1
|
Svirshchevskaya EV, Kostenko VV, Boyko AA, Shevtsov M, Kholodenko RV, Grechikhina MV, Gracheva IA, Fedorov AY, Sapozhnikov AM. Core-Shell Chitosan Particles Targeting Membrane-Bound Heat Shock Protein 70 for Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1873. [PMID: 39683266 DOI: 10.3390/nano14231873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Anti-cancer targeted therapy is a promising approach. However, the identification of target molecules over-expressed in a wide range of tumors remains a significant challenge. The aim of this study was to analyze the expression of cell membrane-exposed heat shock protein 70 kDa (mHSP70) on different tumor cells and to develop a nanoscale delivery system based on a monoclonal antibody (mAb) that recognizes mHSP70 and uses chitosan core-shell nanoparticles (NPs). Several types of tumor cells (breast, pancreas, colon, prostate cancers, and some lymphomas) expressed mHSP70 as was determined by flow cytometry and confocal microscopy both in 2D and 3D cultures. Core NPs were formed by chitosan (C) conjugated to allocolchicinoid, which was used as a model drug (D). mAbs (A) targeting mHSP70 were complexed with succinylchitosan and used as NP shells forming final CAD-NPs. These NPs were characterized by size, charge, and functional activity. CAD-NPs were shown to have additional toxicity in comparison with CD-NPs in mHSP7-positive cells. Taken collectively, this study shows that mAb to mHSP70 can be used as a targeting vector in antitumor therapy.
Collapse
Affiliation(s)
- Elena V Svirshchevskaya
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Valentina V Kostenko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Anna A Boyko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Maxim Shevtsov
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia
| | - Roman V Kholodenko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Maria V Grechikhina
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Iuliia A Gracheva
- Department of Organic Chemistry, Nizhni Novgorod State University, 603950 Nizhni Novgorod, Russia
| | - Alexey Yu Fedorov
- Department of Organic Chemistry, Nizhni Novgorod State University, 603950 Nizhni Novgorod, Russia
| | - Alexander M Sapozhnikov
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
2
|
Staropoli N, Scionti F, Farenza V, Falcone F, Luciano F, Renne M, Di Martino MT, Ciliberto D, Tedesco L, Crispino A, Labanca C, Cucè M, Esposito S, Agapito G, Cannataro M, Tassone P, Tagliaferri P, Arbitrio M. Identification of ADME genes polymorphic variants linked to trastuzumab-induced cardiotoxicity in breast cancer patients: Case series of mono-institutional experience. Biomed Pharmacother 2024; 174:116478. [PMID: 38547766 DOI: 10.1016/j.biopha.2024.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Long-term survival induced by anticancer treatments discloses emerging frailty among breast cancer (BC) survivors. Trastuzumab-induced cardiotoxicity (TIC) is reported in at least 5% of HER2+BC patients. However, TIC mechanism remains unclear and predictive genetic biomarkers are still lacking. Interaction between systemic inflammation, cytokine release and ADME genes in cancer patients might contribute to explain mechanisms underlying individual susceptibility to TIC and drug response variability. We present a single institution case series to investigate the potential role of genetic variants in ADME genes in HER2+BC patients TIC experienced. METHODS We selected data related to 40 HER2+ BC patients undergone to DMET genotyping of ADME constitutive variant profiling, with the aim to prospectively explore their potential role in developing TIC. Only 3 patients ("case series"), who experienced TIC, were compared to 37 "control group" matched patients cardiotoxicity-sparing. All patients underwent to left ventricular ejection fraction (LVEF) evaluation at diagnosis and during anti-HER2 therapy. Each single probe was clustered to detect SNPs related to cardiotoxicity. RESULTS In this retrospective analysis, our 3 cases were homogeneous in terms of clinical-pathological characteristics, trastuzumab-based treatment and LVEF decline. We identified 9 polymorphic variants in 8 ADME genes (UGT1A1, UGT1A6, UGT1A7, UGT2B15, SLC22A1, CYP3A5, ABCC4, CYP2D6) potentially associated with TIC. CONCLUSION Real-world TIC incidence is higher compared to randomized clinical trials and biomarkers with potential predictive value aren't available. Our preliminary data, as proof of concept, could suggest a predictive role of pharmacogenomic approach in the identification of cardiotoxicity risk biomarkers for anti-HER2 treatment.
Collapse
Affiliation(s)
- Nicoletta Staropoli
- Medical Oncology Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy; Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Maria Renne
- Surgery Unit, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Domenico Ciliberto
- Medical Oncology Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy
| | - Ludovica Tedesco
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Antonella Crispino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Maria Cucè
- Medical Oncology Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy
| | - Stefania Esposito
- Pharmacy Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Campus Salvatore Venuta, Catanzaro, Italy
| | - Giuseppe Agapito
- Department of Law, Economics and Sociology, Magna Graecia University of Catanzaro, Catanzaro 88100, Italy; Data Analytics Research Center, Magna Graecia University of Catanzaro, Catanzaro 88100, Italy
| | - Mario Cannataro
- Department of Medical and Surgical Science, Magna Graecia University of Catanzaro, Catanzaro 88100, Italy
| | - Pierfrancesco Tassone
- Medical Oncology Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy; Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Medical Oncology Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy; Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Catanzaro 88100, Italy.
| |
Collapse
|
3
|
Godinho R, Noto A, Fenwick C, Stravodimou A, Hugelshofer S, Peters S, Hullin R, Obeid M. Cytokine storm complicated by cardiogenic shock induced by anti-HER2 therapies. J Immunother Cancer 2023; 11:e006942. [PMID: 37380369 PMCID: PMC10410976 DOI: 10.1136/jitc-2023-006942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 06/30/2023] Open
Abstract
Cytokine storm induced by anti-human epidermal growth factor receptor-2 (HER2) therapies has not been reported. We report a patient with breast cancer treated with trastuzumab/pertuzumab who developed severe biventricular dysfunction and cardiogenic shock (CS) 6 months after starting double anti-HER2 therapy. The CS was accompanied by severe systemic inflammation, and cardiac MRI (cMRI) showed structural changes typical of myocardial inflammation. The immuno-inflammatory profile showed significantly increased levels of activation of the complement system, proinflammatory cytokines (IL-1β, IL-6, IL-18, IL-17A, TNF-alpha) with increased activity of classical monocytic, T helper 17 cells (Th17), CD4 T and effector memory CD8 T subsets, whereas NK cell activation was not observed. The data suggest an important role for monocytes as initiators of this FcγR-dependent antibody-dependent cytotoxicity, leading to the overactivation of an adaptive T cell response, in which Th17 cells may act in synergy with T helper 1 cells (Th1) to drive the severe cytokine release syndrome. After discontinuation of trastuzumab/pertuzumab, hypercytokinemia and complement activity normalized along with clinical recovery. Cardiac function returned to baseline within 2 months of initial presentation, together with a resolution of the myocardial inflammation on MRI.
Collapse
Affiliation(s)
- Rita Godinho
- Department of Heart-Vessels, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Alessandra Noto
- Department of Medicine, Immunology and allergy division, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Craig Fenwick
- Department of Medicine, Immunology and allergy division, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Athina Stravodimou
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Sarah Hugelshofer
- Department of Heart-Vessels, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Roger Hullin
- Department of Heart-Vessels, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Michel Obeid
- Department of Medicine, Immunology and allergy division, Lausanne University Hospital CHUV, Lausanne, Switzerland
| |
Collapse
|
4
|
Taurelli Salimbeni B, Ferraro E, Boscolo Bielo L, Curigliano G. Innovative Therapeutic Approaches for Patients with HER2-Positive Breast Cancer. Cancer Treat Res 2023; 188:237-281. [PMID: 38175349 DOI: 10.1007/978-3-031-33602-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Overexpression of human epidermal growth factor receptor 2 (HER2), a transmembrane tyrosine kinase receptor, has been described in about 15-20% of breast cancer (BC) and is associated with poor outcomes. Trastuzumab is the first anti-HER2 monoclonal antibody (mAB) that blocks receptor activity but it also activates immune response against cancer cells, thus, revolutionizing the prognosis of patients with HER2-positive BC. Over the years, new therapies have been developed, including other mAbs and tyrosine kinase inhibitors (TKIs) that required multimodal approaches with chemotherapy to optimize their anticancer activity. This chapter gives a comprehensive overview of the last advancements including new approaches and future combinations, which seem to be very promising in overcoming resistance to the traditional anti-HER2 treatments. A modern therapeutic algorithm should include treatment options based on tumour patterns and a patient-centred approach. A proper patient's selection is crucial to derive maximal benefits from a treatment strategy and emerging biomarkers should be integrated along with the HER2 status, which is currently the only validated biomarker in the context of HER2-positive disease. These biomarkers might include molecular features with reported prognostic/predictive significance, such as phosphatidylinositol 3' -kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathways, programmed cell death protein ligand 1 (PD-L1), and tumour-infiltrating lymphocytes (TILs), which all affect prognosis and response to treatments.
Collapse
Affiliation(s)
- Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via G. Ripamonti 435, 20141, Milan, Italy
- Department of Clinical and Molecular Medicine, Oncology Unit, "La Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Emanuela Ferraro
- Breast Cancer Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via G. Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via G. Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
5
|
Fridman WH, Sibéril S, Pupier G, Soussan S, Sautès-Fridman C. Activation of B cells in Tertiary Lymphoid Structures in cancer: Anti-tumor or anti-self? Semin Immunol 2023; 65:101703. [PMID: 36481358 DOI: 10.1016/j.smim.2022.101703] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Whereas T cells in the tumor microenvironment have been the main focus as cancer controlling cells and targets of immunotherapies, B cells have recently gained strong attention. Being associated to Tertiary Lymphoid Structures (TLS) located at the vicinity of tumor nests, the fate of B cell depends on TLS maturity. In immature TLS they may evolve as regulatory B cells producing immunosuppressive cytokines and promote tumor growth. In mature TLS with a germinal center, B cells are selected, amplified, undergo affinity maturation and isotypic switching, resulting in plasma cell generation and production of anti-tumor antibodies. In that case, they are associated with longer patient's survival and therapeutic response to immunotherapy. Identification of tumor specific, or tumor overexpressed, antigens recognized by "in situ" produced antibodies and their discrimination from self-antigens induced by ICI treatments is a major challenge to develop novel antibody-based immunotherapies.
Collapse
Affiliation(s)
- Wolf H Fridman
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France.
| | - Sophie Sibéril
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
| | - Guilhem Pupier
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Sarah Soussan
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
| | - Catherine Sautès-Fridman
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| |
Collapse
|
6
|
Mandó P, Rivero SG, Rizzo MM, Pinkasz M, Levy EM. Targeting ADCC: A different approach to HER2 breast cancer in the immunotherapy era. Breast 2021; 60:15-25. [PMID: 34454323 PMCID: PMC8399304 DOI: 10.1016/j.breast.2021.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
The clinical outcome of patients with human epidermal growth factor receptor 2 (HER2) amplified breast carcinoma (BC) has improved with the development of anti-HER2 targeted therapies. However, patients can experience disease recurrence after curative intent and disease progression in the metastatic setting. In the current era of evolving immunotherapy agents, the understanding of the immune response against HER2 tumor cells developed by anti-HER2 antibodies (Abs) is rapidly evolving. Trastuzumab therapy promotes Natural Killer (NK) cell activation in patients with BC overexpressing HER2, indicating that the efficacy of short-term trastuzumab monotherapy, albeit direct inhibition of HER, could also be related with antibody-dependent cell-mediated cytotoxicity (ADCC). Currently, dual HER2 blockade using trastuzumab and pertuzumab is the standard of care in early and advanced disease as this combination could confer an additive effect in ADCC. In patients with disease relapse or progression, ADCC may be hampered by several factors such as FcγRIIIa polymorphism and an immunosuppressive environment, among others. Hence, new drug development strategies are being investigated aiming to boost the ADCC response triggered by anti-HER2 therapy. In this review, we summarize these strategies and the rationale, through mAbs engineering and combinatorial strategies, focusing on clinical results and ongoing trials.
Collapse
Affiliation(s)
- Pablo Mandó
- Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina; Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Sergio G Rivero
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
| | - Manglio M Rizzo
- Cancer Immunobiology, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Argentina; Department of Medical Oncology, Hospital Universitario Austral, Derqui-Pilar, Argentina
| | - Marina Pinkasz
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| | - Estrella M Levy
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
7
|
Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zucman-Rossi J, Zitvogel L, Kroemer G. Trial Watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2021; 1:28-37. [PMID: 22720209 DOI: 10.4161/onci.1.1.17938] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Since the advent of hybridoma technology, dating back to 1975, monoclonal antibodies have become an irreplaceable diagnostic and therapeutic tool for a wide array of human diseases. During the last 15 years, several monoclonal antibodies (mAbs) have been approved by FDA for cancer therapy. These mAbs are designed to (1) activate the immune system against tumor cells, (2) inhibit cancer cell-intrinsic signaling pathways, (3) bring toxins in the close proximity of cancer cells, or (4) interfere with the tumor-stroma interaction. More recently, major efforts have been made for the development of immunostimulatory mAbs that either enhance cancer-directed immune responses or limit tumor- (or therapy-) driven immunosuppression. Some of these antibodies, which are thought to facilitate tumor eradication by initiating or sustaining a tumor-specific immune response, have already entered clinical trials. In this Trial Watch, we will review and discuss the clinical progress of the most important mAbs that are have entered clinical trials after January 2008.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM, U848; Villejuif, France ; Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Deligne C, Milcent B, Josseaume N, Teillaud JL, Sibéril S. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus? Front Immunol 2017; 8:950. [PMID: 28855903 PMCID: PMC5557783 DOI: 10.3389/fimmu.2017.00950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Clinical responses to anti-tumor monoclonal antibody (mAb) treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens.
Collapse
Affiliation(s)
- Claire Deligne
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Benoît Milcent
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Nathalie Josseaume
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Jean-Luc Teillaud
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| | - Sophie Sibéril
- Cordeliers Research Center, INSERM UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, Paris, France.,Sorbonne Universities, Université Pierre et Marie Curie, UMR-S 1138, Paris, France.,Université Paris Descartes, UMR-S 1138, Paris, France
| |
Collapse
|
9
|
Yang X, Zhang Y, Wang F, Wang L(J, Richardson D, Shameem M, Ambrogelly A. Analysis and purification of IgG4 bispecific antibodies by a mixed-mode chromatography. Anal Biochem 2015; 484:173-9. [DOI: 10.1016/j.ab.2015.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/22/2015] [Accepted: 06/08/2015] [Indexed: 12/24/2022]
|
10
|
Baronzio G, Parmar G, Baronzio M. Overview of Methods for Overcoming Hindrance to Drug Delivery to Tumors, with Special Attention to Tumor Interstitial Fluid. Front Oncol 2015; 5:165. [PMID: 26258072 PMCID: PMC4512202 DOI: 10.3389/fonc.2015.00165] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/06/2015] [Indexed: 12/24/2022] Open
Abstract
Every drug used to treat cancer (chemotherapeutics, immunological, monoclonal antibodies, nanoparticles, radionuclides) must reach the targeted cells through the tumor environment at adequate concentrations, in order to exert their cell-killing effects. For any of these agents to reach the goal cells, they must overcome a number of impediments created by the tumor microenvironment (TME), beginning with tumor interstitial fluid pressure (TIFP), and a multifactorial increase in composition of the extracellular matrix (ECM). A primary modifier of TME is hypoxia, which increases the production of growth factors, such as vascular endothelial growth factor and platelet-derived growth factor. These growth factors released by both tumor cells and bone marrow recruited myeloid cells form abnormal vasculature characterized by vessels that are tortuous and more permeable. Increased leakiness combined with increased inflammatory byproducts accumulates fluid within the tumor mass (tumor interstitial fluid), ultimately creating an increased pressure (TIFP). Fibroblasts are also up-regulated by the TME, and deposit fibers that further augment the density of the ECM, thus, further worsening the TIFP. Increased TIFP with the ECM are the major obstacles to adequate drug delivery. By decreasing TIFP and ECM density, we can expect an associated rise in drug concentration within the tumor itself. In this overview, we will describe all the methods (drugs, nutraceuticals, and physical methods of treatment) able to lower TIFP and to modify ECM used for increasing drug concentration within the tumor tissue.
Collapse
Affiliation(s)
| | - Gurdev Parmar
- Integrated Health Clinic , Fort Langley, BC , Canada
| | - Miriam Baronzio
- Integrative Oncology Section, Medical Center Kines , Milan , Italy
| |
Collapse
|
11
|
Patel SP, Osada T, Lyerly HK, Morse MA. Designing effective vaccines for colorectal cancer. Immunotherapy 2015; 6:913-26. [PMID: 25313570 DOI: 10.2217/imt.14.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Achieving long-term control of colorectal cancers with therapeutic vaccines that generate potent anti-tumor T cell and antibody responses has been a goal for more than two decades. To date, clinical trials of these vaccines have demonstrated induction of immune responses, but clinical benefit has been limited. Improved vector delivery systems with enhanced immunostimulatory properties, decreased immunogenicity against vector and improved antigen presentation are some of the key features of modern tumor vaccines. Furthermore, an improved understanding of the various immunosuppressive factors in the tumor microenvironment and regional lymph nodes, coupled with a burgeoning ability to impair inhibitory immune synapses, highlights a growing opportunity to induce beneficial antigen-specific responses against tumor. The combination of improved antigenic delivery systems, coupled with therapeutic immune activation, represents state-of-the-art colorectal vaccine design concepts with the goal of augmenting immune responses against tumor and improving clinical outcomes.
Collapse
Affiliation(s)
- Sandip P Patel
- UCSD Moores Cancer Center, Division of Medical Oncology, Cancer Immunotherapy Program, 3855 Health Sciences Drive #0987, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
12
|
Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 2:e22789. [PMID: 23482847 PMCID: PMC3583934 DOI: 10.4161/onci.22789] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the past 20 years, dozens-if not hundreds-of monoclonal antibodies have been developed and characterized for their capacity to mediate antineoplastic effects, either as they activate/enhance tumor-specific immune responses, either as they interrupt cancer cell-intrinsic signal transduction cascades, either as they specifically delivery toxins to malignant cells or as they block the tumor-stroma interaction. Such an intense research effort has lead to the approval by FDA of no less than 14 distinct molecules for use in humans affected by hematological or solid malignancies. In the inaugural issue of OncoImmunology, we briefly described the scientific rationale behind the use of monoclonal antibodies in cancer therapy and discussed recent, ongoing clinical studies investigating the safety and efficacy of this approach in patients. Here, we summarize the latest developments in this exciting area of clinical research, focusing on high impact studies that have been published during the last 15 months and clinical trials launched in the same period to investigate the therapeutic profile of promising, yet hitherto investigational, monoclonal antibodies.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM; U848; Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Anti-CD20 therapy induces a memory Th1 response through the IFN-γ/IL-12 axis and prevents protumor regulatory T-cell expansion in mice. Leukemia 2014; 29:947-57. [DOI: 10.1038/leu.2014.275] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/01/2014] [Accepted: 09/09/2014] [Indexed: 12/22/2022]
|
14
|
Fridman WH, Remark R, Goc J, Giraldo NA, Becht E, Hammond SA, Damotte D, Dieu-Nosjean MC, Sautès-Fridman C. The immune microenvironment: a major player in human cancers. Int Arch Allergy Immunol 2014; 164:13-26. [PMID: 24852691 DOI: 10.1159/000362332] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer is a major public health issue and figures among the leading causes of death in the world. Cancer development is a long process, involving the mutation, amplification or deletion of genes and chromosomal rearrangements. The transformed cells change morphologically, enlarge, become invasive and finally detach from the primary tumor to metastasize in other organs through the blood and/or lymph. During this process, the tumor cells interact with their microenvironment, which is complex and composed of stromal and immune cells that penetrate the tumor site via blood vessels and lymphoid capillaries. All subsets of immune cells can be found in tumors, but their respective density, functionality and organization vary from one type of tumor to another. Whereas inflammatory cells play a protumoral role, there is a large body of evidence of effector memory T cells controlling tumor invasion and metastasis. Thus, high densities of memory Th1/CD8 cytotoxic T cells in the primary tumors correlate with good prognosis in most tumor types. Tertiary lymphoid structures, which contain mature dendritic cells (DC) in a T cell zone, proliferating B cells and follicular DC, are found in the tumor stroma and they correlate with intratumoral Th1/CD8 T cell and B cell infiltration. Eventually, tumors undergo genetic and epigenetic modifications that allow them to escape being controlled by the immune system. This comprehensive review describes the immune contexture of human primary and metastatic tumors, how it impacts on patient outcomes and how it could be used as a predictive biomarker and guide immunotherapies.
Collapse
Affiliation(s)
- W H Fridman
- Cancer, Immune Control and Escape, UMRS1138, Cordeliers Research Center, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gilabert-Oriol R, Thakur M, von Mallinckrodt B, Hug T, Wiesner B, Eichhorst J, Melzig MF, Fuchs H, Weng A. Modified Trastuzumab and Cetuximab Mediate Efficient Toxin Delivery While Retaining Antibody-Dependent Cell-Mediated Cytotoxicity in Target Cells. Mol Pharm 2013; 10:4347-57. [DOI: 10.1021/mp400444q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roger Gilabert-Oriol
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| | - Mayank Thakur
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| | - Benedicta von Mallinckrodt
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| | - Thomas Hug
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| | - Burkhard Wiesner
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jenny Eichhorst
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Matthias F. Melzig
- Institut
für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße
2+4, D-14195 Berlin, Germany
| | - Hendrik Fuchs
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| | - Alexander Weng
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| |
Collapse
|
16
|
Szmigielski S. Reaction of the immune system to low-level RF/MW exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 454-455:393-400. [PMID: 23562692 DOI: 10.1016/j.scitotenv.2013.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Radiofrequency (RF) and microwave (MW) radiation have been used in the modern world for many years. The rapidly increasing use of cellular phones in recent years has seen increased interest in relation to the possible health effects of exposure to RF/MW radiation. In 2011 a group of international experts organized by the IARC (International Agency for Research on Cancer in Lyon) concluded that RF/MW radiations should be listed as a possible carcinogen (group 2B) for humans. The incomplete knowledge of RF/MW-related cancer risks has initiated searches for biological indicators sensitive enough to measure the "weak biological influence" of RF/MWs. One of the main candidates is the immune system, which is able to react in a measurable way to discrete environmental stimuli. In this review, the impacts of weak RF/MW fields, including cell phone radiation, on various immune functions, both in vitro and in vivo, are discussed. The bulk of available evidence clearly indicates that various shifts in the number and/or activity of immunocompetent cells are possible, however the results are inconsistent. For example, a number of lymphocyte functions have been found to be enhanced and weakened within single experiments based on exposure to similar intensities of MW radiation. Certain premises exist which indicate that, in general, short-term exposure to weak MW radiation may temporarily stimulate certain humoral or cellular immune functions, while prolonged irradiation inhibits the same functions.
Collapse
|
17
|
Yu QM, Yu CD, Ling ZQ. Elevated circulating CD19+ lymphocytes predict survival advantage in patients with gastric cancer. Asian Pac J Cancer Prev 2013; 13:2219-24. [PMID: 22901197 DOI: 10.7314/apjcp.2012.13.5.2219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circulating lymphocyte subsets reflect the immunological status and might therefore be a prognostic indicator in cancer patients. Our aim was to evaluate the clinical significance of circulating lymphocyte subset in gastric cancer (GC) cases. METHODS A retrospective study on a prevalent cohort of 846 GC patients hospitalized at Hospital from Aug 2006 to Jul 2010 was conducted. We calculated the patient's disease free survival (DFS) after first hospital admission, and hazard ratios (HR) from the Cox proportional hazards model. RESULTS Our findings indicated a significantly decreased percentage of CD3+, and CD8+ cells, a significantly increased proportion of CD4+, CD19+, CD44+, CD25+, NK cells, and an increased CD4+/CD8+ ratio in GC patients as compared with healthy controls (all P<0.05). Alteration of lymphocyte subsets was positively correlated with sex, age, smoking, tumor stage and distant metastasis of GC patients (all P<0.05). Follow-up analysis indicated significantly higher DFS for patients with high circulating CD19+ lymphocytes compared to those with low CD19+ lymphocytes (P=0.037), with CD19+ showing an important cutoff of 7.91± 2.98%. CONCLUSION Circulating lymphocyte subsets in GC patients are significantly changed, and elevated CD19+ cells may predict a favorable survival.
Collapse
Affiliation(s)
- Qi-Ming Yu
- Zhejiang Cancer Research Institute, Hangzhou, China
| | | | | |
Collapse
|
18
|
Szmigielski S. Cancer risks related to low-level RF/MW exposures, including cell phones. Electromagn Biol Med 2013; 32:273-80. [DOI: 10.3109/15368378.2012.701192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
High level prokaryotic expression of anti-Müllerian inhibiting substance type II receptor diabody, a new recombinant antibody for in vivo ovarian cancer imaging. J Immunol Methods 2013; 387:11-20. [DOI: 10.1016/j.jim.2012.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 12/30/2022]
|
20
|
IL-2- or IL-15-activated NK cells enhance Cetuximab-mediated activity against triple-negative breast cancer in xenografts and in breast cancer patients. Breast Cancer Res Treat 2012; 136:659-71. [DOI: 10.1007/s10549-012-2287-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/03/2012] [Indexed: 01/10/2023]
|
21
|
Konjevic G, Jurisic V, Jovic V, Vuletic A, Mirjacic Martinovic K, Radenkovic S, Spuzic I. Investigation of NK cell function and their modulation in different malignancies. Immunol Res 2012; 52:139-56. [PMID: 22442005 DOI: 10.1007/s12026-012-8285-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NK cells have become a subject of investigation not only in the field of tumor immunology and infectious diseases, but also within all aspects of immunology, such as transplantation, autoimmunity, and hypersensitivity. Our early studies aside from investigating NK cell activity in experimental animals and humans included studies of perforin expression and modulation in this lymphocyte subset. As NK cell activity is modified by their environment, we showed clinical stage-dependent impairment of their activity and in vitro effect of different sera, Th1 cytokines, and their combination in breast cancer, Hodgkin's disease, and non-Hodgkin's lymphoma patients, especially with respect to metabolic and cell membrane changes of peripheral blood lymphocytes evaluated by spontaneous release of the enzyme lactate dehydrogenase (LDH) that led to the correction of the LDH enzyme release assay for natural cytotoxicity. By long-term immuno-monitoring of patients with malignancies, we also showed the kinetics of NK cell modulation during chemo-immunotherapy. In our more recent studies, we give data of NK function and novel families of NK cell receptor expression in healthy individuals that may be of help in NK cell profiling, by giving referent values of basic and cytokine-induced expression of some NK cell receptors either in evaluation of disease or in immuno-monitoring during cytokine therapy of patients with malignancies. Moreover, we give novel aspects of modulation of NK cell activity by cytokines approved for immunotherapy, IFN and IL-2, in melanoma and other malignancies with respect to alterations in new activating (NKG2D and CD161) and inhibitory (CD158a and CD158b) receptor characteristics and signaling molecules in CD16- and CD56-defined NK cells and their small immunoregulatory and large cytotoxic subsets in peripheral blood and lymph nodes, as NK cell-mediated killing of tumor cells depends on the balance between stimulatory and inhibitory signaling.
Collapse
Affiliation(s)
- Gordana Konjevic
- Laboratory for Experimental Immunology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Jakobsche CE, McEnaney PJ, Zhang AX, Spiegel DA. Reprogramming urokinase into an antibody-recruiting anticancer agent. ACS Chem Biol 2012; 7:316-21. [PMID: 22098560 DOI: 10.1021/cb200374e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic compounds for controlling or creating human immunity have the potential to revolutionize disease treatment. Motivated by challenges in this arena, we report herein a strategy to target metastatic cancer cells for immune-mediated destruction by targeting the urokinase-type plasminogen activator receptor (uPAR). Urokinase-type plasminogen activator (uPA) and uPAR are overexpressed on the surfaces of a wide range of invasive cancer cells and are believed to contribute substantially to the migratory propensities of these cells. The key component of our approach is an antibody-recruiting molecule that targets the urokinase receptor (ARM-U). This bifunctional construct is formed by selectively, covalently attaching an antibody-binding small molecule to the active site of the urokinase enzyme. We demonstrate that ARM-U is capable of directing antibodies to the surfaces of target cancer cells and mediating both antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC) against multiple human cancer cell lines. We believe that the reported strategy has the potential to inform novel treatment options for a variety of deadly, invasive cancers.
Collapse
Affiliation(s)
- Charles E. Jakobsche
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| | - Patrick J. McEnaney
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| | - Andrew X. Zhang
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| | - David A. Spiegel
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| |
Collapse
|
23
|
Fridman WH, Teillaud JL, Sautès-Fridman C, Pagès F, Galon J, Zucman-Rossi J, Tartour E, Zitvogel L, Kroemer G. The ultimate goal of curative anti-cancer therapies: inducing an adaptive anti-tumor immune response. Front Immunol 2011; 2:66. [PMID: 22566855 PMCID: PMC3341952 DOI: 10.3389/fimmu.2011.00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/09/2011] [Indexed: 12/16/2022] Open
Affiliation(s)
- Wolf H. Fridman
- INSERM U872, Centre de Recherche des CordeliersParis, France
- Université Paris-DescartesParis, France
- Hôpital Européen Georges Pompidou, Assistance Publique Hopitaux de ParisParis, France
| | - Jean-Luc Teillaud
- INSERM U872, Centre de Recherche des CordeliersParis, France
- Université Paris-DescartesParis, France
| | - Catherine Sautès-Fridman
- INSERM U872, Centre de Recherche des CordeliersParis, France
- Université Paris-DescartesParis, France
| | - Franck Pagès
- INSERM U872, Centre de Recherche des CordeliersParis, France
- Université Paris-DescartesParis, France
| | - Jérôme Galon
- INSERM U872, Centre de Recherche des CordeliersParis, France
- Université Paris-DescartesParis, France
- Hôpital Européen Georges Pompidou, Assistance Publique Hopitaux de ParisParis, France
| | - Jessica Zucman-Rossi
- Université Paris-DescartesParis, France
- Hôpital Européen Georges Pompidou, Assistance Publique Hopitaux de ParisParis, France
- INSERM U674Paris, France
| | - Eric Tartour
- Université Paris-DescartesParis, France
- Hôpital Européen Georges Pompidou, Assistance Publique Hopitaux de ParisParis, France
- INSERM U674Paris, France
- INSERM U970, Paris-Cardiovascular Research CenteParis, France
| | - Laurence Zitvogel
- Institut Gustave RoussyVillejuif, France
- CBT 507, Centre of Clinical InvestigationsVillejuif, France
- Université Paris SudVillejuif, France
| | - Guido Kroemer
- INSERM U872, Centre de Recherche des CordeliersParis, France
- Université Paris-DescartesParis, France
- Hôpital Européen Georges Pompidou, Assistance Publique Hopitaux de ParisParis, France
- INSERM U105Villejuif, France
- INSERM U848Villejuif, France
- Metabolomics Platform, Institut Gustave RoussyVillejuif, France
| |
Collapse
|