1 and mainly discussed the latest advances on the regulatory effects of WIP1 in the immune system. WIP1 may be a potential target molecule to treat cancers and immune diseases such as allergic asthma.
Collapse
Affiliation(s)
- Lu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Akamandisa MP, Nie K, Nahta R, Hambardzumyan D, Castellino RC. Inhibition of mutant PPM1D enhances DNA damage response and growth suppressive effects of ionizing radiation in diffuse intrinsic pontine glioma. Neuro Oncol 2020; 21:786-799. [PMID: 30852603 DOI: 10.1093/neuonc/noz053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Children with diffuse intrinsic pontine glioma (DIPG) succumb to disease within 2 years of diagnosis despite treatment with ionizing radiation (IR) and/or chemotherapy. Our aim was to determine the role of protein phosphatase, magnesium-dependent 1, delta (PPM1D) mutation, present in up to 25% of cases, in DIPG pathogenesis and treatment. METHODS Using genetic and pharmacologic approaches, we assayed effects of PPM1D mutation on DIPG growth and murine survival. We assayed effects of targeting mutated PPM1D alone or with IR on signaling, cell cycle, proliferation, and apoptosis in patient-derived DIPG cells in vitro, in organotypic brain slices, and in vivo. RESULTS PPM1D-mutated DIPG cell lines exhibited increased proliferation in vitro and in vivo, conferring reduced survival in orthotopically xenografted mice, through stabilization of truncated PPM1D protein and inactivation of DNA damage response (DDR) effectors p53 and H2A.X. PPM1D knockdown or treatment with PPM1D inhibitors suppressed growth of PPM1D-mutated DIPGs in vitro. Orthotopic xenografting of PPM1D short hairpin RNA-transduced or PPM1D inhibitor-treated, PPM1D-mutated DIPG cells into immunodeficient mice resulted in reduced tumor proliferation, increased apoptosis, and extended mouse survival. PPM1D inhibition had similar effects to IR alone on DIPG growth inhibition and augmented the anti-proliferative and pro-apoptotic effects of IR in PPM1D-mutated DIPG models. CONCLUSIONS PPM1D mutations inactivate DDR and promote DIPG growth. Treatment with PPM1D inhibitors activated DDR pathways and enhanced the anti-proliferative and pro-apoptotic effects of IR in DIPG models. Our results support continued development of PPM1D inhibitors for phase I/II trials in children with DIPG.
Collapse
Affiliation(s)
- Mwangala Precious Akamandisa
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Kai Nie
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Rita Nahta
- Department of Pharmacology, Emory University, Atlanta, GA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Dolores Hambardzumyan
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Robert Craig Castellino
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
47
|
Park D, Yoon G, Kim E, Lee T, Kim K, Lee PCW, Chang E, Choi S. Wip1 regulates Smad4 phosphorylation and inhibits TGF-β signaling. EMBO Rep 2020; 21:e48693. [PMID: 32103600 PMCID: PMC7202204 DOI: 10.15252/embr.201948693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor Smad4, a key mediator of the TGF-β/BMP pathways, is essential for development and tissue homeostasis. Phosphorylation of Smad4 in its linker region catalyzed by the mitogen-activated protein kinase (MAPK) plays a pivotal role in regulating its transcriptional activity and stability. In contrast, roles of Smad4 dephosphorylation as a control mechanism of TGF-β/BMP signaling and the phosphatases responsible for its dephosphorylation remain so far elusive. Here, we identify Wip1 as a Smad4 phosphatase. Wip1 selectively binds and dephosphorylates Smad4 at Thr277, a key MAPK phosphorylation site, thereby regulating its nuclear accumulation and half-life. In Xenopus embryos, Wip1 limits mesoderm formation and favors neural induction by inhibiting TGF-β/BMP signals. Wip1 restrains TGF-β-induced growth arrest, migration, and invasion in human cells and enhances the tumorigenicity of cancer cells by repressing the antimitogenic activity of Smad4. We propose that Wip1-dependent dephosphorylation of Smad4 is critical for the regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Dong‐Seok Park
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Gang‐Ho Yoon
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Eun‐Young Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Taehyeong Lee
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Kyuhee Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Peter CW Lee
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Eun‐Ju Chang
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Sun‐Cheol Choi
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| |
Collapse
|
48
|
WIP1 promotes cancer stem cell properties by inhibiting p38 MAPK in NSCLC. Signal Transduct Target Ther 2020; 5:36. [PMID: 32296033 PMCID: PMC7156655 DOI: 10.1038/s41392-020-0126-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Cancer stem cells (CSCs) are a small population of stem cell-like cancer cells that can initiate tumors in vivo, and are the major source of cancer initiation, relapse, and drug resistance. We previously reported that the p38 MAPK, through its downstream effectors MK2 and HSP27, suppressed CSC properties by downregulating the expression of transcription factors that mediate stemness in non-small-cell lung cancer (NSCLC) cells, and that despite unaltered total expression of total p38 proteins, the levels of activated p38 were reduced in NSCLC tissues. However, the mechanism underlying the reduced levels of activated p38 in NSCLC is unknown. In this study, we identified WIP1, a p38 phosphatase frequently overexpressed in cancer, as a suppressor of p38 in a pathway that regulates CSC properties in NSCLC. Increased WIP1 expression correlated with reduced levels of activated p38, and with increased levels of a CSC marker in NSCLC tissues. Further investigation revealed that WIP1 promoted stemness-related protein expression and CSC properties by inhibiting p38 activity in NSCLC cells. WIP1 inhibitors are currently under development as anticancer drugs based on their ability to reactivate p53. We found that a WIP1 inhibitor suppressed stemness-related protein expression and CSC properties by activating p38 in NSCLC cells in vitro and in vivo. These studies have identified the WIP1–p38–MK2–HSP27 cascade as a novel signaling pathway that, when altered, promotes CSC properties in NSCLC development, and have defined novel mechanisms underlying the oncogenic activity of WIP1 and the anticancer efficacy of WIP1 inhibitors.
Collapse
|
49
|
XPA: DNA Repair Protein of Significant Clinical Importance. Int J Mol Sci 2020; 21:ijms21062182. [PMID: 32235701 PMCID: PMC7139726 DOI: 10.3390/ijms21062182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023] Open
Abstract
The nucleotide excision repair (NER) pathway is activated in response to a broad spectrum of DNA lesions, including bulky lesions induced by platinum-based chemotherapeutic agents. Expression levels of NER factors and resistance to chemotherapy has been examined with some suggestion that NER plays a role in tumour resistance; however, there is a great degree of variability in these studies. Nevertheless, recent clinical studies have suggested Xeroderma Pigmentosum group A (XPA) protein, a key regulator of the NER pathway that is essential for the repair of DNA damage induced by platinum-based chemotherapeutics, as a potential prognostic and predictive biomarker for response to treatment. XPA functions in damage verification step in NER, as well as a molecular scaffold to assemble other NER core factors around the DNA damage site, mediated by protein–protein interactions. In this review, we focus on the interacting partners and mechanisms of regulation of the XPA protein. We summarize clinical oncology data related to this DNA repair factor, particularly its relationship with treatment outcome, and examine the potential of XPA as a target for small molecule inhibitors.
Collapse
|
50
|
Choi BK, Fujiwara K, Dayaram T, Darlington Y, Dickerson J, Goodell MA, Donehower LA. WIP1 dephosphorylation of p27 Kip1 Serine 140 destabilizes p27 Kip1 and reverses anti-proliferative effects of ATM phosphorylation. Cell Cycle 2020; 19:479-491. [PMID: 31959038 PMCID: PMC7100888 DOI: 10.1080/15384101.2020.1717025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 01/07/2023] Open
Abstract
The phosphoinositide-3-kinase like kinases (PIKK) such as ATM and ATR play a key role in initiating the cellular DNA damage response (DDR). One key ATM target is the cyclin-dependent kinase inhibitor p27Kip1 that promotes G1 arrest. ATM activates p27Kip1-induced arrest in part through phosphorylation of p27Kip1 at Serine 140. Here we show that this site is dephosphorylated by the type 2C serine/threonine phosphatase, WIP1 (Wildtype p53-Induced Phosphatase-1), encoded by the PPM1D gene. WIP1 has been shown to dephosphorylate numerous ATM target sites in DDR proteins, and its overexpression and/or mutation has often been associated with oncogenesis. We demonstrate that wildtype, but not phosphatase-dead WIP1, efficiently dephosphorylates p27Kip1 Ser140 both in vitro and in cells and that this dephosphorylation is sensitive to the WIP1-specific inhibitor GSK 2830371. Increased expression of wildtype WIP1 reduces stability of p27Kip1 while increased expression of similar amounts of phosphatase-dead WIP1 has no effect on p27Kip1 protein stability. Overexpression of wildtype p27Kip1 reduces cell proliferation and colony forming capability relative to the S140A (constitutively non-phosphorylated) form of p27. Thus, WIP1 plays a significant role in homeostatic modulation of p27Kip1 activity following activation by ATM.
Collapse
Affiliation(s)
- Byung-Kwon Choi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kenichiro Fujiwara
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Tajhal Dayaram
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Yolanda Darlington
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua Dickerson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A. Goodell
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lawrence A. Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|