1
|
Zhao Z, Jing Y, Xu Z, Zhao H, He X, Lu T, Bai J, Qin W, Yang L. The mechanism of histone modifications in regulating enzalutamide sensitivity in advanced prostate cancer. Int J Biol Sci 2025; 21:2880-2890. [PMID: 40303302 PMCID: PMC12035886 DOI: 10.7150/ijbs.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/23/2025] [Indexed: 05/02/2025] Open
Abstract
Prostate cancer (PCa) is the second most common malignant tumor in men worldwide, particularly castration-resistant prostate cancer (CRPC), for which enzalutamide (Enz) resistance is of particular concern. Modifications to histone methylation and acetylation patterns are closely associated with resistance to Enz in these patients. As PCa progresses, cancer cells alter their histone modification patterns, leading to a reduction in Enz treatment efficacy. Signaling pathways in the tumor microenvironment regulate gene expression by affecting the activity of histone-modifying enzymes, further affecting the efficacy of Enz. This review summarizes recent research about changes in histone modification patterns that occur in drug resistance-related genes at different stages of PCa and explores the potential use of combination therapies for reversing this process, providing insights into novel treatment strategies to improve the clinical efficacy of Enz.
Collapse
Affiliation(s)
- Zhite Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuming Jing
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhicheng Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongfan Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xinglin He
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 710000, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianhui Bai
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Urology, Joint Logistics Support Force, Hospital 987, Baoji, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lijun Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
2
|
Vis DJ, Palit SAL, Corradi M, Cuppen E, Mehra N, Lolkema MP, Wessels LFA, van der Heijden MS, Zwart W, Bergman AM. Whole genome sequencing of 378 prostate cancer metastases reveals tissue selectivity for mismatch deficiency with potential therapeutic implications. Genome Med 2025; 17:24. [PMID: 40114169 PMCID: PMC11927350 DOI: 10.1186/s13073-025-01445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Survival of patients with metastatic castration-resistant prostate cancer (mCRPC) depends on the site of metastatic dissemination. METHODS Patients with mCRPC were prospectively included in the CPCT-02 metastatic site biopsy study. We evaluated whole genome sequencing (WGS) of 378 mCRPC metastases to understand the genetic traits that affect metastatic site distribution. RESULTS Our findings revealed that RB1, PIK3CA, JAK1, RNF43, and TP53 mutations are the most frequent genetic determinants associated with site selectivity for metastatic outgrowth. Furthermore, we explored mutations in the non-coding genome and found that androgen receptor (AR) chromatin binding sites implicated in metastatic prostate cancer differ in mutation frequencies between metastatic sites, converging on pathways that impact DNA repair. Notably, liver and visceral metastases have a higher tumor mutational load (TML) than bone and lymph node metastases, independent of genetic traits associated with neuroendocrine differentiation. We found that TML is strongly associated with DNA mismatch repair (MMR)-deficiency features in these organs. CONCLUSIONS Our results revealed gene mutations that are significantly associated with metastatic site selectivity and that frequencies of non-coding mutations at AR chromatin binding sites differ between metastatic sites. Immunotherapeutics are thus far unsuccessful in unselected mCRPC patients. We found a higher TML in liver and visceral metastases compared to bone and lymph node metastases. As immunotherapeutics response is associated with mutational burden, these findings may assist in selecting mCRPC patients for immunotherapy treatment based on organs affected by metastatic disease. TRIAL REGISTRATION NUMBER NCT01855477.
Collapse
Affiliation(s)
- Daniel J Vis
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Computational Cancer Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sander A L Palit
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marie Corradi
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Computational Cancer Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Michiel S van der Heijden
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Wilbert Zwart
- Oncode Institute, Utrecht, The Netherlands.
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Andries M Bergman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Esentürk E, Sahli A, Haberland V, Ziuboniewicz A, Wirth C, Bova GS, Bristow RG, Brook MN, Brors B, Butler A, Cancel-Tassin G, Cheng KC, Cooper CS, Corcoran NM, Cussenot O, Eeles RA, Favero F, Gerhauser C, Gihawi A, Girma EG, Gnanapragasam VJ, Gruber AJ, Hamid A, Hayes VM, He HH, Hovens CM, Imada EL, Jakobsdottir GM, Jung CH, Khani F, Kote-Jarai Z, Lamy P, Leeman G, Loda M, Lutsik P, Marchionni L, Molania R, Papenfuss AT, Pellegrina D, Pope B, Queiroz LR, Rausch T, Reimand J, Robinson B, Schlomm T, Sørensen KD, Uhrig S, Weischenfeldt J, Xu Y, Yamaguchi TN, Zanettini C, Lynch AG, Wedge DC, Brewer DS, Woodcock DJ. Causes of evolutionary divergence in prostate cancer. ARXIV 2025:arXiv:2503.13189v1. [PMID: 40166741 PMCID: PMC11957227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cancer progression involves the sequential accumulation of genetic alterations that cumulatively shape the tumour phenotype. In prostate cancer, tumours can follow divergent evolutionary trajectories that lead to distinct subtypes, but the causes of this divergence remain unclear. While causal inference could elucidate the factors involved, conventional methods are unsuitable due to the possibility of unobserved confounders and ambiguity in the direction of causality. Here, we propose a method that circumvents these issues and apply it to genomic data from 829 prostate cancer patients. We identify several genetic alterations that drive divergence as well as others that prevent this transition, locking tumours into one trajectory. Further analysis reveals that these genetic alterations may cause each other, implying a positive-feedback loop that accelerates divergence. Our findings provide insights into how cancer subtypes emerge and offer a foundation for genomic surveillance strategies aimed at monitoring the progression of prostate cancer.
Collapse
Affiliation(s)
- Emre Esentürk
- Nuffield Department of Medicine, University of Oxford, UK
| | - Atef Sahli
- Manchester Cancer Research Centre, The University of Manchester, UK
| | | | | | | | - G Steven Bova
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Robert G Bristow
- Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, The University of Manchester, UK
- Christie NHS Foundation Trust, UK
- Div Cancer Sciences, Faculty of Biology, Medicine & Health, University of Manchester, UK
| | | | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, and National Center for Tumor Diseases (NCT), Germany
- Medical Faculty Heidelberg and Faculty of Biosciences, Heidelberg University, Germany
| | | | - Géraldine Cancel-Tassin
- CeRePP (Centre de Recherche sur les Pathologies Prostatiques et Urologiques), France
- Sorbonne Université, GRC n°5 Predictive Onco-Urology, APHP, Tenon Hospital, France
| | - Kevin Cl Cheng
- Computational Biology Program, Ontario Institute for Cancer Research, Canada
- Department of Medical Biophysics, University of Toronto, Canada
| | | | - Niall M Corcoran
- Department of Urology, Royal Melbourne Hospital, Australia
- Department of Surgery, The University of Melbourne, Australia
- Department of Urology, Western Health, Australia
| | - Olivier Cussenot
- CeRePP (Centre de Recherche sur les Pathologies Prostatiques et Urologiques), France
| | - Ros A Eeles
- The Institute of Cancer Research, UK
- The Royal Marsden NHS Foundation Trust, London & Sutton
| | - Francesco Favero
- Biotech Research & Innovation Centre (BRIC) - University of Copenhagen, Denmark
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Clarissa Gerhauser
- Division Cancer Epigenomics, German Cancer Research Center (DKFZ), Germany
| | | | - Etsehiwot G Girma
- Biotech Research & Innovation Centre (BRIC) - University of Copenhagen, Denmark
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Vincent J Gnanapragasam
- Department of Surgery, Urology, University of Cambridge & Cambridge University Hospitals NHS Trust, Cambridge Urology Translational Research and Clinical Trials (Office), Cambridge Biomedical Campus, Addenbrooke's Hospital Site, S Wards Building, UK
| | | | - Anis Hamid
- Department of Surgery, The University of Melbourne, Australia
| | - Vanessa M Hayes
- School of Medical Sciences, University of Sydney, Faculty of Medicine & Health, Australia
- School of Health Systems & Public Health, University of Pretoria, South Africa
- Manchester Cancer Research Centre, University of Manchester, UK
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network; Department of Medical Biophysics, University of Toronto, Canada
| | - Christopher M Hovens
- Department of Surgery, The Collaborative Centre for Genomic Cancer Medicine, The University of Melbourne, Australia
| | - Eddie Luidy Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - G Maria Jakobsdottir
- Division of Cancer Sciences, The University of Manchester, UK
- Christie Hospital, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Australia
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, UK
- The Royal Marsden NHS Foundation Trust, London & Sutton
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
- Nuffield Department of Surgical Sciences, University of Oxford, UK
| | - Pavlo Lutsik
- Division Cancer Epigenomics, German Cancer Research Center (DKFZ), Germany
- Department of Oncology, KU Leuven, Belgium
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - Ramyar Molania
- Walter and Eliza Hall Institute of Medical Research, Australia
- Department of Medical Biology, The University of Melbourne, Australia
| | - Anthony T Papenfuss
- Walter and Eliza Hall Institute of Medical Research, Australia
- Department of Medical Biology, The University of Melbourne, Australia
| | - Diogo Pellegrina
- Computational Biology Program, Ontario Institute for Cancer Research, Canada
| | - Bernard Pope
- Melbourne Bioinformatics, The University of Melbourne, Australia
- Australian BioCommons, The University of Melbourne, Australia
- Department of Surgery, The University of Melbourne, Australia
| | - Lucio R Queiroz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - Tobias Rausch
- Genome Biology, European Molecular Biology Laboratory (EMBL), Germany
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Canada
- Department of Molecular Genetics, University of Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Canada
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Germany
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Sebastian Uhrig
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Germany
| | - Joachim Weischenfeldt
- Biotech Research & Innovation Centre (BRIC) - University of Copenhagen, Denmark
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Denmark
- Department of Urology, Charité - Universitätsmedizin Berlin, Germany
| | | | - Takafumi N Yamaguchi
- Jonsson Comprehensive Cancer Center, University of California - Los Angeles, USA
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, USA
| | - Andy G Lynch
- School of Medicine, School of Mathematics & Statistics, University of St Andrews, UK
| | - David C Wedge
- Manchester Cancer Research Centre, The University of Manchester, UK
| | - Daniel S Brewer
- Metabolic Health research centre, Norwich Medical School, University of East Anglia, UK
- The Earlham Institute, UK
| | - Dan J Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, UK
| |
Collapse
|
4
|
Antunes ME, Araújo TG, Till TM, Pantaleão E, Mancera PFA, de Oliveira MH. Machine learning models for predicting prostate cancer recurrence and identifying potential molecular biomarkers. Front Oncol 2025; 15:1535091. [PMID: 40034593 PMCID: PMC11873604 DOI: 10.3389/fonc.2025.1535091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Prostate cancer (PCa) recurrence affects between 20% and 40% of patients, being a significant challenge for predicting clinical outcomes and increasing survival rates. Although serum PSA levels, Gleason score, and tumor staging are sensitive for detecting recurrence, they present low specificity. This study compared the performance of three supervised machine learning models, Naive Bayes (NB), Support Vector Machine (SVM), and Artificial Neural Network (ANN) for classifying PCa recurrence events using a dataset of 489 patients from The Cancer Genome Atlas (TCGA). Besides comparing the models performance, we searched for analyzing whether the incorporation of specific genes expression in the predictor set would enhance the prediction of PCa recurrence, then suggesting these genes as potential biomarkers of patient prognosis. The models showed accuracy above 60% and sensitivity above 65% in all combinations. ANN models were more consistent in their performance across different predictor sets. Notably, SVM models showed strong results in precision and specificity, particularly considering the inclusion of genes selected by feature selection (NETO2, AR, HPN, and KLK3), without compromising sensitivity. However, the relatively high standard deviations observed in some metrics indicate variability across simulations, suggesting a gap for additional studies via different datasets. These findings suggest that genes are potential biomarkers for predicting PCa recurrence in the dataset, representing a promising approach for early prognosis even before the main treatment.
Collapse
Affiliation(s)
- Maria Eliza Antunes
- Graduate Program in Biometrics, Instituto de Biociências de Botucatu (IBB), Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
- Department of Biodiversity and Biostatistics, Instituto de Biociências de Botucatu (IBB), Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Thaise Gonçalves Araújo
- Institute of Biotechnology, Universidade Federal de Uberlândia (UFU), Patos de Minas, Minas Gerais, Brazil
| | - Tatiana Martins Till
- Laboratory of Clinical and Experimental Pathophysiology, Instituto Oswaldo Cruz (IOC), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Pantaleão
- School of Computing, Universidade Federal de Uberlândia (UFU), Patos de Minas, Minas Gerais, Brazil
| | - Paulo F. A. Mancera
- Department of Biodiversity and Biostatistics, Instituto de Biociências de Botucatu (IBB), Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Marta Helena de Oliveira
- Institute of Mathematics and Statistics, Universidade Federal de Uberlândia (UFU), Patos de Minas, Minas Gerais, Brazil
| |
Collapse
|
5
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Knudsen LA, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. Oncogene 2024; 43:3197-3213. [PMID: 39266679 PMCID: PMC11493679 DOI: 10.1038/s41388-024-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | | | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Saswati N Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Liam A Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elise G DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Xiaofeng A Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Ayesha A Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA.
| |
Collapse
|
6
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
7
|
Jia T, Liu C, Guo P, Xu Y, Wang W, Liu X, Wang S, Zhang X, Guo H. FOXA1 regulates ribosomal RNA transcription in prostate cancer. Prostate 2024; 84:967-976. [PMID: 38632701 DOI: 10.1002/pros.24714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Ribosome biogenesis is excessively activated in tumor cells, yet it is little known whether oncogenic transcription factors (TFs) are involved in the ribosomal RNA (rRNA) transactivation. METHODS Nucleolar proteomics data and large-scale immunofluorescence were re-analyzed to jointly identify the proteins localized at nucleolus. RNA-Seq data of five prostate cancer (PCa) cohorts were combined and integrated with multi-dimensional data to define the upregulated nucleolar TFs in PCa tissues. Then, ChIP-Seq data of PCa cell lines and two PCa clinical cohorts were re-analyzed to reveal the TF binding patterns at ribosomal DNA (rDNA) repeats. The TF binding at rDNA was validated by ChIP-qPCR. The effect of the TF on rRNA transcription was determined by rDNA luciferase reporter, nascent RNA synthesis, and global protein translation assays. RESULTS In this study, we reveal the role of oncogenic TF FOXA1 in regulating rRNA transcription within nucleolar organization regions. By analyzing human TFs in prostate cancer clinical datasets and nucleolar proteomics data, we identified that FOXA1 is partially localized in the nucleolus and correlated with global protein translation. Our extensive FOXA1 ChIP-Seq analysis provides robust evidence of FOXA1 binding across rDNA repeats in prostate cancer cell lines, primary tumors, and castration-resistant variants. Notably, FOXA1 occupancy at rDNA repeats correlates with histone modifications associated with active transcription, namely H3K27ac and H3K4me3. Reducing FOXA1 expression results in decreased transactivation at rDNA, subsequently diminishing global protein synthesis. CONCLUSIONS Our results suggest FOXA1 regulates aberrant ribosome biogenesis downstream of oncogenic signaling in prostate cancer.
Collapse
Affiliation(s)
- Tianwei Jia
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Chenxu Liu
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Ping Guo
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Yaning Xu
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Wenzheng Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Xiaoyu Liu
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Song Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Xianglin Zhang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Haiyang Guo
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
8
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592966. [PMID: 38766099 PMCID: PMC11100730 DOI: 10.1101/2024.05.07.592966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Christopher M. McNair
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Saswati N. Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K. Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew J. Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Elise G. DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Xiaofeng A. Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Johann S. de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | - Karen E. Knudsen
- The American Cancer Society, Philadelphia, Pennsylvania, 19103, USA
| | - Ayesha A. Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| |
Collapse
|
9
|
Bright RK. Preclinical support for tumor protein D52 as a cancer vaccine antigen. Hum Vaccin Immunother 2023; 19:2273699. [PMID: 37904517 PMCID: PMC10760363 DOI: 10.1080/21645515.2023.2273699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Overexpressed tumor-associated antigens (TAAs) are a large group that includes proteins found at increased levels in tumors compared to healthy cells. Universal tumor expression can be defined as overexpression in all cancers examined as has been shown for Tumor Protein D52. TPD52 is an over expressed TAA actively involved in transformation, leading to increased proliferation and metastasis. TPD52 overexpression has been demonstrated in many human adult and pediatric malignancies. The murine orthologue of TPD52 (mD52) parallels normal tissue expression patterns and known functions of human TPD52 (hD52). Here in we present our preclinical studies over the past 15 years which have demonstrated that vaccine induced immunity against mD52 is effective against multiple cancers in murine models, without inducing autoimmunity against healthy tissues and cells.
Collapse
Affiliation(s)
- Robert K. Bright
- Department of Immunology and Molecular Microbiology, School of Medicine and Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
10
|
Baldessari C, Pipitone S, Molinaro E, Cerma K, Fanelli M, Nasso C, Oltrecolli M, Pirola M, D’Agostino E, Pugliese G, Cerri S, Vitale MG, Madeo B, Dominici M, Sabbatini R. Bone Metastases and Health in Prostate Cancer: From Pathophysiology to Clinical Implications. Cancers (Basel) 2023; 15:1518. [PMID: 36900309 PMCID: PMC10000416 DOI: 10.3390/cancers15051518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Clinically relevant bone metastases are a major cause of morbidity and mortality for prostate cancer patients. Distinct phenotypes are described: osteoblastic, the more common osteolytic and mixed. A molecular classification has been also proposed. Bone metastases start with the tropism of cancer cells to the bone through different multi-step tumor-host interactions, as described by the "metastatic cascade" model. Understanding these mechanisms, although far from being fully elucidated, could offer several potential targets for prevention and therapy. Moreover, the prognosis of patients is markedly influenced by skeletal-related events. They can be correlated not only with bone metastases, but also with "bad" bone health. There is a close correlation between osteoporosis-a skeletal disorder with decreased bone mass and qualitative alterations-and prostate cancer, in particular when treated with androgen deprivation therapy, a milestone in its treatment. Systemic treatments for prostate cancer, especially with the newest options, have improved the survival and quality of life of patients with respect to skeletal-related events; however, all patients should be evaluated for "bone health" and osteoporotic risk, both in the presence and in the absence of bone metastases. Treatment with bone-targeted therapies should be evaluated even in the absence of bone metastases, as described in special guidelines and according to a multidisciplinary evaluation.
Collapse
Affiliation(s)
- Cinzia Baldessari
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Stefania Pipitone
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Eleonora Molinaro
- Oncology, AUSL of Modena Area Sud, Sassuolo-Vignola-Pavullo, 41121 Modena, Italy
| | - Krisida Cerma
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padova, Italy
| | - Martina Fanelli
- Department of Oncology, Azienda Ospedaliero Universitaria S. M. della Misericordia, 33100 Udine, Italy
| | - Cecilia Nasso
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
- Medical Oncology, Ospedale Santa Corona, 17027 Pietra Ligure, Italy
| | - Marco Oltrecolli
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Marta Pirola
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Elisa D’Agostino
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Giuseppe Pugliese
- Department of Oncology and Hematology, Univerity of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sara Cerri
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Maria Giuseppa Vitale
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Bruno Madeo
- Unit of Endocrinology, Department of Medical Specialities, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Roberto Sabbatini
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| |
Collapse
|
11
|
Patterson JC, Varkaris A, Croucher PJP, Ridinger M, Dalrymple S, Nouri M, Xie F, Varmeh S, Jonas O, Whitman MA, Chen S, Rashed S, Makusha L, Luo J, Isaacs JT, Erlander MG, Einstein DJ, Balk SP, Yaffe MB. Plk1 Inhibitors and Abiraterone Synergistically Disrupt Mitosis and Kill Cancer Cells of Disparate Origin Independently of Androgen Receptor Signaling. Cancer Res 2023; 83:219-238. [PMID: 36413141 PMCID: PMC9852064 DOI: 10.1158/0008-5472.can-22-1533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Abiraterone is a standard treatment for metastatic castrate-resistant prostate cancer (mCRPC) that slows disease progression by abrogating androgen synthesis and antagonizing the androgen receptor (AR). Here we report that inhibitors of the mitotic regulator polo-like kinase-1 (Plk1), including the clinically active third-generation Plk1 inhibitor onvansertib, synergizes with abiraterone in vitro and in vivo to kill a subset of cancer cells from a wide variety of tumor types in an androgen-independent manner. Gene-expression analysis identified an AR-independent synergy-specific gene set signature upregulated upon abiraterone treatment that is dominated by pathways related to mitosis and the mitotic spindle. Abiraterone treatment alone caused defects in mitotic spindle orientation, failure of complete chromosome condensation, and improper cell division independently of its effects on AR signaling. These effects, although mild following abiraterone monotherapy, resulted in profound sensitization to the antimitotic effects of Plk1 inhibition, leading to spindle assembly checkpoint-dependent mitotic cancer cell death and entosis. In a murine patient-derived xenograft model of abiraterone-resistant metastatic castration-resistant prostate cancer (mCRPC), combined onvansertib and abiraterone resulted in enhanced mitotic arrest and dramatic inhibition of tumor cell growth compared with either agent alone. Overall, this work establishes a mechanistic basis for the phase II clinical trial (NCT03414034) testing combined onvansertib and abiraterone in mCRPC patients and indicates this combination may have broad utility for cancer treatment. SIGNIFICANCE Abiraterone treatment induces mitotic defects that sensitize cancer cells to Plk1 inhibition, revealing an AR-independent mechanism for this synergistic combination that is applicable to a variety of cancer types.
Collapse
Affiliation(s)
- Jesse C. Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andreas Varkaris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA,Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Susan Dalrymple
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mannan Nouri
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Fang Xie
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shohreh Varmeh
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew A. Whitman
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sen Chen
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Saleh Rashed
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lovemore Makusha
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - John T. Isaacs
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | - David J. Einstein
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Steven P. Balk
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Michael B. Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Karunasinghe N. Zinc in Prostate Health and Disease: A Mini Review. Biomedicines 2022; 10:biomedicines10123206. [PMID: 36551962 PMCID: PMC9775643 DOI: 10.3390/biomedicines10123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction-With the high global prevalence of prostate cancer and associated mortalities, it is important to enhance current clinical practices for better prostate cancer outcomes. The current review is towards understanding the value of Zn towards this mission. Method-General information on Zn in biology and multiple aspects of Zn involvement in prostate health and disease were referred to in PubMed. Results-The most influential feature of Zn towards prostate health is its ability to retain sufficient citrate levels for a healthy prostate. Zn deficiencies were recorded in serum, hair, and prostate tissue of men with prostate cancer compared to non-cancer controls. Zn gut absorption, albumin binding, and storage compete with various factors. There are multiple associations of Zn cellular influx and efflux transporters, Zn finger proteins, matrix metalloproteinases, and Zn signaling with prostate cancer outcomes. Such Zn marker variations associated with prostate cancer recorded from biological matrices may improve algorithms for prostate cancer screening, prognosis, and management when coupled with standard clinical practices. Discussion-The influence of Zn in prostatic health and disease is multidimensional, therefore more personalized Zn requirements may be beneficial. Several opportunities exist to utilize and improve understanding of Zn associations with prostate health and disease.
Collapse
Affiliation(s)
- Nishi Karunasinghe
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
13
|
Tautomycin and enzalutamide combination yields synergistic effects on castration-resistant prostate cancer. Cell Death Dis 2022; 8:471. [DOI: 10.1038/s41420-022-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
AbstractThe androgen receptor (AR) plays an essential role in prostate cancer progression and is a key target for prostate cancer treatment. However, patients with prostate cancer undergoing androgen deprivation therapy eventually experience biochemical relapse, with hormone-sensitive prostate cancer progressing into castration-resistant prostate cancer (CRPC). The widespread application of secondary antiandrogens, such as enzalutamide, indicates that targeting AR remains the most efficient method for CRPC treatment. Unfortunately, neither can block AR signaling thoroughly, leading to AR reactivation within several months. Here, we report an approach for suppressing reactivated AR signaling in the CRPC stage. A combination of the protein phosphatase 1 subunit α (PP1α)-specific inhibitor tautomycin and enzalutamide synergistically inhibited cell proliferation and AR signaling in LNCaP and C4-2 cells, as well as in AR variant-positive 22RV1 cells. Our results revealed that enzalutamide competed with residual androgens in CRPC, enhancing tautomycin-mediated AR degradation. In addition, the remaining competitive inhibitory role of enzalutamide on AR facilitated tautomycin-induced AR degradation in 22RV1 cells, further decreasing ARv7 levels via a full-length AR/ARv7 interaction. Taken together, our findings suggest that the combination of tautomycin and enzalutamide could achieve a more comprehensive inhibition of AR signaling in CRPC. AR degraders combined with AR antagonists may represent a new therapeutic strategy for CRPC.
Collapse
|
14
|
Basak D, Gregori L, Johora F, Deb S. Preclinical and Clinical Research Models of Prostate Cancer: A Brief Overview. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101607. [PMID: 36295041 PMCID: PMC9605520 DOI: 10.3390/life12101607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
The incidence and mortality from prostate cancer (PCa) are on the rise which poses a major public health concern worldwide. In this narrative review, we have summarized the characteristics of major in vitro and in vivo PCa models including their utility in developing treatment strategies. Androgens, particularly, testosterone and dihydrotestosterone (DHT) activate the androgen receptor (AR) signaling pathway that facilitates the development and progression of castration resistant PCa. Several enzymes namely, CYP17A1, HSD17B, and SRD5A are essential to furnishing DHT from dehydroepiandrosterone in the classical pathway while DHT is formed from androstanediol in the backdoor pathway. The advancement in delineating the molecular heterogeneity of PCa has been possible through the development of several in vitro and in vivo research models. Generally, tissue culture models are advantageous to understand PCa biology and investigate the efficacy and toxicity of novel agents; nevertheless, animal models are indispensable to studying the PCa etiology and treatment since they can simulate the tumor microenvironment that plays a central role in initiation and progression of the disease. Moreover, the availability of several genetically engineered mouse models has made it possible to study the metastasis process. However, the conventional models are not devoid of limitations. For example, the lack of heterogeneity in tissue culture models and the variation of metastatic characteristics in xenograft models are obviously challenging. Additionally, due to the racial and ethnic disparities in PCa pathophysiology, a new model that can represent PCa encompassing different ethnicities is urgently needed. New models should continue to evolve to address the genetic and molecular complexities as well as to further elucidate the finer details of the steroidogenic pathway associated with PCa.
Collapse
|
15
|
AR-regulated ZIC5 contributes to the aggressiveness of prostate cancer. Cell Death Dis 2022; 8:393. [PMID: 36127329 PMCID: PMC9489711 DOI: 10.1038/s41420-022-01181-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
The mechanisms by which prostate cancer (PCa) progresses to the aggressive castration-resistant stage remain uncertain. Zinc finger of the cerebellum 5 (ZIC5), a transcription factor belonging to the ZIC family, is involved in the pathology of various cancers. However, the potential effect of ZIC5 on PCa malignant progression has not been fully defined. Here, we show that ZIC5 is upregulated in PCa, particularly in metastatic lesions, in positive association with poor prognosis. Genetic inhibition of ZIC5 in PCa cells obviously attenuated invasion and metastasis and blunted the oncogenic properties of colony formation. Mechanistically, ZIC5 functioned as a transcription factor to promote TWIST1-mediated EMT progression or as a cofactor to strengthen the β-catenin-TCF4 association and stimulate Wnt/β-catenin signaling. Importantly, ZIC5 and the androgen receptor (AR) form a positive feed-forward loop to mutually stimulate each other’s expression. AR, in cooperation with its steroid receptor coactivator 3 (SRC-3), increased ZIC5 expression through binding to the miR-27b-3p promoter and repressing miR-27b-3p transcription. In turn, ZIC5 potentiated AR, AR-V7, and AR targets’ expression. Besides, ZIC5 inhibition reduced AR and AR-V7 protein expression and enhanced the sensitivity of PCa to enzalutamide (Enz) treatment, both in vitro and in vivo. These findings indicate that the reciprocal activation between AR and ZIC5 promotes metastasis and Enz resistance of PCa and suggest the therapeutic value of cotargeting ZIC5 and AR for the treatment of advanced PCa.
Collapse
|
16
|
The role of Platinum(IV)-based antitumor drugs and the anticancer immune response in medicinal inorganic chemistry. A systematic review from 2017 to 2022. Eur J Med Chem 2022; 243:114680. [PMID: 36152386 DOI: 10.1016/j.ejmech.2022.114680] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
Platinum-based antitumor drugs have been used in many types of tumors due to its broad antitumor spectrum in clinic. Encouraged by the cisplatin's (CDDP) worldwide success in cancer chemotherapy, the research in platinum-based antitumor drugs has evolved from traditional platinum drug to multi-ligand and multifunctional platinum prodrugs over half a century. With the rapid development of metal drugs and the anticancer immune response, challenges and opportunities in platinum drug research have been shifted from traditional platinum-based drugs to platinum-based hybrids and the direction of development is tending toward photodynamic therapy, nano-delivery therapy, drug combination, targeted therapy, diagnostic therapy, immune-combination therapy and tumor stem cell therapy. In this review, we first exhaustively overviewed the role of platinum-based antitumor prodrugs and the anticancer immune response in medicinal inorganic chemistry based on the special nanomaterials, the modification of specific ligands, and the multiple functions obtained that are beneficial for tumor therapy in the last five years. We also categorized them according to drug potency and function. There hasn't been a comprehensive evaluation of precursor platinum drugs in prior articles. And a multifarious approach to distinguish and detail the variety of alterations of platinum-based precursors in various valence states also hasn't been summarized. In addition, this review points out the main problems at the interface of chemistry, biology, and medicine from their action mechanisms for current platinum drug development, and provides up-to-date potential strategies from drug design perspectives to circumvent those drawbacks. And a promising idea is also enlightened for researchers in the development and discovery of platinum prodrugs.
Collapse
|
17
|
Reformation of the chondroitin sulfate glycocalyx enables progression of AR-independent prostate cancer. Nat Commun 2022; 13:4760. [PMID: 35963852 PMCID: PMC9376089 DOI: 10.1038/s41467-022-32530-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Lineage plasticity of prostate cancer is associated with resistance to androgen receptor (AR) pathway inhibition (ARPI) and supported by a reactive tumor microenvironment. Here we show that changes in chondroitin sulfate (CS), a major glycosaminoglycan component of the tumor cell glycocalyx and extracellular matrix, is AR-regulated and promotes the adaptive progression of castration-resistant prostate cancer (CRPC) after ARPI. AR directly represses transcription of the 4-O-sulfotransferase gene CHST11 under basal androgen conditions, maintaining steady-state CS in prostate adenocarcinomas. When AR signaling is inhibited by ARPI or lost during progression to non-AR-driven CRPC as a consequence of lineage plasticity, CHST11 expression is unleashed, leading to elevated 4-O-sulfated chondroitin levels. Inhibition of the tumor cell CS glycocalyx delays CRPC progression, and impairs growth and motility of prostate cancer after ARPI. Thus, a reactive CS glycocalyx supports adaptive survival and treatment resistance after ARPI, representing a therapeutic opportunity in patients with advanced prostate cancer. Chondroitin sulfate (CS) is one of the most abundant glycosaminoglycans in prostate cancers. Here the authors show that inhibition of the androgen receptor pathway leads to the upregulation of CS, which promotes prostate cancer growth and metastasis.
Collapse
|
18
|
Thomas R, Jerome JM, Dang TD, Souto EP, Mallam JN, Rowley DR. Androgen receptor variant-7 regulation by tenascin-c induced src activation. Cell Commun Signal 2022; 20:119. [PMID: 35948987 PMCID: PMC9364530 DOI: 10.1186/s12964-022-00925-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/23/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Bone metastatic prostate cancer does not completely respond to androgen-targeted therapy and generally evolves into lethal castration resistant prostate cancer (CRPC). Expression of AR-V7- a constitutively active, ligand independent splice variant of AR is one of the critical resistant mechanisms regulating metastatic CRPC. TNC is an extracellular matrix glycoprotein, crucial for prostate cancer progression, and associated with prostate cancer bone metastases. In this study, we investigated the mechanisms that regulate AR-V7 expression in prostate cancer cells interacting with osteogenic microenvironment including TNC. METHODS Prostate cancer/preosteoblast heterotypical organoids were evaluated via immunofluorescence imaging and gene expression analysis using RT-qPCR to assess cellular compartmentalization, TNC localization, and to investigate regulation of AR-V7 in prostate cancer cells by preosteoblasts and hormone or antiandrogen action. Prostate cancer cells cultured on TNC were assessed using RT-qPCR, Western blotting, cycloheximide chase assay, and immunofluorescence imaging to evaluate (1) regulation of AR-V7, and (2) signaling pathways activated by TNC. Identified signaling pathway induced by TNC was targeted using siRNA and a small molecular inhibitor to investigate the role of TNC-induced signaling activation in regulation of AR-V7. Both AR-V7- and TNC-induced signaling effectors were targeted using siRNA, and TNC expression assessed to evaluate potential feedback regulation. RESULTS Utilizing heterotypical organoids, we show that TNC is an integral component of prostate cancer interaction with preosteoblasts. Interaction with preosteoblasts upregulated both TNC and AR-V7 expression in prostate cancer cells which was suppressed by testosterone but elevated by antiandrogen enzalutamide. Interestingly, the results demonstrate that TNC-induced Src activation regulated AR-V7 expression, post-translational stability, and nuclear localization in prostate cancer cells. Treatment with TNC neutralizing antibody, Src knockdown, and inhibition of Src kinase activity repressed AR-V7 transcript and protein. Reciprocally, both activated Src and AR-V7 were observed to upregulate autocrine TNC gene expression in prostate cancer cells. CONCLUSION Overall, the findings reveal that prostate cancer cell interactions with the cellular and ECM components in the osteogenic microenvironment plays critical role in regulating AR-V7 associated with metastatic CRPC. Video Abstract.
Collapse
Affiliation(s)
- Rintu Thomas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - John Michael Jerome
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Truong D. Dang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Eric P. Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Joshua N. Mallam
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - David R. Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
19
|
Histone lysine demethylase inhibition reprograms prostate cancer metabolism and mechanics. Mol Metab 2022; 64:101561. [PMID: 35944897 PMCID: PMC9403566 DOI: 10.1016/j.molmet.2022.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Objective Methods Results Conclusions KDMs inhibition promotes increases H3K4me2 and H3K27me3 in PCa and CRPC, which causes cancer selective pro-apoptotic pathways. KDMs regulate AR expression in PCa and CRPC, reducing ATP production, mitochondrial respiration and intermediate metabolites availability. Epigenetic controls metabolic pathways and redirects lipid metabolic cascade. KDMs inhibition alters lipid distribution and composition, impacting on physical and mechanical properties of PCa and CRPC.
Collapse
|
20
|
Signature for Prostate Cancer Based on Autophagy-Related Genes and a Nomogram for Quantitative Risk Stratification. DISEASE MARKERS 2022; 2022:7598942. [PMID: 35860692 PMCID: PMC9293571 DOI: 10.1155/2022/7598942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Background. Prostate cancer (PCa) ranks as the most common malignancy and the second leading cause of cancer-related death among males worldwide. The essential role of autophagy in the progression of PCa and treatment resistance has been preliminarily revealed. However, comprehensive molecular elucidations of the correlation between PCa and autophagy are rare. Method. We obtained transcription information and corresponding clinicopathological profiles of PCa patients from TCGA, MSKCC, and GEO datasets. LAASO analysis was employed to select gene signatures and estimate the autophagy score for each patient. Correlations between the signature and prognosis of PCa were investigated by K-M and multivariate Cox regression analyses. A nomogram was established on the basis of the above results. Further validations relied on ROC, calibration analysis, decision curve analysis, and external cohorts. Variable activated signaling pathways were revealed using GSVA algorithms, and the genetic alteration landscape was elucidated via the oncodrive module from the “maftools” R package. In addition, we also examined the therapeutic role of the signature based on phenotype data from GDSC 2016. Result. Six autophagy-related genes were eventually selected to establish the signature, including ULK1, CAPN10, FKBP5, UBE2T, NLRC4, and BNIP3L. We used these genes and corresponding coefficients to calculate an autophagy score (AutS) for each patient in this study. A high AutS group and a low AutS group were divided on the mean AutS of the patients. Longer overall survival, higher Gleason score and PSA, and better response to ADT were observed in patients with high AutS. Meanwhile, we found that high AutS PCa was related to more proliferation-associated signaling activation and higher genetic mutation frequencies, manifesting a poor prognosis. A nomogram was constructed based on GS, T stage, PSA, and AutS as covariates. Its discriminative efficacy and clinical value were validated using robust statistical methods. Finally, we tested its prognostic value through two external cohorts and six published signatures. Conclusion. The autophagy-related gene signature is a highly discriminative model for risk stratification and drug therapy in PCa, and a nomogram incorporating AutS might be a promising tool for precision medicine.
Collapse
|
21
|
Krishnan R, Patel PS, Hakem R. BRCA1 and Metastasis: Outcome of Defective DNA Repair. Cancers (Basel) 2021; 14:cancers14010108. [PMID: 35008272 PMCID: PMC8749860 DOI: 10.3390/cancers14010108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary BRCA1 has critical functions in accurately repairing double stand breaks in the DNA through a process known as homologous recombination. BRCA1 also has various functions in other cellular processes that safeguard the genome. Thus, mutations or silencing of this tumor suppressor significantly increases the risk of developing breast, ovarian, and other cancers. Metastasis refers to the spread of cancer to other parts of the body and is the leading cause of cancer-related deaths. In this review, we discuss the mechanisms by which BRCA1 mutations contribute to the metastatic and aggressive nature of the tumor cells. Abstract Heritable mutations in BRCA1 and BRCA2 genes are a major risk factor for breast and ovarian cancer. Inherited mutations in BRCA1 increase the risk of developing breast cancers by up to 72% and ovarian cancers by up to 69%, when compared to individuals with wild-type BRCA1. BRCA1 and BRCA2 (BRCA1/2) are both important for homologous recombination-mediated DNA repair. The link between BRCA1/2 mutations and high susceptibility to breast cancer is well established. However, the potential impact of BRCA1 mutation on the individual cell populations within a tumor microenvironment, and its relation to increased aggressiveness of cancer is not well understood. The objective of this review is to provide significant insights into the mechanisms by which BRCA1 mutations contribute to the metastatic and aggressive nature of the tumor cells.
Collapse
Affiliation(s)
- Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (R.K.); (P.S.P.)
| | - Parasvi S. Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (R.K.); (P.S.P.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (R.K.); (P.S.P.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: or
| |
Collapse
|
22
|
Peng Q, Chiu PKF, Wong CYP, Cheng CKL, Teoh JYC, Ng CF. Identification of piRNA Targets in Urinary Extracellular Vesicles for the Diagnosis of Prostate Cancer. Diagnostics (Basel) 2021; 11:diagnostics11101828. [PMID: 34679526 PMCID: PMC8534571 DOI: 10.3390/diagnostics11101828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging studies demonstrate that PIWI-interacting RNAs (piRNAs) are associated with various human cancers. This study aimed to evaluate the urinary extracellular vesicles (EVs) piRNAs as non-invasive biomarkers for prostate cancer (PCa) diagnosis. RNA was extracted from urinary EVs from five PCa patients and five healthy controls (HC), and the piRNAs were analyzed by small RNA sequencing. Dysregulated piRNAs were identified and then validated in another 30 PCa patients and 10 HC by reverse-transcription polymerase chain reaction (RT-qPCR). The expressions of novel_pir349843, novel_pir382289, novel_pir158533, and hsa_piR_002468 in urinary EVs were significantly increased in the PCa group compared with the HC group. The area under the curve (AUC) of novel_pir158533, novel_pir349843, novel_pir382289, hsa_piR_002468, and the combination of the four piRNA in PCa diagnosis was 0.723, 0.757, 0.777, 0.783, and 0.853, respectively. After the RNAhybrid program analysis, all four piRNAs had multiple potential binding sites with key mRNAs in PTEN/PI3K/Akt, Wnt/beta-catenin, or androgen receptor pathway, which are critical in PCa development and progression. In conclusion, our findings indicate that specific piRNAs in urinary EVs may serve as non-invasive diagnostic biomarkers for PCa.
Collapse
|
23
|
Ebersbach C, Beier AMK, Thomas C, Erb HHH. Impact of STAT Proteins in Tumor Progress and Therapy Resistance in Advanced and Metastasized Prostate Cancer. Cancers (Basel) 2021; 13:4854. [PMID: 34638338 PMCID: PMC8508518 DOI: 10.3390/cancers13194854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are a family of transcription factors involved in several biological processes such as immune response, cell survival, and cell growth. However, they have also been implicated in the development and progression of several cancers, including prostate cancer (PCa). Although the members of the STAT protein family are structurally similar, they convey different functions in PCa. STAT1, STAT3, and STAT5 are associated with therapy resistance. STAT1 and STAT3 are involved in docetaxel resistance, while STAT3 and STAT5 are involved in antiandrogen resistance. Expression of STAT3 and STAT5 is increased in PCa metastases, and together with STAT6, they play a crucial role in PCa metastasis. Further, expression of STAT3, STAT5, and STAT6 was elevated in advanced and high-grade PCa. STAT2 and STAT4 are currently less researched in PCa. Since STATs are widely involved in PCa, they serve as potential therapeutic targets. Several inhibitors interfering with STATs signaling have been tested unsuccessfully in PCa clinical trials. This review focuses on the respective roles of the STAT family members in PCa, especially in metastatic disease and provides an overview of STAT-inhibitors evaluated in clinical trials.
Collapse
Affiliation(s)
- Celina Ebersbach
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alicia-Marie K. Beier
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| | - Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| |
Collapse
|
24
|
Safarulla S, Khillar PS, Kini S, Jaiswal AK. Tissue engineered scaffolds as 3D models for prostate cancer metastasis to bone. MATERIALS TODAY COMMUNICATIONS 2021; 28:102641. [DOI: 10.1016/j.mtcomm.2021.102641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
|
25
|
Onal C, Ozyigit G, Akgun Z, Atalar B, Igdem S, Oymak E, Agaoglu F, Selek U, Guler OC, Hurmuz P, Mustafayev TZ, Akyol F. Oligometastatic Bone Disease in Castration-Sensitive Prostate Cancer Patients Treated With Stereotactic Body Radiotherapy Using 68Ga-PSMA PET/CT: TROD 09-004 Study. Clin Nucl Med 2021; 46:465-470. [PMID: 33661210 DOI: 10.1097/rlu.0000000000003558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
PURPOSE To evaluate the outcomes of metastasis-directed treatment (MDT) using stereotactic body radiotherapy (SBRT) for bone-only oligometastasis (OM) detected with gallium prostate-specific membrane antigen (68Ga-PSMA) PET/CT in castration-sensitive prostate cancer (PC) patients. METHODS In this multi-institutional study, clinical data of 74 PC patients with 153 bone lesions who were undergoing MDT were retrospectively evaluated. Twenty-seven patients (36.5%) had synchronous, and 47 (63.5%) had metachronous OM. All patients had PC with 5 metastases or fewer detected by 68Ga-PSMA PET/CT and treated using SBRT with a median dose of 20 Gy. The prognostic factors for PC-specific survival (PCSS) and progression-free survival (PFS) were analyzed. RESULTS The median follow-up was 27.3 months. Patients with synchronous OM were older and received higher rates of androgen deprivation therapy after SBRT compared with patients with metachronous OM. The 2-year PCSS and PFS rates were 92.0% and 72.0%, respectively. A prostate-specific antigen (PSA) decline was observed in 56 patients (75.7%), and 48 (64.9%) had a PSA response defined as at least 25% decrease of PSA after MDT. The 2-year local control rate per lesion was 95.4%. In multivariate analysis, single OM and PSA response after MDT were significant predictors for better PCSS and PFS. In-field recurrence was observed in 4 patients (6.5%) with 10 lesions at a median of 13.1 months after MDT completion. No serious late toxicity was observed. CONCLUSIONS We demonstrated that SBRT is an efficient and well-tolerated treatment option for PC patients with 5 bone-only oligometastases or fewer detected with 68Ga-PSMA PET/CT.
Collapse
Affiliation(s)
- Cem Onal
- From the Department of Radiation Oncology, Adana Dr Turgut Noyan Research and Treatment Center, Baskent University Faculty of Medicine, Adana
| | - Gokhan Ozyigit
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara
| | - Zuleyha Akgun
- Division of Radiation Oncology, Memorial Sisli Hospital
| | - Banu Atalar
- Department of Radiation Oncology, Acibadem MAA University Maslak Hospital
| | - Sefik Igdem
- Department of Radiation Oncology, Istanbul Bilim University, Istanbul
| | - Ezgi Oymak
- Division of Radiation Oncology, Iskenderun Gelisim Hospital, Hatay
| | - Fulya Agaoglu
- Department of Radiation Oncology, Acibadem MAA University Atakent Hospital
| | - Ugur Selek
- Department of Radiation Oncology, School of Medicine, Koc University, Istanbul, Turkey
| | - Ozan Cem Guler
- From the Department of Radiation Oncology, Adana Dr Turgut Noyan Research and Treatment Center, Baskent University Faculty of Medicine, Adana
| | - Pervin Hurmuz
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara
| | | | - Fadil Akyol
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara
| |
Collapse
|
26
|
Bock N, Kryza T, Shokoohmand A, Röhl J, Ravichandran A, Wille ML, Nelson CC, Hutmacher DW, Clements JA. In vitro engineering of a bone metastases model allows for study of the effects of antiandrogen therapies in advanced prostate cancer. SCIENCE ADVANCES 2021; 7:eabg2564. [PMID: 34193425 PMCID: PMC8245033 DOI: 10.1126/sciadv.abg2564] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
While androgen-targeted therapies are routinely used in advanced prostate cancer (PCa), their effect is poorly understood in treating bone metastatic lesions and ultimately results in the development of metastatic castrate resistant prostate cancer (mCRPC). Here, we used an all-human microtissue-engineered model of mineralized metastatic tissue combining human osteoprogenitor cells, 3D printing and prostate cancer cells, to assess the effects of the antiandrogens, bicalutamide, and enzalutamide in this microenvironment. We demonstrate that cancer/bone stroma interactions and antiandrogens drive cancer progression in a mineralized microenvironment. Probing the bone microenvironment with enzalutamide led to stronger cancer cell adaptive responses and osteomimicry than bicalutamide. Enzalutamide presented with better treatment response, in line with enzalutamide delaying time to bone-related events and enzalutamide extending survival in mCRPC. The all-human microtissue-engineered model of mineralized metastatic tissue presented here represents a substantial advance to dissect the role of the bone tumor microenvironment and responses to therapies for mCPRC.
Collapse
Affiliation(s)
- Nathalie Bock
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), QUT, Kelvin Grove, 4059 QLD, Australia
| | - Thomas Kryza
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| | - Ali Shokoohmand
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
| | - Joan Röhl
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| | - Akhilandeshwari Ravichandran
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
| | - Marie-Luise Wille
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), QUT, Kelvin Grove, 4059 QLD, Australia
- Bone and Joint Disorders Program, School of Mechanical Medical, and Process Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, 4000 QLD, Australia
| | - Colleen C Nelson
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| | - Dietmar W Hutmacher
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia.
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), QUT, Kelvin Grove, 4059 QLD, Australia
- Bone and Joint Disorders Program, School of Mechanical Medical, and Process Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, 4000 QLD, Australia
- ARC Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, 4059 QLD, Australia
| | - Judith A Clements
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia.
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| |
Collapse
|
27
|
Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:96-124. [PMID: 35582006 PMCID: PMC9019181 DOI: 10.20517/cdr.2020.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.
Collapse
Affiliation(s)
- Debasis Mondal
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Devin Narwani
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Shahnawaz Notta
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Dawood Ghaffar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Nikhil Mardhekar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Syed S A Quadri
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| |
Collapse
|
28
|
Park S, Lee HY, Kim J, Park H, Ju YS, Kim EG, Kim J. Cerebral Cavernous Malformation 1 Determines YAP/TAZ Signaling-Dependent Metastatic Hallmarks of Prostate Cancer Cells. Cancers (Basel) 2021; 13:cancers13051125. [PMID: 33807895 PMCID: PMC7961486 DOI: 10.3390/cancers13051125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Enhanced Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling is correlated with the extraprostatic extension of prostate cancer. However, the mechanism by which YAP/TAZ signaling becomes hyperactive and drives prostate cancer progression is currently unclear. In this study, we revealed that higher expression of CCM1, which is uniquely found in advanced prostate cancer, is inversely correlated with metastasis-free and overall survival in patients with prostate cancer. We also demonstrated that CCM1 induces the metastasis of multiple types of prostate cancer cells by regulating YAP/TAZ signaling. Mechanistically, CCM1, a gene mutated in cerebral cavernous malformation, suppresses DDX5, which regulates the suppression of YAP/TAZ signaling, indicating that CCM1 and DDX5 are novel upstream regulators of YAP/TAZ signaling. Our findings highlight the importance of CCM1-DDX5-YAP/TAZ signaling in the metastasis of prostate cancer cells.
Collapse
Affiliation(s)
- Sangryong Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
| | - Ho-Young Lee
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
| | - Jayoung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery & Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Hansol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (H.P.); (Y.S.J.)
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (H.P.); (Y.S.J.)
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea;
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6441
| |
Collapse
|
29
|
Chen L, Han L, Mao S, Xu P, Xu X, Zhao R, Wu Z, Zhong K, Yu G, Wang X. Discovery of A031 as effective proteolysis targeting chimera (PROTAC) androgen receptor (AR) degrader for the treatment of prostate cancer. Eur J Med Chem 2021; 216:113307. [PMID: 33652354 DOI: 10.1016/j.ejmech.2021.113307] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/31/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Androgen receptor (AR) is an effective therapeutic target for the treatment of prostate cancer. We report herein the design, synthesis, and biological evaluation of highly effective proteolysis targeting chimeras (PROTAC) androgen receptor (AR) degraders, such as compound A031. It could induce the degradation of AR protein in VCaP cell lines in a time-dependent manner, achieving the IC 50 value of less than 0.25 μM. The A031 is 5 times less toxic than EZLA and works with an appropriate half-life (t 1/2) or clearance rate (Cl). Also, it has a significant inhibitory effect on tumor growth in zebrafish transplanted with human prostate cancer (VCaP). Therefore, A031 provides a further idea of developing novel drugs for prostate cancer.
Collapse
Affiliation(s)
- Linrong Chen
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, 222 S. Tianshui Rd, Lanzhou, 730000, PR China
| | - Liuquan Han
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China
| | - Shujun Mao
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China
| | - Ping Xu
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China
| | - Xinxin Xu
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China
| | - Ruibo Zhao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, 222 S. Tianshui Rd, Lanzhou, 730000, PR China
| | - Zhihua Wu
- School of Pharmacy, Lanzhou University, 222 S. Tianshui Rd, Lanzhou, 730000, PR China
| | - Kai Zhong
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China.
| | - Guangliang Yu
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China.
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, 222 S. Tianshui Rd, Lanzhou, 730000, PR China.
| |
Collapse
|
30
|
Zheng J, Wang J, Wang Q, Zou H, Wang H, Zhang Z, Chen J, Wang Q, Wang P, Zhao Y, Lu J, Zhang X, Xiang S, Wang H, Lei J, Chen HW, Liu P, Liu Y, Han F, Wang J. Targeting castration-resistant prostate cancer with a novel ROR γ antagonist elaiophylin. Acta Pharm Sin B 2020; 10:2313-2322. [PMID: 33354503 PMCID: PMC7745055 DOI: 10.1016/j.apsb.2020.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PCa) patients who progress to metastatic castration-resistant PCa (mCRPC) mostly have poor outcomes due to the lack of effective therapies. Our recent study established the orphan nuclear receptor RORγ as a novel therapeutic target for CRPC. Here, we reveal that elaiophylin (Elai), an antibiotic from Actinomycete streptomyces, is a novel RORγ antagonist and showed potent antitumor activity against CRPC in vitro and in vivo. We demonstrated that Elai selectively binded to RORγ protein and potently blocked RORγ transcriptional regulation activities. Structure–activity relationship studies showed that Elai occupied the binding pocket with several key interactions. Furthermore, Elai markedly reduced the recruitment of RORγ to its genomic DNA response element (RORE), suppressed the expression of RORγ target genes AR and AR variants, and significantly inhibited PCa cell growth. Importantly, Elai strongly suppressed tumor growth in both cell line based and patient-derived PCa xenograft models. Taken together, these results suggest that Elai is novel therapeutic RORγ inhibitor that can be used as a drug candidate for the treatment of human CRPC.
Collapse
|
31
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
32
|
Luo J, Wang D, Wan X, Xu Y, Lu Y, Kong Z, Li D, Gu W, Wang C, Li Y, Ji C, Gu S, Xu Y. Crosstalk Between AR and Wnt Signaling Promotes Castration-Resistant Prostate Cancer Growth. Onco Targets Ther 2020; 13:9257-9267. [PMID: 32982312 PMCID: PMC7509333 DOI: 10.2147/ott.s245861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Prostate cancer (PCa) is the most commonly diagnosed cancer and the third leading cause of cancer-related death in males in the United States. Despite the initial efficacy of androgen deprivation therapy in prostate cancer (PCa) patients, most patients progress to castration-resistant prostate cancer. However, the mechanisms underlying the androgen-independent progression of PCa remain largely unknown. Methods In this study, we established a PCa cell line (LNCaP-AI) by maintaining LNCaP cells under androgen-depleted conditions. To explore the cellular and molecular mechanisms of androgen-independent growth of PCa, we analyzed the gene expression patterns in androgen-independent prostate cancer (AIPC) compared with that in androgen-dependent prostate cancer (ADPC). KEGG pathway analysis revealed that Wnt signaling pathways were activated after androgen deprivation therapy (ADT). In vitro experiments showed that the inhibition of Wnt pathway reduced AIPC cell growth by inhibiting cell cycle progression and promoting apoptosis. Furthermore, WNT5A, LEF1 were identified as direct targets of AR by chromatin immunoprecipitation (ChIP) assay and public ChIP-seq datasets analysis. Results In the present study, we found a regulatory mechanism through which crosstalk between androgen receptor (AR) and Wnt signals promoted androgen-independent conversion of PCa. The Wnt pathway was inhibited by androgen in androgen-dependent prostate cancer cells, but this blocking effect was not elicited in androgen-independent prostate cancer (AIPC) cells. Moreover, Wnt pathway genes WNT5A and LEF1 were directly downregulated by AR. In vitro experiments showed that inhibition of the Wnt pathways repressed AIPC cell growth by inhibiting cell cycle progression and promoting apoptosis. We found that WNT5A and LEF1 were downregulated in low-grade PCa but upregulated in metastatic PCa. Conclusion In summary, we revealed that crosstalk between AR and Wnt signaling pathways promotes androgen-independent growth of PCa, which may provide novel therapeutic opportunities for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Dan Wang
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuechao Wan
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Yangguang Xu
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Yali Lu
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhe Kong
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Dujian Li
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wei Gu
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chenji Wang
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Yao Li
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Chaoneng Ji
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Shaohua Gu
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Yaoting Xu
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Michmerhuizen AR, Spratt DE, Pierce LJ, Speers CW. ARe we there yet? Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer 2020; 6:47. [PMID: 33062889 PMCID: PMC7519666 DOI: 10.1038/s41523-020-00190-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
The role of androgen receptor (AR) activation and expression is well understood in prostate cancer. In breast cancer, expression and activation of AR is increasingly recognized for its role in cancer development and its importance in promoting cell growth in the presence or absence of estrogen. As both prostate and breast cancers often share a reliance on nuclear hormone signaling, there is increasing appreciation of the overlap between activated cellular pathways in these cancers in response to androgen signaling. Targeting of the androgen receptor as a monotherapy or in combination with other conventional therapies has proven to be an effective clinical strategy for the treatment of patients with prostate cancer, and these therapeutic strategies are increasingly being investigated in breast cancer. This overlap suggests that targeting androgens and AR signaling in other cancer types may also be effective. This manuscript will review the role of AR in various cellular processes that promote tumorigenesis and metastasis, first in prostate cancer and then in breast cancer, as well as discuss ongoing efforts to target AR for the more effective treatment and prevention of cancer, especially breast cancer.
Collapse
Affiliation(s)
- Anna R Michmerhuizen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
34
|
Cellular and Molecular Progression of Prostate Cancer: Models for Basic and Preclinical Research. Cancers (Basel) 2020; 12:cancers12092651. [PMID: 32957478 PMCID: PMC7563251 DOI: 10.3390/cancers12092651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The molecular progression of prostate cancer is complex and elusive. Biological research relies heavily on in vitro and in vivo models that can be used to examine gene functions and responses to the external agents in laboratory and preclinical settings. Over the years, several models have been developed and found to be very helpful in understanding the biology of prostate cancer. Here we describe these models in the context of available information on the cellular and molecular progression of prostate cancer to suggest their potential utility in basic and preclinical prostate cancer research. The information discussed herein should serve as a hands-on resource for scholars engaged in prostate cancer research or to those who are making a transition to explore the complex biology of prostate cancer. Abstract We have witnessed noteworthy progress in our understanding of prostate cancer over the past decades. This basic knowledge has been translated into efficient diagnostic and treatment approaches leading to the improvement in patient survival. However, the molecular pathogenesis of prostate cancer appears to be complex, and histological findings often do not provide an accurate assessment of disease aggressiveness and future course. Moreover, we also witness tremendous racial disparity in prostate cancer incidence and clinical outcomes necessitating a deeper understanding of molecular and mechanistic bases of prostate cancer. Biological research heavily relies on model systems that can be easily manipulated and tested under a controlled experimental environment. Over the years, several cancer cell lines have been developed representing diverse molecular subtypes of prostate cancer. In addition, several animal models have been developed to demonstrate the etiological molecular basis of the prostate cancer. In recent years, patient-derived xenograft and 3-D culture models have also been created and utilized in preclinical research. This review is an attempt to succinctly discuss existing information on the cellular and molecular progression of prostate cancer. We also discuss available model systems and their tested and potential utility in basic and preclinical prostate cancer research.
Collapse
|
35
|
Han W, Shi Y, Su J, Zhao Z, Wang X, Li J, Liu H. Virtual Screening and Bioactivity Evaluation of Novel Androgen Receptor Antagonists From Anti-PCa Traditional Chinese Medicine Prescriptions. Front Chem 2020; 8:582861. [PMID: 33094102 PMCID: PMC7528374 DOI: 10.3389/fchem.2020.582861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer (PCa), a type of malignancy that arises in the prostate gland, is the most commonly diagnosed neoplasm and the second leading cause of cancer-related deaths in men. Acquisition of resistance to conventional therapy is a major problem for PCa patient treatment. Androgen receptor (AR) signaling pathway is necessary in the pathogenesis of prostate cancer, and there is a heightened interest in finding novel AR antagonists that target AR and its regulatory pathways. In our search for novel androgen receptor antagonists, we focus on the Traditional Chinese Medicine (TCM), which has been used for thousands of years to prove effective in the treatment of cancer. In this study, we collected 653 traditional Chinese medicine prescriptions that have certain therapeutic effect to prostate cancer, including the prescriptions and even the folk prescriptions. After summarizing the frequency of herbs and gathering the natural products contained in these prescriptions, we built a natural products database to do computer-aided virtual screening and drug-like evaluation to find potential AR antagonists. Totally 25 compounds were submitted to experimental biological activity tests. Through the MTT cell proliferation experiment, 5 chemicals were found to inhibit the proliferation of LNCaP cells in a concentration-dependent manner. Especially, MoL_11 was found to have good antagonistic activity and significantly inhibit fluorescence enzyme activity by the AR reporter gene experiment. Finally, the molecular dynamics simulation method was used to study the interaction between the most active compound MoL_11 and the wild-type and F876L mutant androgen receptor (WT/F876L AR), and it was found that F876L AR could not cause resistance to MoL_11.
Collapse
Affiliation(s)
- Wenya Han
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yuqi Shi
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jie Su
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhennan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
36
|
Abou D, Benabdallah N, Jiang W, Peng L, Zhang H, Villmer A, Longtine MS, Thorek DLJ. Prostate Cancer Theranostics - An Overview. Front Oncol 2020; 10:884. [PMID: 32582550 PMCID: PMC7290246 DOI: 10.3389/fonc.2020.00884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/05/2020] [Indexed: 11/29/2022] Open
Abstract
Metastatic prostate cancer is incurable, and novel methods to detect the disease earlier and to direct definitive treatment are needed. Molecularly specific tools to localize diagnostic and cytotoxic radionuclide payloads to cancer cells and the surrounding microenvironment are recognized as a critical component of new approaches to combat this disease. The implementation of theranostic approaches to characterize and personalize patient management is beginning to be realized for prostate cancer patients. This review article summarized clinically translated approaches to detect, characterize, and treat disease in this rapidly expanding field.
Collapse
Affiliation(s)
- Diane Abou
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, United States
- Radiology Cyclotron Facility, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Nadia Benabdallah
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, United States
| | - Wen Jiang
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Lu Peng
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Hanwen Zhang
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexandria Villmer
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, United States
| | - Mark S. Longtine
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Daniel L. J. Thorek
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Oncologic Imaging Program, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
37
|
Assoun EN, Meyer AN, Jiang MY, Baird SM, Haas M, Donoghue DJ. Characterization of iPS87, a prostate cancer stem cell-like cell line. Oncotarget 2020; 11:1075-1084. [PMID: 32256979 PMCID: PMC7105161 DOI: 10.18632/oncotarget.27524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer affects hundreds of thousands of men and families throughout the world. Although chemotherapy, radiation, surgery, and androgen deprivation therapy are applied, these therapies do not cure metastatic prostate cancer. Patients treated by androgen deprivation often develop castration resistant prostate cancer which is incurable. Novel approaches of treatment are clearly necessary. We have previously shown that prostate cancer originates as a stem cell disease. A prostate cancer patient sample, #87, obtained from prostatectomy surgery, was collected and frozen as single cell suspension. Cancer stem cell cultures were grown, single cell-cloned, and shown to be tumorigenic in SCID mice. However, outside its natural niche, the cultured prostate cancer stem cells lost their tumor-inducing capability and stem cell marker expression after approximately 8 transfers at a 1:3 split ratio. Tumor-inducing activity could be restored by inducing the cells to pluripotency using the method of Yamanaka. Cultures of human prostate-derived normal epithelial cells acquired from commercial sources were similarly induced to pluripotency and these did not acquire a tumor phenotype in vivo. To characterize the iPS87 cell line, cells were stained with antibodies to various markers of stem cells including: ALDH7A1, LGR5, Oct4, Nanog, Sox2, Androgen Receptor, and Retinoid X Receptor. These markers were found to be expressed by iPS87 cells, and the high tumorigenicity in SCID mice of iPS87 was confirmed by histopathology. This research thus characterizes the iPS87 cell line as a cancer-inducing, stem cell-like cell line, which can be used in the development of novel treatments for prostate cancer.
Collapse
Affiliation(s)
- Erika N. Assoun
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Maggie Y. Jiang
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Stephen M. Baird
- Department of Pathology, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Martin Haas
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, CA 92093, USA
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
38
|
Chaturvedi AP, Dehm SM. Androgen Receptor Dependence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:333-350. [PMID: 31900916 DOI: 10.1007/978-3-030-32656-2_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Androgens and the androgen receptor (AR) play crucial roles in the biology of normal and diseased prostate tissue, including prostate cancer (PCa). This dependence is evidenced by the use of androgen depletion therapy (ADT) as the primary treatment for locally advanced, metastatic, or relapsed PCa. This dependence is further evidenced by the various mechanisms employed by PCa cells to re-activate the AR to circumvent the growth-inhibitory effects of ADT. Re-activation of the AR during ADT is central to the disease evolving into the lethal castration resistant PCa (CRPC) phenotype, which is responsible for nearly all PCa mortality. Thus, understanding the regulation of AR and AR signaling is important for understanding the development and progression of PCa. This understanding provides the foundation for development of newer approaches for targeting CRPC therapeutically.
Collapse
Affiliation(s)
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
39
|
Ding M, Jiang CY, Zhang Y, Zhao J, Han BM, Xia SJ. SIRT7 depletion inhibits cell proliferation and androgen-induced autophagy by suppressing the AR signaling in prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:28. [PMID: 32019578 PMCID: PMC6998106 DOI: 10.1186/s13046-019-1516-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Sirtuin-7 (SIRT7) is associated with the maintenance of tumorigenesis. However, its functional roles and oncogenic mechanisms in prostate cancer (PCa) are poorly understood. Here, we investigated the roles and underlying molecular mechanisms of SIRT7 in PCa cell growth and androgen-induced autophagy. METHODS The LNCap and 22Rv1 PCa cell lines were subjected to quantitative reverse transcription (RT)-PCR to characterize their genes encoding SIRT7, AR, and SMAD4. The proteins produced from these genes were quantified by western blotting and immunoprecipitation analysis. SIRT7-depleted cells were produced by transfection with plasmid vectors bearing short hairpin RNAs against SIRT7. The proliferation of each cell line was assessed by CCK8 and EdU assays. Autophagic flux was tracked by mRFP-GFP-LC3 adenovirus under an immunofluorescence microscope. Apoptosis was evaluated by flow cytometry. Tumors were induced in mouse axillae by injection of the cell lines into mice. Tumor morphology was examined by immunohistochemistry and relative tumor growth and metastases were compared by a bioluminescence-based in vivo imaging system. RESULTS SIRT7 depletion significantly inhibited cell proliferation, androgen-induced autophagy, and invasion in LNCap and 22Rv1 cells (in vitro) and mouse xenograft tumors induced by injection of these cells (in vivo). SIRT7 knockdown also increased the sensitivity of PCa cells to radiation. Immunohistochemical analysis of 93 specimens and bioinformatic analysis revealed that SIRT7 expression was positively associated with androgen receptor (AR). Moreover, the AR signal pathway participated in SIRT7-mediated regulation of PCa cell proliferation, autophagy, and invasion. SIRT7 depletion downregulated the AR signal pathway by upregulating the level of SMAD4 protein in PCa cells. CONCLUSION SIRT7 plays an important role in the development and progression of human PCa and may be a promising prognostic marker for prostate cancer.
Collapse
Affiliation(s)
- Mao Ding
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China
| | - Jing Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China.
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China.
| |
Collapse
|
40
|
Sharad S, Sztupinszki ZM, Chen Y, Kuo C, Ravindranath L, Szallasi Z, Petrovics G, Sreenath TL, Dobi A, Rosner IL, Srinivasan A, Srivastava S, Cullen J, Li H. Analysis of PMEPA1 Isoforms ( a and b) as Selective Inhibitors of Androgen and TGF-β Signaling Reveals Distinct Biological and Prognostic Features in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121995. [PMID: 31842254 PMCID: PMC6966662 DOI: 10.3390/cancers11121995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
Dysfunctions of androgen/TGF-β signaling play important roles in prostate tumorigenesis. Prostate Transmembrane Protein Androgen Induced 1 (PMEPA1) inhibits androgen and TGF-β signaling via a negative feedback loop. The loss of PMEPA1 confers resistance to androgen signaling inhibitors and promotes bone metastasis. Conflicting reports on the expression and biological functions of PMEPA1 in prostate and other cancers propelled us to investigate isoform specific functions in prostate cancer (PCa). One hundred and twenty laser capture micro-dissection matched normal prostate and prostate tumor tissues were analyzed for correlations between quantitative expression of PMEPA1 isoforms and clinical outcomes with Q-RT-PCR, and further validated with a The Cancer Genome Atlas (TCGA) RNA-Seq dataset of 499 PCa. Cell proliferation was assessed with cell counting, plating efficiency and soft agar assay in androgen responsive LNCaP and TGF-β responsive PC3 cells. TGF-β signaling was measured by SMAD dual-luciferase reporter assay. Higher PMEPA1-a mRNA levels indicated biochemical recurrence (p = 0.0183) and lower PMEPA1-b expression associated with metastasis (p = 0.0173). Further, lower PMEPA1-b and a higher ratio of PMEPA1-a vs. -b were correlated to higher Gleason scores and lower progression free survival rate (p < 0.01). TGF-β-responsive PMEPA1-a promoted PCa cell growth, and androgen-responsive PMEPA1-b inhibited cancer cell proliferation. PMEPA1 isoforms -a and -b were shown to be promising candidate biomarkers indicating PCa aggressiveness including earlier biochemical relapse and lower disease specific life expectancy via interrupting androgen/TGF-β signaling.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| | | | - Yongmei Chen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Claire Kuo
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (Z.M.S.); (Z.S.)
- Computational Health Informatics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- SE-NAP Brain Metastasis Research group, 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Taduru L. Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Inger L. Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Department of Urology, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| |
Collapse
|
41
|
Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond) 2019; 39:76. [PMID: 31753020 PMCID: PMC6873445 DOI: 10.1186/s40880-019-0425-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
Bone metastasis is the leading cause of death in prostate cancer patients, for which there is currently no effective treatment. Since the bone microenvironment plays an important role in this process, attentions have been directed to the interactions between cancer cells and the bone microenvironment, including osteoclasts, osteoblasts, and bone stromal cells. Here, we explained the mechanism of interactions between prostate cancer cells and metastasis-associated cells within the bone microenvironment and further discussed the recent advances in targeted therapy of prostate cancer bone metastasis. This review also summarized the effects of bone microenvironment on prostate cancer metastasis and the related mechanisms, and provides insights for future prostate cancer metastasis studies.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, No. 6 Jiankang Road, Jining, 272000, Shandong, P. R. China.
| |
Collapse
|
42
|
miR-221-5p regulates proliferation and migration in human prostate cancer cells and reduces tumor growth in vivo. BMC Cancer 2019; 19:627. [PMID: 31238903 PMCID: PMC6593572 DOI: 10.1186/s12885-019-5819-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background Despite latest advances in prostate cancer (PCa) therapy, PCa remains the third-leading cause of cancer-related death in European men. Dysregulation of microRNAs (miRNAs), small non-coding RNA molecules with gene expression regulatory function, has been reported in all types of epithelial and haematological cancers. In particular, miR-221-5p alterations have been reported in PCa. Methods miRNA expression data was retrieved from a comprehensive publicly available dataset of 218 PCa patients (GSE21036) and miR-221-5p expression levels were analysed. The functional role of miR-221-5p was characterised in androgen- dependent and androgen- independent PCa cell line models (C4–2 and PC-3M-Pro4 cells) by miR-221-5p overexpression and knock-down experiments. The metastatic potential of highly aggressive PC-3M-Pro4 cells overexpressing miR-221-5p was determined by studying extravasation in a zebrafish model. Finally, the effect of miR-221-5p overexpression on the growth of PC-3M-Pro4luc2 cells in vivo was studied by orthotopic implantation in male Balb/cByJ nude mice and assessment of tumor growth. Results Analysis of microRNA expression dataset for human primary and metastatic PCa samples and control normal adjacent benign prostate revealed miR-221-5p to be significantly downregulated in PCa compared to normal prostate tissue and in metastasis compared to primary PCa. Our in vitro data suggest that miR-221-5p overexpression reduced PCa cell proliferation and colony formation. Furthermore, miR-221-5p overexpression dramatically reduced migration of PCa cells, which was associated with differential expression of selected EMT markers. The functional changes of miR-221-5p overexpression were reversible by the loss of miR-221-5p levels, indicating that the tumor suppressive effects were specific to miR-221-5p. Additionally, miR-221-5p overexpression significantly reduced PC-3M-Pro4 cell extravasation and metastasis formation in a zebrafish model and decreased tumor burden in an orthotopic mouse model of PCa. Conclusions Together these data strongly support a tumor suppressive role of miR-221-5p in the context of PCa and its potential as therapeutic target. Electronic supplementary material The online version of this article (10.1186/s12885-019-5819-6) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Miyahira AK, Den RB, Carlo MI, de Leeuw R, Hope TA, Karzai F, McKay RR, Salami SS, Simons JW, Pienta KJ, Soule HR. Tumor cell heterogeneity and resistance; report from the 2018 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2019; 79:244-258. [PMID: 30381857 DOI: 10.1002/pros.23729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The 2018 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Tumor Cell Heterogeneity and Resistance," was held in Los Angeles, California from June 21 to 24, 2018. METHODS The CHPCA Meeting is a unique, discussion-oriented scientific conference convened annually by the Prostate Cancer Foundation (PCF), which focuses on the most critical topics in need of further study to advance the treatment of lethal prostate cancer. The 6th Annual CHPCA Meeting was attended by 70 investigators and concentrated on prostate cancer heterogeneity and treatment resistance. RESULTS The meeting focused on topics including: recognition of tumor heterogeneity, molecular drivers of heterogeneity, the role of the tumor microenvironment, the role of heterogeneity in disease progression, metastasis and treatment resistance, clinical trials designed to target resistance and tumor heterogeneity, and immunotherapeutic approaches to target and overcome tumor heterogeneity. DISCUSSION This review article summarizes the presentations and discussions from the 2018 CHPCA Meeting in order to share this knowledge with the scientific community and encourage new studies that will lead to improved treatments and outcomes for men with prostate cancer.
Collapse
Affiliation(s)
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Renée de Leeuw
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rana R McKay
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, San Diego, California
| | - Simpa S Salami
- Department of Urology, University of Michigan Health System, Ann Arbor, Michigan
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | | | - Kenneth J Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
44
|
Jin Y, Duan M, Wang X, Kong X, Zhou W, Sun H, Liu H, Li D, Yu H, Li Y, Hou T. Communication between the Ligand-Binding Pocket and the Activation Function-2 Domain of Androgen Receptor Revealed by Molecular Dynamics Simulations. J Chem Inf Model 2019; 59:842-857. [DOI: 10.1021/acs.jcim.8b00796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ye Jin
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuwen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaotian Kong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenfang Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huiyong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huidong Yu
- Rongene Pharma Co., Ltd., Shenzhen, Guangdong 518054, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingjun Hou
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
45
|
Zhao JG, Liu JD, Shen PF, Tang X, Sun GX, Zhang XM, Chen JR, Shu KP, Shi M, Zeng H. Prior switching to a second-line nonsteroidal antiandrogen does not impact the therapeutic efficacy of abiraterone acetate in patients with metastatic castration-resistant prostate cancer: a real-world retrospective study. Asian J Androl 2018; 20:545-550. [PMID: 30106011 PMCID: PMC6219304 DOI: 10.4103/aja.aja_58_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/28/2018] [Indexed: 02/05/2023] Open
Abstract
Even in the era of novel targeted agents, switching to a second-line nonsteroidal antiandrogen (NSAA) is still widely used in treating metastatic castration-resistant prostate cancer (mCRPC), especially in undeveloped countries. However, whether prior treatment with a second-line NSAA would impact the efficacy of abiraterone acetate (Abi) remains uncertain. In the current study, 87 mCRPC patients treated with Abi were analyzed. Among them, 21 were treated with a second-line NSAA (from bicalutamide to flutamide) before receiving abiraterone, while the remaining 66 received Abi directly. Therapeutic efficacy of Abi was compared between those with and without prior second-line NSAA using Kaplan-Meier curves, log-rank test, and Cox regression models. The therapeutic efficacy of Abi was similar between those with or without the prior switching treatment of flutamide, in terms of either prostate-specific antigen progression-free survival (PSA-PFS, 5.5 vs 5.6 months, P = 0.967), radiographic progression-free survival (rPFS, 12.8 vs 13.4 months, P = 0.508), overall survival (OS, not reached vs 30.6 months, P = 0.606), or PSA-response rate (71.4% [15/21] vs 60.6% [40/66], P = 0.370). This is the first time that the impact of prior switching of treatment to a second-line NSAA on the efficacy of Abi in mCRPC patients has been addressed. Our data support that, use of prior sequential bicalutamide and flutamide does not seem to preclude response to abiraterone, although larger cohort studies and, ideally, a randomized controlled trial are needed. These findings will facilitate doctors' decision-making in the treatment of mCRPC patients, especially for those with previous experience of switching NSAA second-line treatments in the clinic.
Collapse
Affiliation(s)
- Jin-Ge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian-Dong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng-Fei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Tang
- Department of Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang-Xi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing-Ming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun-Ru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kun-Peng Shu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
46
|
Thangavel C, Perepelyuk M, Boopathi E, Liu Y, Polischak S, Deshpande DA, Rafiq K, Dicker AP, Knudsen KE, Shoyele SA, Den RB. Improvement in Therapeutic Efficacy and Reduction in Cellular Toxicity: Introduction of a Novel Anti-PSMA-Conjugated Hybrid Antiandrogen Nanoparticle. Mol Pharm 2018; 15:1778-1790. [PMID: 29616555 DOI: 10.1021/acs.molpharmaceut.7b01024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Second generation antiandrogens have improved overall survival for men with metastatic castrate resistant prostate cancer; however, the antiandrogens result in suppression of androgen receptor (AR) activity in all tissues resulting in dose limiting toxicity. We sought to overcome this limitation through encapsulation in a prostate specific membrane antigen (PSMA)-conjugated nanoparticle. We designed and characterized a novel nanoparticle containing an antiandrogen, enzalutamide. Selectivity and enhanced efficacy was achieved through coating the particle with PSMA. The PSMA-conjugated nanoparticle was internalized selectively in AR expressing prostate cancer cells. It did not elicit an inflammatory effect. The efficacy of enzalutamide was not compromised through insertion into the nanoparticle; in fact, lower systemic drug concentrations of enzalutamide resulted in comparable clinical activity. Normal muscle cells were not impacted by the PSMA-conjugated containing antiandrogen. This approach represents a novel strategy to increase the specificity and effectiveness of antiandrogen treatment for men with castrate resistant prostate cancer. The ability to deliver higher drug concentrations in prostate cancer cells may translate into improved clinical end points including overall survival.
Collapse
|
47
|
Li X, Zhong Y, Lu J, Axcrona K, Eide L, Syljuåsen RG, Peng Q, Wang J, Zhang H, Goscinski MA, Kvalheim G, Nesland JM, Suo Z. MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features. Oncotarget 2018; 7:40297-40313. [PMID: 27248169 PMCID: PMC5130009 DOI: 10.18632/oncotarget.9610] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/29/2016] [Indexed: 01/19/2023] Open
Abstract
Reducing mtDNA content was considered as a critical step in the metabolism restructuring for cell stemness restoration and further neoplastic development. However, the connections between mtDNA depletion and metabolism reprograming-based cancer cell stemness in prostate cancers are still lack of studies. Here, we demonstrated that human CRPC cell line PC3 tolerated high concentration of the mtDNA replication inhibitor ethidium bromide (EtBr) and the mtDNA depletion triggered a universal metabolic remodeling process. Failure in completing that process caused lethal consequences. The mtDNA depleted (MtDP) PC3 cells could be steadily maintained in the special medium in slow cycling status. The MtDP PC3 cells contained immature mitochondria and exhibited Warburg effect. Furthermore, the MtDP PC3 cells were resistant to therapeutic treatments and contained greater cancer stem cell-like subpopulations: CD44+, ABCG2+, side-population and ALDHbright. In conclusion, these results highlight the association of mtDNA content, mitochondrial function and cancer cell stemness features.
Collapse
Affiliation(s)
- Xiaoran Li
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0379, Norway.,Department of Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Yali Zhong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jie Lu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Karol Axcrona
- Department of Urology, The Akershus University Hospital, Lørenskog, 1478, Norway
| | - Lars Eide
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
| | - Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0379, Norway
| | - Qian Peng
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0379, Norway
| | - Junbai Wang
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0379, Norway
| | - Hongquan Zhang
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, 100191, China
| | - Mariusz Adam Goscinski
- Department of Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Gunnar Kvalheim
- Department of Cell Therapy, Cancer Institute, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0379, Norway
| | - Jahn M Nesland
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0379, Norway.,Department of Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Zhenhe Suo
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0379, Norway.,Department of Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| |
Collapse
|
48
|
Salvino JM, Srikanth YVV, Lou R, Oyer HM, Chen N, Kim FJ. Novel small molecule guanidine Sigma1 inhibitors for advanced prostate cancer. Bioorg Med Chem Lett 2017; 27:2216-2220. [PMID: 28385503 PMCID: PMC5714280 DOI: 10.1016/j.bmcl.2017.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022]
Abstract
Prostate cancer is the most frequently diagnosed malignancy and the leading cause of cancer related death in men. First line therapy for disseminated disease relies on androgen deprivation, leveraging the addiction of these tumors on androgens for both growth and survival. Treatment typically involves antagonizing the androgen receptor (AR) or blocking the synthesis of androgens. Recurrence is common and within 2-3years patients develop castration resistant tumors that become unresponsive to AR-axis targeted therapies. In order to provide a more effective treatment, we are utilizing an approach that targets a key scaffolding protein, Sigma1 (also known as sigma-1 receptor), a unique 26-kilodalton integral membrane protein that is critical in stabilizing the AR. Herein we report on a new series of Sigma1 compounds for lead optimization derived from a hybrid pharmacophore approach.
Collapse
Affiliation(s)
- Joseph M Salvino
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102-1101, USA.
| | - Yellamelli V V Srikanth
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102-1101, USA
| | - Rongliang Lou
- AstaTech, Inc., Keystone Business Park, 2525 Pearl Buck Road, Bristol, PA 19007, USA
| | - Halley M Oyer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102-1101, USA
| | - Nan Chen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102-1101, USA
| | - Felix J Kim
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102-1101, USA
| |
Collapse
|
49
|
Mikhaylenko DS, Efremov GD, Strelnikov VV, Zaletaev DV, Alekseev BY. Somatic Mutation Analyses in Studies of the Clonal Evolution and Diagnostic Targets of Prostate Cancer. Curr Genomics 2017; 18:236-243. [PMID: 28659719 PMCID: PMC5476950 DOI: 10.2174/1389202917666161102095900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/29/2016] [Accepted: 10/26/2016] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PC) is the most common uro-oncological disease in the global population and still requires a more efficient laboratory diagnosis. Point mutations of oncogenes and tumor sup-pressor genes are the most frequent molecular genetic events in carcinogenesis. The mutations are re-sponsible, to a great extent, for the clonal evolution of cancer and can be considered as primary candi-date molecular markers of PC. Using next-generation sequencing to analyze the mutations in PC, the main molecular PC subtypes were identified, which depended on the presence of fusion genes and FOXA1, CHD1, and SPOP point mutations; other driver mutations responsible for the progression of PC subclones were also characterized. This review summarizes the data on early PC genetic markers (an mtDNA deletion, and TMPRSS2:ERG expression), as well as these somatic mutations at later stages of PC. Emphasis is placed on a switch in AR synthesis to a constitutively active variant and the point muta-tions that facilitate PC transition to a castration-refractory state that is resistant to new AR inhibitors. Based on the current whole-exome sequencing data, the frequencies and localizations of the somatic mu-tations that may provide new genetic diagnostic markers and drug targets are described.
Collapse
Affiliation(s)
- Dmitry S Mikhaylenko
- Pathology Department, Molecular Genetics Group, N. Lopatkin Research Institute of Urology and Interventional Radiology - Branch of the National Medical Research Radiological Center, Moscow, Russia.,Laboratory of Human Molecular Genetics, Institute of Molecular Medicine of the Sechenov First Moscow State Medical University, Moscow, Russia
| | - Gennady D Efremov
- Pathology Department, Molecular Genetics Group, N. Lopatkin Research Institute of Urology and Interventional Radiology - Branch of the National Medical Research Radiological Center, Moscow, Russia
| | | | - Dmitry V Zaletaev
- Laboratory of Human Molecular Genetics, Institute of Molecular Medicine of the Sechenov First Moscow State Medical University, Moscow, Russia
| | - Boris Y Alekseev
- Pathology Department, Molecular Genetics Group, N. Lopatkin Research Institute of Urology and Interventional Radiology - Branch of the National Medical Research Radiological Center, Moscow, Russia
| |
Collapse
|
50
|
Qin W, Zheng Y, Qian BZ, Zhao M. Prostate Cancer Stem Cells and Nanotechnology: A Focus on Wnt Signaling. Front Pharmacol 2017; 8:153. [PMID: 28400729 PMCID: PMC5368180 DOI: 10.3389/fphar.2017.00153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the most common cancer among men worldwide. However, current treatments for prostate cancer patients in advanced stage often fail because of relapse. Prostate cancer stem cells (PCSCs) are resistant to most standard therapies, and are considered to be a major mechanism of cancer metastasis and recurrence. In this review, we summarized current understanding of PCSCs and their self-renewal signaling pathways with a specific focus on Wnt signaling. Although multiple Wnt inhibitors have been developed to target PCSCs, their application is still limited by inefficient delivery and toxicity in vivo. Recently, nanotechnology has opened a new avenue for cancer drug delivery, which significantly increases specificity and reduces toxicity. These nanotechnology-based drug delivery methods showed great potential in targeting PCSCs. Here, we summarized current advancement of nanotechnology-based therapeutic strategies for targeting PCSCs and highlighted the challenges and perspectives in designing future therapies to eliminate PCSCs.
Collapse
Affiliation(s)
- Wei Qin
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China
| | - Yongjiang Zheng
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University Guangzhou, China
| | - Bin-Zhi Qian
- Edinburgh Cancer Research UK Centre and MRC University of Edinburgh Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | - Meng Zhao
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|