1
|
Di Spirito A, Balkhi S, Vivona V, Mortara L. Key immune cells and their crosstalk in the tumor microenvironment of bladder cancer: insights for innovative therapies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002304. [PMID: 40177538 PMCID: PMC11964778 DOI: 10.37349/etat.2025.1002304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease associated with high mortality if not diagnosed early. BC is classified into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC), with MIBC linked to poor systemic therapy response and high recurrence rates. Current treatments include transurethral resection with Bacillus Calmette-Guérin (BCG) therapy for NMIBC and radical cystectomy with chemotherapy and/or immunotherapy for MIBC. The tumor microenvironment (TME) plays a critical role in cancer progression, metastasis, and therapeutic efficacy. A comprehensive understanding of the TME's complex interactions holds substantial translational significance for developing innovative treatments. The TME can contribute to therapeutic resistance, particularly in immune checkpoint inhibitor (ICI) therapies, where resistance arises from tumor-intrinsic changes or extrinsic TME factors. Recent advancements in immunotherapy highlight the importance of translational research to address these challenges. Strategies to overcome resistance focus on remodeling the TME to transform immunologically "cold" tumors, which lack immune cell infiltration, into "hot" tumors that respond better to immunotherapy. These strategies involve disrupting cancer-microenvironment interactions, inhibiting angiogenesis, and modulating immune components to enhance anti-tumor responses. Key mechanisms include cytokine involvement [e.g., interleukin-6 (IL-6)], phenotypic alterations in macrophages and natural killer (NK) cells, and the plasticity of cancer-associated fibroblasts (CAFs). Identifying potential therapeutic targets within the TME can improve outcomes for MIBC patients. This review emphasizes the TME's complexity and its impact on guiding novel therapeutic approaches, offering hope for better survival in MIBC.
Collapse
Affiliation(s)
- Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Veronica Vivona
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
2
|
Shah DD, Chorawala MR, Raghani NR, Patel R, Fareed M, Kashid VA, Prajapati BG. Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies. Med Oncol 2025; 42:117. [PMID: 40102282 DOI: 10.1007/s12032-025-02641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Tumor microenvironment (TME) denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. Interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix within the TME create a dynamic ecosystem that can either promote or hinder tumor growth and spread. The TME plays a pivotal role in either promoting or inhibiting tumor growth and dissemination, making it a critical factor to consider in the development of effective cancer therapies. Understanding the intricate interplay within the TME is crucial for devising effective cancer therapies. Combination therapies involving inhibitors of immune checkpoint blockade (ICB), and/or chemotherapy now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment. Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. Cellular and acellular components in tumor microenvironment can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Components in the TME can reprogram tumor behavior and influence responses to treatments, facilitating immune evasion, nutrient deprivation, and therapeutic resistance. Moreover, the TME can influence angiogenesis, promoting the formation of blood vessels that sustain tumor growth. Notably, the TME facilitates immune evasion, establishes a nutrient-deprived milieu, and induces therapeutic resistance, hindering treatment efficacy. A paradigm shift from a cancer-centric model to a TME-centric one has revolutionized cancer research and treatment. However, effectively targeting specific cells or pathways within the TME remains a challenge, as the complexity of the TME poses hurdles in designing precise and effective therapies. This review highlights challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new approaches and technologies to better decipher the tumor microenvironment; and discuss strategies to intervene in the tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA, 20151, USA
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 13713, Riyadh, Saudi Arabia
| | - Vivekanand A Kashid
- MABD Institute of Pharmaceutical Education and Research, Babhulgaon, Yeola, Nashik, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Siddhartha R, Singhai A, Goel A, Garg M. CD105-microvessel density analysis and its clinical value in urothelial carcinoma of bladder patients. Biomarkers 2025; 30:23-36. [PMID: 39668728 DOI: 10.1080/1354750x.2024.2435876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Endoglin/CD105-microvessel density (CD105-MVD) is identified as one of the most potential methods for semi-quantification of angiogenesis in human cancer tissues. Present study aimed to examine the diagnosticand prognostic value of CD105-MVD in two clinically distinct subtypes of urothelial carcinoma of bladder (UCB) namely non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC) patients. METHODS Message expression of endoglin was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and MVD measurement was done by immunohistochemical staining in 90 UCB [NMIBC: 60; MIBC: 30] patients. SEM studies were carried out to examine tumor vasculature and extent of neoangiogenesis in NMIBC and MIBC patients. RESULTS Elevated message expression of CD105 showed statistical significance with tumor stage, grade, smoking/tobacco chewing history in NMIBC andage in MIBC cohort. Higher values of CD105-MVD showed statistical relevance with tumor stage, grade, size, smoking/tobacco chewing history in NMIBC cohort. Kaplan Meier test identified high CD105-MVD as strong predictor of poor RFS in NMIBC patients. CONCLUSIONS Association of CD105 expression and MVD with the clinicohistopathological features as well as poor survival outcomes potentially identify it as a preferred marker of clinical significance in a given cohort of UCB patients.Clinical significanceStrong association of CD105 at message level with the demographics of UCB patients identifies it as a marker of diagnosis in a given cohort of patients.Survival analysis examined CD105-MVD as an independent strong predictor of poor recurrence free survival in NMIBC patients.Present study provides clear evidence of increased vascular density, vascular sprouts proliferation and new blood vessel formation with disease aggressiveness indicating CD105 as a preferred marker of neoangiogenesis in the given cohort of patients.The study describes CD105-MVD as a biomarker of diagnosis and prognosis with the sensitivity of 91.67% and 93.33% in a given cohort of NMIBC and MIBC patients.
Collapse
Affiliation(s)
- Rohit Siddhartha
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Atin Singhai
- Department of Pathology, King George's Medical University, Lucknow, India
| | - Apul Goel
- Department of Urology, King George's Medical University, Lucknow, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
4
|
Yang T, Luo W, Yu J, Zhang H, Hu M, Tian J. Bladder cancer immune-related markers: diagnosis, surveillance, and prognosis. Front Immunol 2024; 15:1481296. [PMID: 39559360 PMCID: PMC11570592 DOI: 10.3389/fimmu.2024.1481296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
As an immune-related tumor type, bladder cancer has been attracting much attention in the study of its markers. In recent years, researchers have made rapid progress in the study of immune-related markers for bladder cancer. Studies have shown that immune-related markers play an important role in the diagnosis, prognosis assessment and treatment of bladder cancer. In addition, the detection of immune-related markers can also be used to evaluate the efficacy of immunotherapy and predict the treatment response of patients. Therefore, in depth study of the expression of immune-related markers in bladder cancer and their application in the clinic is of great significance and is expected to provide new breakthroughs for individualized treatment of bladder cancer. Future studies will focus more on how to detect immune-related markers with low cost and high accuracy, as well as develop new immunotherapeutic strategies to bring better therapeutic outcomes to bladder cancer patients.
Collapse
Affiliation(s)
- Tiantian Yang
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wanru Luo
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jie Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Huiping Zhang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jun Tian
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Hoseini ZS, Zeinalilathori S, Fathi-karkan S, Zeinali S, Rahdar A, Siddiqui B, Kharaba Z, Pandey S. Cell-targeting nanomedicine for bladder cancer: A cellular bioengineering approach for precise drug delivery. J Drug Deliv Sci Technol 2024; 101:106220. [DOI: 10.1016/j.jddst.2024.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Rahman KMM, Bist G, Kumbham S, Foster BA, Woo S, You Y. Mitochondrial targeting improves the selectivity of singlet-oxygen cleavable prodrugs in NMIBC treatment. Photochem Photobiol 2024; 100:1622-1635. [PMID: 38433310 PMCID: PMC11369125 DOI: 10.1111/php.13928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Mitochondria play an essential role in cancer treatment by providing apoptotic signals. Hexyl aminolevulinate, an FDA-approved diagnosis for non-muscle invasive bladder cancer, induces the production of protoporphyrin IX (PpIX) preferentially by mitochondria in cancer cells. Photosensitizer PpIX upon illumination can release active chemotherapy drugs from singlet oxygen-activatable prodrugs. Prodrugs placed close enough to PpIX formed in mitochondria can improve the antitumor efficiency of PpIX-PDT. The preferred uptake of prodrugs by cancer cells and tumors can further enhance the selective damage of cancer cells over non-cancer cells and surrounding normal tissues. Mitochondriotropic prodrugs of anticancer drugs, such as paclitaxel and SN-38, were synthesized using rhodamine, a mitochondrial-targeting moiety. In vitro, the mitochondrial targeting helped achieve preferential cellular uptake in cancer cells. In RT112 cells (human bladder cancer cells), intracellular prodrug concentrations were 2-3 times higher than the intracellular prodrug concentrations in BdEC cells (human bladder epithelial cells), after 2 h incubation. In an orthotopic rat bladder tumor model, mitochondria-targeted prodrugs achieved as much as 34 times higher prodrug diffusion in the tumor area compared to the nontumor bladder area. Overall, mitochondria targeting made prodrugs more effective in targeting cancer cells and tumors over non-tumor areas, thereby reducing nonspecific toxicity.
Collapse
Affiliation(s)
- Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Ganesh Bist
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Soniya Kumbham
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Barbara A. Foster
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| |
Collapse
|
7
|
Samant C, Kale R, Pai KSR, Nandakumar K, Bhonde M. Role of Wnt/β-catenin pathway in cancer drug resistance: Insights into molecular aspects of major solid tumors. Biochem Biophys Res Commun 2024; 729:150348. [PMID: 38986260 DOI: 10.1016/j.bbrc.2024.150348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/β-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/β-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/β-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/β-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/β-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.
Collapse
Affiliation(s)
- Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
8
|
Siddhartha R, Goel A, Singhai A, Garg M. Matrix Metalloproteinases -2 and -9, Vascular Endothelial Growth Factor, Basic Fibroblast Growth Factor and CD105- Micro-Vessel Density are Predictive Markers of Non-Muscle Invasive Bladder Cancer and Muscle Invasive Bladder Cancer Subtypes. Biochem Genet 2024. [DOI: 10.1007/s10528-024-10921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/15/2024] [Indexed: 01/12/2025]
|
9
|
Zhao F, Zhang K, Ma L, Huang Y. Identification of epithelial-related artificial neural network prognostic models for the prediction of bladder cancer prognosis through comprehensive analysis of single-cell and bulk RNA sequencing. Heliyon 2024; 10:e34632. [PMID: 39157397 PMCID: PMC11328080 DOI: 10.1016/j.heliyon.2024.e34632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Background Bladder cancer (BLCA) presents as a heterogeneous epithelial malignancy. Progress in the early detection and effective treatment of BLCA relies heavily on the identification of novel biomarkers. Therefore, the primary goal of this study is to pinpoint potential biomarkers for BLCA through the fusion of single-cell RNA sequencing and RNA sequencing assessments. Furthermore, the aim is to establish practical clinical prognostic models that can facilitate accurate categorization and individualized therapy for patients. Methods In this research, training sets were acquired from the TCGA database, whereas validation sets (GSE32894) and single-cell datasets (GSE135337) were extracted from the GEO database. Single-cell analysis was utilized to obtain characteristic subpopulations along with their associated marker genes. Subsequently, a novel BLCA subtype was identified within TCGA-BLCA. Furthermore, an artificial neural network prognostic model was constructed within the TCGA-BLCA cohort and subsequently verified utilizing a validation set. Two machine learning algorithms were employed to screen hub genes. QRT-qPCR was performed to detect the gene expression levels utilized in the construction of prognostic models across various cell lines. Additionally, the cMAP database and molecular docking were utilized for searching small molecule drugs. Results The results of single-cell analysis revealed the presence of epithelial cells in multiple subpopulations, with 1579 marker genes selected for subsequent investigations. Subsequently, four epithelial cell subtypes were identified within the TCGA-BLCA cohort. Notably, cluster A exhibited a significant survival advantage. Concurrently, an artificial neural network prognostic model comprising 17 feature genes was constructed, accurately stratifying patient risk. Patients categorized in the low-risk group demonstrated a considerable survival advantage. The ROC analysis suggested that the model has strong prognostic ability. Furthermore, the findings of the validation group align consistently with those from the training group. Two types of machine learning algorithms screened NFIC as hub genes. Forskolin, a small molecule drug that binds to NFIC, was identified by employing a cMAP database and molecular docking. Conclusion The analysis results supplement the research on the role of epithelial cells in BLCA. An artificial neural network prognostic model containing 17 characteristic genes demonstrates the capability to accurately stratify patient risk, thereby potentially improving clinical decision-making and optimizing personalized therapeutic approaches.
Collapse
Affiliation(s)
- Fan Zhao
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Kun Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yeqing Huang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
10
|
Yosef M, Bunimovich-Mendrazitsky S. Mathematical model of MMC chemotherapy for non-invasive bladder cancer treatment. Front Oncol 2024; 14:1352065. [PMID: 38884094 PMCID: PMC11176538 DOI: 10.3389/fonc.2024.1352065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 06/18/2024] Open
Abstract
Mitomycin-C (MMC) chemotherapy is a well-established anti-cancer treatment for non-muscle-invasive bladder cancer (NMIBC). However, despite comprehensive biological research, the complete mechanism of action and an ideal regimen of MMC have not been elucidated. In this study, we present a theoretical investigation of NMIBC growth and its treatment by continuous administration of MMC chemotherapy. Using temporal ordinary differential equations (ODEs) to describe cell populations and drug molecules, we formulated the first mathematical model of tumor-immune interactions in the treatment of MMC for NMIBC, based on biological sources. Several hypothetical scenarios for NMIBC under the assumption that tumor size correlates with cell count are presented, depicting the evolution of tumors classified as small, medium, and large. These scenarios align qualitatively with clinical observations of lower recurrence rates for tumor size ≤ 30[mm] with MMC treatment, demonstrating that cure appears up to a theoretical x[mm] tumor size threshold, given specific parameters within a feasible biological range. The unique use of mole units allows to introduce a new method for theoretical pre-treatment assessments by determining MMC drug doses required for a cure. In this way, our approach provides initial steps toward personalized MMC chemotherapy for NMIBC patients, offering the possibility of new insights and potentially holding the key to unlocking some of its mysteries.
Collapse
Affiliation(s)
- Marom Yosef
- Department of Mathematics, Ariel University, Ariel, Israel
| | | |
Collapse
|
11
|
Wang H, Liu J, Tang R, Hu J, Liu M, Wang J, Zhang J, Hou H. Deciphering the significance of anoikis in bladder cancer and systematic analysis of S100A7 as a potential therapeutic target. Eur J Med Res 2024; 29:52. [PMID: 38217031 PMCID: PMC10785515 DOI: 10.1186/s40001-024-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Bladder cancer is an epidemic and life-threating urologic carcinoma. Anoikis is a unusual type of programmed cell death which plays a vital role in tumor survival, invasion and metastasis. Nevertheless, the relationship between anoikis and bladder cancer has not been understood thoroughly. METHODS We downloaded the transcriptome and clinical information of BLCA patients from TCGA and GEO databases. Then, we analyzed different expression of anoikis-related genes and established a prognostic model based on TCGA database by univariate Cox regression, lasso regression, and multivariate Cox regression. Then the Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves were performed. GEO database was used for external validation. BLCA patients in TCGA database were divided into two subgroups by non-negative matrix factorization (NMF) classification. Survival analysis, different gene expression, immune cell infiltration and drug sensitivity were calculated. Finally, we verified the function of S100A7 in two BLCA cell lines. RESULTS We developed a prognostic risk model based on three anoikis-related genes including TPM1, RAC3 and S100A7. The overall survival of BLCA patients in low-risk groups was significantly better than high-risk groups in training sets, test sets and external validation sets. Subsequently, the checkpoint and immune cell infiltration had significant difference between two groups. Then we identified two subtypes (CA and CB) through NMF analysis and found CA had better OS and PFS than CB. Besides, the accuracy of risk model was verified by ROC analysis. Finally, we identified that knocking down S100A7 gene expression restrained the proliferation and invasion of bladder cancer cells. CONCLUSION We established and validated a bladder cancer prognostic model consisting of three genes, which can effectively evaluate the prognosis of bladder cancer patients. Additionally, through cellular experiments, we demonstrated the significant role of S100A7 in the metastasis and invasion of bladder cancer, suggesting its potential as a novel target for future treatments.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
| | - Jianyong Liu
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
| | - Runhua Tang
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Jie Hu
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Ming Liu
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Jianye Wang
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
| | - Jingwen Zhang
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Huimin Hou
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China.
| |
Collapse
|
12
|
Lasota M, Jankowski D, Wiśniewska A, Sarna M, Kaczor-Kamińska M, Misterka A, Szczepaniak M, Dulińska-Litewka J, Górecki A. The Potential of Congo Red Supplied Aggregates of Multitargeted Tyrosine Kinase Inhibitor (Sorafenib, BAY-43-9006) in Enhancing Therapeutic Impact on Bladder Cancer. Int J Mol Sci 2023; 25:269. [PMID: 38203437 PMCID: PMC10779242 DOI: 10.3390/ijms25010269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Bladder cancer is a common malignancy associated with high recurrence rates and potential progression to invasive forms. Sorafenib, a multi-targeted tyrosine kinase inhibitor, has shown promise in anti-cancer therapy, but its cytotoxicity to normal cells and aggregation in solution limits its clinical application. To address these challenges, we investigated the formation of supramolecular aggregates of sorafenib with Congo red (CR), a bis-azo dye known for its supramolecular interaction. We analyzed different mole ratios of CR-sorafenib aggregates and evaluated their effects on bladder cancer cells of varying levels of malignancy. In addition, we also evaluated the effect of the test compounds on normal uroepithelial cells. Our results demonstrated that sorafenib inhibits the proliferation of bladder cancer cells and induces apoptosis in a dose-dependent manner. However, high concentrations of sorafenib also showed cytotoxicity to normal uroepithelial cells. In contrast, the CR-BAY aggregates exhibited reduced cytotoxicity to normal cells while maintaining anti-cancer activity. The aggregates inhibited cancer cell migration and invasion, suggesting their potential for metastasis prevention. Dynamic light scattering and UV-VIS measurements confirmed the formation of stable co-aggregates with distinctive spectral properties. These CR-sorafenib aggregates may provide a promising approach to targeted therapy with reduced cytotoxicity and improved stability for drug delivery in bladder cancer treatment. This work shows that the drug-excipient aggregates proposed and described so far, as Congo red-sorafenib, can be a real step forward in anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Lasota
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
| | - Daniel Jankowski
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Krakow, Poland;
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
| | - Anna Misterka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
| | - Mateusz Szczepaniak
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| |
Collapse
|
13
|
Nitta Y, Fujii T, Uchiyama T, Sugimoto A, Nishikawa T, Takeda M, Miyake M, Shimada K, Fujimoto K. Overexpression of MicroRNA-138 Affects the Proliferation and Invasion of Urothelial Carcinoma Cells by Suppressing SOX9 Expression. Biomedicines 2023; 11:3064. [PMID: 38002064 PMCID: PMC10669193 DOI: 10.3390/biomedicines11113064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
SRY-box transcription factor 9 (SOX9) is important for sexual differentiation, chondrogenic differentiation, and cell proliferation in cancer. It acts as a target molecule of microRNA (miR)-138 in various tumors and is associated with tumor development and growth. In this study, we analyzed the functions of miR-138 and SOX9 in urothelial carcinoma. SOX9 was highly expressed in invasive urothelial carcinoma tissues. miR-138 precursor transfection of T24 and UMUC2 cells significantly decreased SOX9 expression, indicating that SOX9 is a miR-138 target in urothelial carcinoma. Moreover, miR-138 precursor or SOX9 small interfering RNA (siRNA) transfection decreased the proliferation of urothelial carcinoma cell lines. To further confirm that miR-138-SOX9 signaling is involved in cell proliferation and invasion, urothelial carcinoma cells were transfected with the miR-138 precursor or SOX9 siRNA. This transfection reduced the proliferation and invasion of cells via the promotion of autophagy and apoptosis and G0/G1 cell cycle arrest. These results suggest that miR-138-SOX9 signaling modulates the growth and invasive potential of urothelial carcinoma cells.
Collapse
Affiliation(s)
- Yuji Nitta
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara 634-8521, Japan
| | - Tomomi Fujii
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara 634-8521, Japan
- Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan
| | - Tomoko Uchiyama
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara 634-8521, Japan
| | - Aya Sugimoto
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara 634-8521, Japan
| | - Takeshi Nishikawa
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara 634-8521, Japan
- Department of Central Clinical Laboratory, Nara Medical University Hospital, Nara 634-8521, Japan
| | - Maiko Takeda
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara 634-8521, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University School of Medicine, Nara 634-8521, Japan
| | - Keiji Shimada
- Department of Diagnostic Pathology, Nara City Hospital, Nara 630-8305, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University School of Medicine, Nara 634-8521, Japan
| |
Collapse
|
14
|
Li X, Fu C, Li G, He H. RNA-seq reveals novel mechanistic targets of Livin in bladder cancer. BMC Urol 2023; 23:26. [PMID: 36855119 PMCID: PMC9976429 DOI: 10.1186/s12894-023-01194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Bladder cancer is a very common malignancy with a high recurrence rate. The survival of patients with muscle-invasive bladder cancer is poor, and new therapies are needed. Livin has been reported to be upregulated in bladder cancer and influence the proliferation of cancer cells. MATERIALS AND METHODS The Livin gene in human bladder cancer cell line T24 was knocked out, and the differentially expressed genes were identified by RNA-seq and qPCR. RESULTS Livin knockdown affects gene expression and has strong negative effects on some cancer-promoting pathways. Furthermore, combined with bladder cancer clinical sample data downloaded from TCGA and GEO, 2 co-up-regulated genes and 58 co-down-regulated genes were identified and validated, which were associated with cancer proliferation and invasion. CONCLUSION All these results suggest that Livin plays an important role in bladder cancer and could be a potential anticancer target in clinical therapy.
Collapse
Affiliation(s)
- Xianwen Li
- Department of Urology, Shenzhen Yantian District People's Hospital, 2010 Wu Tong Road, Yantian District, Shenzhen, 518081, Guangdong Province, China.
| | - Chunhua Fu
- grid.440601.70000 0004 1798 0578Department of Intensive Care Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guofeng Li
- Department of Urology, Shenzhen Yantian District People’s Hospital, 2010 Wu Tong Road, Yantian District, Shenzhen, 518081 Guangdong Province China
| | - Haolin He
- Department of Urology, Shenzhen Yantian District People’s Hospital, 2010 Wu Tong Road, Yantian District, Shenzhen, 518081 Guangdong Province China
| |
Collapse
|
15
|
Xu Y, Tong Y, Lei Z, Zhu J, Wan L. Abietic acid induces ferroptosis via the activation of the HO-1 pathway in bladder cancer cells. Biomed Pharmacother 2023; 158:114154. [PMID: 36584429 DOI: 10.1016/j.biopha.2022.114154] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) is a common urological malignancy that still lacks effective treatments. Abietic acid (AA) is an abietane diterpene that possesses various biological activities, including antitumor activity. This study aimed at evaluating the effects of AA on BC cells. MATERIALS AND METHODS The 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to assess the effects of AA on the viability of BC cells. Annexin-V and FITC staining was used to assess cellular death. The type of cell death was determined by the administration of various specific cell death inhibitors. Commercial kits were used to measure the levels of reactive oxygen species (ROS), intracellular iron, malondialdehyde (MDA), and glutathione (GSH). Real-time polymerase chain reaction (RT-PCR) and western blot analysis were used to assay mRNA and protein levels, respectively. The role of glutathione peroxidase 4 (GPX4) in the antitumor effects of AA was evaluated using the forced expression of GPX4 in BC cells. The impact of HO-1 on the antitumor effects of AA was examined by gene silencing and pharmacological inhibition of the protein. Finally, the antitumor effects of AA were evaluated in xenograft models. RESULTS AA selectively inhibited the viability of BC cells but not normal cells. AA-induced ferroptosis in BC cells was evidenced by the upregulation of ROS, intracellular iron, and MDA. AA treatment led to the downregulation of GPX4 and the upregulation of HO-1 in BC cells. Forced expression of GPX4 or inhibition of HO-1 resulted in decreased ferroptosis triggered by AA in BC cells. AA also showed synergistic effects with various chemotherapeutic agents against BC and inhibited the growth of BC cells in vivo. CONCLUSION This study revealed AA-induced ferroptosis in BC cells both in vitro and in vivo. AA might be applied as a promising agent for the treatment of BC.
Collapse
Affiliation(s)
- Yi Xu
- Department of Urology, Department of Science & Technology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China.
| | - Yanyue Tong
- Department of Urology, Department of Science & Technology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Zhangming Lei
- Department of Urology, Department of Science & Technology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Jianyong Zhu
- Department of Urology, Department of Science & Technology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Lijun Wan
- Department of Urology, Department of Science & Technology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China.
| |
Collapse
|
16
|
Zhang YY, Li XW, Li XD, Zhou TT, Chen C, Liu JW, Wang L, Jiang X, Wang L, Liu M, Zhao YG, Li SD. Comprehensive analysis of anoikis-related long non-coding RNA immune infiltration in patients with bladder cancer and immunotherapy. Front Immunol 2022; 13:1055304. [PMID: 36505486 PMCID: PMC9732092 DOI: 10.3389/fimmu.2022.1055304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background Anoikis is a form of programmed cell death or programmed cell death(PCD) for short. Studies suggest that anoikis involves in the decisive steps of tumor progression and cancer cell metastasis and spread, but what part it plays in bladder cancer remains unclear. We sought to screen for anoikis-correlated long non-coding RNA (lncRNA) so that we can build a risk model to understand its ability to predict bladder cancer prognosis and the immune landscape. Methods We screened seven anoikis-related lncRNAs (arlncRNAs) from The Cancer Genome Atlas (TCGA) and designed a risk model. It was validated through ROC curves and clinicopathological correlation analysis, and demonstrated to be an independent factor of prognosis prediction by uni- and multi-COX regression. In the meantime, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, immune infiltration, and half-maximal inhibitory concentration prediction (IC50) were implemented with the model. Moreover, we divided bladder cancer patients into three subtypes by consensus clustering analysis to further study the differences in prognosis, immune infiltration level, immune checkpoints, and drug susceptibility. Result We designed a risk model of seven arlncRNAs, and proved its accuracy using ROC curves. COX regression indicated that the model might be an independent prediction factor of bladder cancer prognosis. KEGG enrichment analysis showed it was enriched in tumors and immune-related pathways among the people at high risk. Immune correlation analysis and drug susceptibility results indicated that it had higher immune infiltration and might have a better immunotherapy efficacy for high-risk groups. Of the three subtypes classified by consensus clustering analysis, cluster 3 revealed a positive prognosis, and cluster 2 showed the highest level of immune infiltration and was sensitive to most chemistries. This is helpful for us to discover more precise immunotherapy for bladder cancer patients. Conclusion In a nutshell, we found seven arlncRNAs and built a risk model that can identify different bladder cancer subtypes and predict the prognosis of bladder cancer patients. Immune-related and drug sensitivity researches demonstrate it can provide individual therapeutic schedule with greater precision for bladder cancer patients.
Collapse
Affiliation(s)
- Yao-Yu Zhang
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China,Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Wei Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiao-Dong Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China,Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ting-Ting Zhou
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Chao Chen
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Ji-Wen Liu
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Li Wang
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xin Jiang
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Liang Wang
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Ming Liu
- Department of Urology, Xuanhan Chinese Medicine Hospital, Dazhou, China
| | - You-Guang Zhao
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China,*Correspondence: You-Guang Zhao, ; Sha-dan Li,
| | - Sha-dan Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China,Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: You-Guang Zhao, ; Sha-dan Li,
| |
Collapse
|
17
|
Singh R, Singh UP, Agrawal V, Garg M. Epithelial-to-mesenchymal transition based diagnostic and prognostic signature markers in non-muscle invasive and muscle invasive bladder cancer patients. Mol Biol Rep 2022; 49:7541-7556. [PMID: 35593896 DOI: 10.1007/s11033-022-07563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Diagnostic and prognostic significance of epithelial-to-mesenchymal transition (EMT) associated biomarkers are evaluated in a cohort of NMIBC (non-muscle invasive bladder cancer) and MIBC (muscle invasive bladder cancer) patients. METHODS AND RESULTS Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC) staining were carried out in 100 tumor specimens (59 NMIBC and 41 MIBC). The expressions of the epithelial marker, mesenchymal markers and EMT-activating transcription factors (EMT-ATFs) were determined at transcriptome and protein level followed by their statistical associations with clinicohistopathological variables of the patients. Transcriptomic expression analysis showed statistical relevance of tumor stage with increased Twist and Zeb-1; tumor type with reduced E-cadherin and increased Snail; and smoking/tobacco chewing status (S/TC) of patients with increased N-cadherin and Snail in NMIBC patients. Tumor grade with reduced message E-cadherin, gain of N-cadherin, Snail, Twist and Zeb-1; patients' age with reduced E-cadherin and Twist gain; and tumor type with increased message N-cadherin exhibited associations in MIBC patients. Protein expression analysis identified statistical relevance of tumor grade with nuclear gain of Snail and Twist; and nuclear gain of Slug with S/TC status of NMIBC patients. Novel gain of membranous Vimentin deduced association with patients' age in MIBC patients. Survival analysis identified novel Vimentin as the positive predictor of short progression free survival (PFS) and short overall survival (OS) in MIBC patients. Study established altered EMT profile as the independent negative predictor of short recurrence free survival (RFS) in NMIBC patients and positive predictor of short PFS and OS in MIBC patients. CONCLUSIONS EMT associated biomarkers could provide diagnostic and prognostic risk stratification and hence could be of importance in the clinical management of bladder cancer patients.
Collapse
Affiliation(s)
- R Singh
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - U P Singh
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - V Agrawal
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - M Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
18
|
Matsue T, Gi M, Shiota M, Tachibana H, Suzuki S, Fujioka M, Kakehashi A, Yamamoto T, Kato M, Uchida J, Wanibuchi H. The carbonic anhydrase inhibitor acetazolamide inhibits urinary bladder cancers via suppression of β-catenin signaling. Cancer Sci 2022; 113:2642-2653. [PMID: 35723039 PMCID: PMC9357660 DOI: 10.1111/cas.15467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/21/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Carbonic anhydrases (CAs) play an important role in maintaining pH homeostasis. We previously demonstrated that overexpression of CA2 was associated with invasion and progression of urothelial carcinoma (UC) in humans. The purpose of the present study was to evaluate the effects of the CA inhibitor acetazolamide (Ace) on N‐butyl‐N‐(4‐hydroxybutyl)nitrosamine (BBN)‐induced bladder carcinogenesis in mice and explore the function of CA2 in muscle invasion by UC. Male mice were treated with 0.025% (experiment 1) or 0.05% BBN (experiment 2) in their drinking water for 10 weeks, then treated with cisplatin (Cis), Ace, or Cis plus Ace for 12 weeks. In experiment 1, the overall incidence of BBN‐induced UCs was significantly decreased in the BBN→Ace and BBN→Cis+Ace groups. In experiment 2, the overall incidence of BBN‐induced UCs was significantly decreased in the BBN→Cis+Ace group, and the incidence of muscle invasive UC was significantly decreased in both the BBN→Ace and the BBN→Cis+Ace groups. We also show that overexpression of CA2 by human UC cells T24 and UMUC3 significantly increased their migration and invasion capabilities, and that Ace significantly inhibited migration and invasion by CA2‐overexpressing T24 and UMUC3 cells. These data demonstrate a functional association of CA2 with UC development and progression, confirming the association of CA2 with UC that we had shown previously by immunohistochemical analysis of human UC specimens and proteome analysis of BBN‐induced UC in rats. Our finding that inhibition of CA2 inhibits UC development and muscle invasion also directly confirms that CA2 is a potential therapeutic target for bladder cancers.
Collapse
Affiliation(s)
- Taisuke Matsue
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.,Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.,Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Shiota
- Department of Molecular Biology of Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hirokazu Tachibana
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomoki Yamamoto
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.,Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Minoru Kato
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Junji Uchida
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Huang CS, Tsai CH, Yu CP, Wu YS, Yee MF, Ho JY, Yu DS. Long Noncoding RNA LINC02470 Sponges MicroRNA-143-3p and Enhances SMAD3-Mediated Epithelial-to-Mesenchymal Transition to Promote the Aggressive Properties of Bladder Cancer. Cancers (Basel) 2022; 14:cancers14040968. [PMID: 35205713 PMCID: PMC8870681 DOI: 10.3390/cancers14040968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Long noncoding RNAs (lncRNAs) were proposed as novel tumor prognostic markers, including for predicting bladder cancer progression, and the competing endogenous RNA (ceRNA) hypothesis conceived an accessible entry point to discover potential lncRNA candidates. This study indicated that LINC02470 promotes bladder cancer cell viability, migration, invasion, and in vivo tumorigenicity by sponging miR-143-3p and consequently rescuing SMAD3 translation to activate the TGF-β-induced EMT process. These data demonstrate that the LINC02470–miR-143-3p–SMAD3 ceRNA axis directly regulates the major transcription factor of TGF-β signaling, SMAD3, thereby inducing the EMT process in bladder cancer and enhancing the aggressiveness of bladder cancer cells. Abstract Bladder cancer progression and metastasis have become major threats in clinical practice, increasing mortality and therapeutic refractoriness; recently, epigenetic dysregulation of epithelial-to-mesenchymal transition (EMT)-related signaling pathways has been explored. However, research in the fields of long noncoding RNA (lncRNA) and competing endogenous RNA (ceRNA) regulation in bladder cancer progression is just beginning. This study was designed to determine potential EMT-related ceRNA regulation in bladder cancer progression and elucidate the underlying mechanisms that provoke aggressiveness. After screening the intersection of bioinformatic pipelines, LINC02470 was identified as the most upregulated lncRNA during bladder cancer initiation and progression. Both in vitro and in vivo biological effects indicated that LINC02470 promotes bladder cancer cell viability, migration, invasion, and tumorigenicity. On a molecular level, miR-143-3p directly targets and reduces both LINC02470 and SMAD3 RNA expression. Therefore, the LINC02470–miR-143-3p–SMAD3 ceRNA axis rescues SMAD3 translation upon LINC02470 sponging miR-143-3p, and SMAD3 consequently activates the TGF-β-induced EMT process. In conclusion, this is the first study to demonstrate that LINC02470 plays a pivotally regulatory role in the promotion of TGF-β-induced EMT through the miR-143-3p/SMAD3 axis, thereby aggravating bladder cancer progression. Our study warrants further investigation of LINC02470 as an indicatively prognostic marker of bladder cancer.
Collapse
Affiliation(s)
- Cheng-Shuo Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe 114, Taiwan; (C.-S.H.); (C.-P.Y.); (Y.-S.W.)
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan
| | | | - Cheng-Ping Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe 114, Taiwan; (C.-S.H.); (C.-P.Y.); (Y.-S.W.)
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan
| | - Ying-Si Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe 114, Taiwan; (C.-S.H.); (C.-P.Y.); (Y.-S.W.)
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Fong Yee
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan;
| | - Jar-Yi Ho
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe 114, Taiwan; (C.-S.H.); (C.-P.Y.); (Y.-S.W.)
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (J.-Y.H.); (D.-S.Y.)
| | - Dah-Shyong Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe 114, Taiwan; (C.-S.H.); (C.-P.Y.); (Y.-S.W.)
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (J.-Y.H.); (D.-S.Y.)
| |
Collapse
|
20
|
Packeiser EM, Taher L, Kong W, Ernst M, Beck J, Hewicker-Trautwein M, Brenig B, Schütz E, Murua Escobar H, Nolte I. RNA-seq of nine canine prostate cancer cell lines reveals diverse therapeutic target signatures. Cancer Cell Int 2022; 22:54. [PMID: 35109825 PMCID: PMC8812184 DOI: 10.1186/s12935-021-02422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Canine prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) are typically characterized by metastasis and chemoresistance. Cell lines are important model systems for developing new therapeutic strategies. However, as they adapt to culturing conditions and undergo clonal selection, they can diverge from the tissue from which they were originally derived. Therefore, a comprehensive characterization of cell lines and their original tissues is paramount. METHODS This study compared the transcriptomes of nine canine cell lines derived from PAC, PAC metastasis and TCC to their respective original primary tumor or metastasis tissues. Special interests were laid on cell culture-related differences, epithelial to mesenchymal transition (EMT), the prostate and bladder cancer pathways, therapeutic targets in the PI3K-AKT signaling pathway and genes correlated with chemoresistance towards doxorubicin and carboplatin. RESULTS Independent analyses for PAC, PAC metastasis and TCC revealed 1743, 3941 and 463 genes, respectively, differentially expressed in the cell lines relative to their original tissues (DEGs). While genes associated with tumor microenvironment were mostly downregulated in the cell lines, patient-specific EMT features were conserved. Furthermore, examination of the prostate and bladder cancer pathways revealed extensive concordance between cell lines and tissues. Interestingly, all cell lines preserved downstream PI3K-AKT signaling, but each featured a unique therapeutic target signature. Additionally, resistance towards doxorubicin was associated with G2/M cell cycle transition and cell membrane biosynthesis, while carboplatin resistance correlated with histone, m- and tRNA processing. CONCLUSION Comparative whole-transcriptome profiling of cell lines and their original tissues identifies models with conserved therapeutic target expression. Moreover, it is useful for selecting suitable negative controls, i.e., cell lines lacking therapeutic target expression, increasing the transfer efficiency from in vitro to primary neoplasias for new therapeutic protocols. In summary, the dataset presented here constitutes a rich resource for canine prostate and bladder cancer research.
Collapse
Affiliation(s)
- Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Weibo Kong
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Mathias Ernst
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | - Bertram Brenig
- University of Göttingen, Institute of Veterinary Medicine, Göttingen, Germany
| | | | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany.
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany.
- Comprehensive Cancer Center Mecklenburg-Vorpommern (CCC-MV), Campus Rostock, University of Rostock, 18057, Rostock, Germany.
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
21
|
Effects of Anti-Cancer Drug Sensitivity-Related Genetic Differences on Therapeutic Approaches in Refractory Papillary Thyroid Cancer. Int J Mol Sci 2022; 23:ijms23020699. [PMID: 35054884 PMCID: PMC8776099 DOI: 10.3390/ijms23020699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) includes tumors of follicular cells; it ranges from well differentiated TC (WDTC) with generally favorable prognosis to clinically aggressive poorly differentiated TC (PDTC) and undifferentiated TC (UTC). Papillary thyroid cancer (PTC) is a WDTC and the most common type of thyroid cancer that comprises almost 70–80% of all TC. PTC can present as a solid, cystic, or uneven mass that originates from normal thyroid tissue. Prognosis of PTC is excellent, with an overall 10-year survival rate >90%. However, more than 30% of patients with PTC advance to recurrence or metastasis despite anti-cancer therapy; consequently, systemic therapy is limited, which necessitates expansion of improved clinical approaches. We strived to elucidate genetic distinctions due to patient-derived anti-cancer drug-sensitive or -resistant PTC, which can support in progress novel therapies. Patients with histologically proven PTC were evaluated. PTC cells were gained from drug-sensitive and -resistant patients and were compared using mRNA-Seq. We aimed to assess the in vitro and in vivo synergistic anti-cancer effects of a novel combination therapy in patient-derived refractory PTC. This combination therapy acts synergistically to promote tumor suppression compared with either agent alone. Therefore, genetically altered combination therapy might be a novel therapeutic approach for refractory PTC.
Collapse
|
22
|
Duan X, Wang L, Wang Z, Wei W, Wang M, Ding D. lncRNA PGM5-AS1 inhibits the progression of bladder cancer by regulating miR-587/SLIT3 axis. Crit Rev Eukaryot Gene Expr 2022; 32:9-22. [DOI: 10.1615/critreveukaryotgeneexpr.2022042376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Paramanantham A, Jung EJ, Kim HJ, Jeong BK, Jung JM, Kim GS, Chan HS, Lee WS. Doxorubicin-Resistant TNBC Cells Exhibit Rapid Growth with Cancer Stem Cell-like Properties and EMT Phenotype, Which Can Be Transferred to Parental Cells through Autocrine Signaling. Int J Mol Sci 2021; 22:12438. [PMID: 34830320 PMCID: PMC8623267 DOI: 10.3390/ijms222212438] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that breast cancer stem cells (BCSCs), and epithelial-mesenchymal transition (EMT) may be involved in resistance to doxorubicin. However, it is unlear whether the doxorubicin-induced EMT and expansion of BCSCs is related to cancer dormancy, or outgrowing cancer cells with maintaining resistance to doxorubicin, or whether the phenotypes can be transferred to other doxorubicin-sensitive cells. Here, we characterized the phenotype of doxorubicin-resistant TNBC cells while monitoring the EMT process and expansion of CSCs during the establishment of doxorubicin-resistant MDA-MB-231 human breast cancer cells (DRM cells). In addition, we assessed the potential signaling associated with the EMT process and expansion of CSCs in doxorubicin-resistance of DRM cells. DRM cells exhibited morphological changes from spindle-shaped MDA-MB-231 cells into round-shaped giant cells. They exhibited highly proliferative, EMT, adhesive, and invasive phenotypes. Molecularly, they showed up-regulation of Cyclin D1, mesenchymal markers (β-catenin, and N-cadherin), MMP-2, MMP-9, ICAM-1 and down-regulation of E-cadherin. As the molecular mechanisms responsible for the resistance to doxorubicin, up-regulation of EGFR and its downstream signaling, were suggested. AKT and ERK1/2 expression were also increased in DRM cells with the advancement of resistance to doxorubicin. Furthermore, doxorubicin resistance of DRM cells can be transferred by autocrine signaling. In conclusion, DRM cells harbored EMT features with CSC properties possessing increased proliferation, invasion, migration, and adhesion ability. The doxorubicin resistance, and doxorubicin-induced EMT and CSC properties of DRM cells, can be transferred to parental cells through autocrine signaling. Lastly, this feature of DRM cells might be associated with the up-regulation of EGFR.
Collapse
Affiliation(s)
- Anjugam Paramanantham
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea; (A.P.); (E.-J.J.)
- School of Veterinary and Institute of Life Science, Gyeongsang National University, 900 Gajwadong, Jinju 660-701, Korea
| | - Eun-Joo Jung
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea; (A.P.); (E.-J.J.)
| | - Hye-Jung Kim
- Departments of Pharmacology, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea;
| | - Bae-Kwon Jeong
- Departments of Radiation Oncology, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea;
| | - Jin-Myung Jung
- Departments of Neurosurgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea;
| | - Gon-Sup Kim
- School of Veterinary and Institute of Life Science, Gyeongsang National University, 900 Gajwadong, Jinju 660-701, Korea
| | - Hong-Soon Chan
- Department of Surgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea;
| | - Won-Sup Lee
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 90 Chilam-dong, Jinju 660-702, Korea; (A.P.); (E.-J.J.)
| |
Collapse
|
24
|
Tumor Heterogeneity and Consequences for Bladder Cancer Treatment. Cancers (Basel) 2021; 13:cancers13215297. [PMID: 34771460 PMCID: PMC8582570 DOI: 10.3390/cancers13215297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Bladder cancer is a heterogeneous disease that is composed of epithelia with varying transcriptional, mutational and lineage signatures. The epithelia of bladder tumors can also undergo pronounced changes in transcriptional and phenotypical qualities in response to progression, treatment related stresses and cues from the tumor microenvironment (TME). We hypothesize that changes in epithelial tumor heterogeneity (EpTH) occur due to the evolving content of epithelial subpopulations through both Darwinian and Lamarckian-like natural selection processes. We further conjecture that lineage-defined subpopulations can change through nongenomic and genomic cellular mechanisms that include cellular plasticity and acquired driver mutations, respectively. We propose that such processes are dynamic and contribute towards clinical treatment challenges including progression to drug resistance. In this article, we assess mechanisms that may support dynamic tumor heterogeneity with the overall goal of emphasizing the application of these concepts to the clinical setting. Abstract Acquired therapeutic resistance remains a major challenge in cancer management and associates with poor oncological outcomes in most solid tumor types. A major contributor is tumor heterogeneity (TH) which can be influenced by the stromal; immune and epithelial tumor compartments. We hypothesize that heterogeneity in tumor epithelial subpopulations—whether de novo or newly acquired—closely regulate the clinical course of bladder cancer. Changes in these subpopulations impact the tumor microenvironment including the extent of immune cell infiltration and response to immunotherapeutics. Mechanisms driving epithelial tumor heterogeneity (EpTH) can be broadly categorized as mutational and non-mutational. Mechanisms regulating lineage plasticity; acquired cellular mutations and changes in lineage-defined subpopulations regulate stress responses to clinical therapies. If tumor heterogeneity is a dynamic process; an increased understanding of how EpTH is regulated is critical in order for clinical therapies to be more sustained and durable. In this review and analysis, we assess the importance and regulatory mechanisms governing EpTH in bladder cancer and the impact on treatment response.
Collapse
|
25
|
Shang D, Liu Y, Xu X, Chen Z, Wang D. Diagnostic value comparison of CellDetect, fluorescent in situ hybridization (FISH), and cytology in urothelial carcinoma. Cancer Cell Int 2021; 21:465. [PMID: 34488763 PMCID: PMC8419965 DOI: 10.1186/s12935-021-02169-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background To evaluate the clinical effectiveness of a novel CellDetect staining technique, compared with fluorescent in situ hybridization (FISH), and urine cytology, in the diagnosis of urothelial carcinoma (UC). Methods A total of 264 patients with suspicious UC were enrolled in this study. All tissue specimens were collected by biopsy or surgery. Urine specimen was obtained for examinations prior to the surgical procedure. CellDetect staining was carried out with CellDetect kit, and FISH was performed with UroVysion detection kit, according to the manufacturer’s instructions. For urine cytology, all specimens were centrifuged using the cytospin method, and the slides were stained by standard Papanicolaou stain. Results In this study, there were 128 cases of UC and 136 cases of non-UC, with no significant difference in gender and age between the two groups. Results for sensitivity of CellDetect, FISH, and urine cytology were 82.8%, 83.6%, and 39.8%, respectively. The specificity of the three techniques were 88.2%, 90.4%, and 86.0%, respectively. The sensitivity of CellDetect and FISH are significantly superior compared to the conventional urine cytology; however, there was no significant difference in specificity among three staining techniques. In addition, the sensitivity of CellDetect in lower urinary tract UC, upper urinary tract UC, non-muscle-invasive bladder cancer (NMIBC), and muscle-invasive bladder cancer (MIBC) were 83.3%, 81.8%, 83.5%, and 72.0%, respectively. The screening ability of CellDetect has no correlation with tumor location and the tumor stage. The sensitivity of CellDetect in low-grade UC and high-grade UC were 51.6 and 92.8%. Thus, screening ability of CellDetect in high-grade UC is significantly superior compared to that in low-grade UC. Conclusions CellDetect and FISH show equal value in diagnosing UC, both are superior to conventional urine cytology. Compared to FISH, CellDetect is cost effective, easy to operate, with extensive clinical application value to monitor recurrence of UC, and to screen indetectable UC.
Collapse
Affiliation(s)
- Donghao Shang
- Department of Urology, Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuting Liu
- Department of Pathology, Capital Medical University, Beijing, 100069, China
| | - Xiuhong Xu
- Department of Urology, Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenghao Chen
- Department of Urology, Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Daye Wang
- Department of Pathology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
26
|
Gupta P, Kumar N, Garg M. Emerging roles of autophagy in the development and treatment of urothelial carcinoma of the bladder. Expert Opin Ther Targets 2021; 25:787-797. [PMID: 34636265 DOI: 10.1080/14728222.2021.1992384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION High recurrence rates, frequent surveillance strategies, and current multidisciplinary treatment approaches make urothelial carcinoma of bladder (UCB) one of the most expensive cancers to clinically manage. Recent studies have demonstrated a role for autophagy in bladder tumorigenesis. It serves as a tumor suppressor by maintaining genomic integrity and preventing tumor proliferation during initial stages of tumor development. Nevertheless, once established, cancer cells may utilize protective autophagy to endure cellular stress and survive in the adverse environment. Its excessive stimulation supports cancer cells' resistance to therapeutic modalities. AREAS COVERED PubMed and Google Scholar electronic databases were searched for recently published studies. This review summarizes emerging roles of autophagy in development/progression of UCB and treatment resistance and explores novel therapeutic targets for prevention of cancer invasion, metastatic spread', and disease relapse. EXPERT OPINION The development of novel therapies via targeting of autophagy may augment current treatment regimens and improve clinical outcomes. Synthetic compounds or plant-based metabolites are reported to enhance cancer therapies by modulating autophagic flux. Successful autophagy-focused therapeutic intervention requires a mechanistic understanding of autophagic effects on tumor initiation and progression and the development of efficient biomarkers to monitor it in tumor tissues.
Collapse
Affiliation(s)
- Pratishtha Gupta
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
27
|
Kaushik V, Kulkarni Y, Felix K, Azad N, Iyer AKV, Yakisich JS. Alternative models of cancer stem cells: The stemness phenotype model, 10 years later. World J Stem Cells 2021; 13:934-943. [PMID: 34367485 PMCID: PMC8316871 DOI: 10.4252/wjsc.v13.i7.934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The classical cancer stem cell (CSCs) theory proposed the existence of a rare but constant subpopulation of CSCs. In this model cancer cells are organized hierarchically and are responsible for tumor resistance and tumor relapse. Thus, eliminating CSCs will eventually lead to cure of cancer. This simplistic model has been challenged by experimental data. In 2010 we proposed a novel and controversial alternative model of CSC biology (the Stemness Phenotype Model, SPM). The SPM proposed a non-hierarchical model of cancer biology in which there is no specific subpopulation of CSCs in tumors. Instead, cancer cells are highly plastic in term of stemness and CSCs and non-CSCs can interconvert into each other depending on the microenvironment. This model predicts the existence of cancer cells ranging from a pure CSC phenotype to pure non-CSC phenotype and that survival of a single cell can originate a new tumor. During the past 10 years, a plethora of experimental evidence in a variety of cancer types has shown that cancer cells are indeed extremely plastic and able to interconvert into cells with different stemness phenotype. In this review we will (1) briefly describe the cumulative evidence from our laboratory and others supporting the SPM; (2) the implications of the SPM in translational oncology; and (3) discuss potential strategies to develop more effective therapeutic regimens for cancer treatment.
Collapse
Affiliation(s)
- Vivek Kaushik
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Yogesh Kulkarni
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Kumar Felix
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Neelam Azad
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Anand Krishnan V Iyer
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Juan Sebastian Yakisich
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States.
| |
Collapse
|
28
|
Tian Y, Gao P, Dai D, Chen L, Chu X, Mei X. Circular RNA circSETD3 hampers cell growth, migration, and stem cell properties in bladder cancer through sponging miR-641 to upregulate PTEN. Cell Cycle 2021; 20:1589-1602. [PMID: 34288821 DOI: 10.1080/15384101.2021.1954758] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BLCA) is a common malignant urothelial cancer in the world. Although circular RNAs (circRNAs) involve in regulating BLCA progression, the role of a novel circular RNA circSETD3 in regulating BLCA pathogenesis has not been studied. The expression of circSETD3, miR-641, PTEN mRNA in BLCA tissues and cell lines were measured using RT-qPCR. The gain-of-function experiments were performed in vitro and in vivo to detect the effects of circSETD3 on cell proliferation, migration, EMT, and stemness maintenance. Besides, rescue experiments were performed to demonstrate the regulatory mechanism of circSETD3/miR-641/PTEN in BLCA cell malignant phenotypes in vitro. CircSETD3 was remarkably downregulated in the cancerous clinical tissues and cell lines, in contrast with their normal counterparts, and circSETD3 tended to be deficient in BLCA patients with larger tumor size, advanced clinical stages, positive lymph metastasis and worse prognosis. In addition, circular isoforms of circSETD3 were more resistant to RNase R+ and actinomycetes D treatment compared to their linear isoforms, and circSETD3 mainly distributed in the cytoplasm of the BLCA cells. Further gain-of-function experiments showed that circSETD3 acted as a tumor suppressor to suppress BLCA cell proliferation, migration, EMT and stemness, and the underlying mechanisms had also been elucidated. Mechanistically, circSETD3 sponged miR-641 to upregulate PTEN, resulting in the blockage of BLCA progression. Our findings indicated that circSETD3 acted as a vital tumor suppressor in BLCA via regulating the miR-641/PTEN axis.
Collapse
Affiliation(s)
- Ying Tian
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Ping Gao
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Di Dai
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Lan Chen
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Xin Chu
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Xuefeng Mei
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| |
Collapse
|
29
|
Patil S. CD44 Sorted Cells Have an Augmented Potential for Proliferation, Epithelial-Mesenchymal Transition, Stemness, and a Predominantly Inflammatory Cytokine and Angiogenic Secretome. Curr Issues Mol Biol 2021; 43:423-433. [PMID: 34205649 PMCID: PMC8929035 DOI: 10.3390/cimb43010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) have garnered attention with their potential for early diagnosis and prognosis of oral squamous cell carcinoma (OSCC). It is still indistinct whether CSCs are recognized with a specific set of characteristics. The present study aimed to assess the association of CD44 with stemness-related, Epithelial Mesenchymal Transition EMT-related genes and the secretome of the CSCs. The single-cell suspension from primary OSCC tumors was prepared by enzymatic digestion and the cells were cultured in-vitro. The cancer stem cells were isolated by CD44+ selection using magnetic cell-sorting. The expression of CD44, proliferation rate, gene expression of EMT-related transcription factors, stemness markers, cytokine levels and angiogenic factors in both cell population was assessed. The sorted CD44+ cells showed significantly higher proliferation rate than heterogenous population. The CD44 expression was >90% in the sorted cells which was higher than the heterogenous cells. The CD44+ CSCs cells demonstrated significant increased levels of EMT-related genes TWIST1 and CDH2 (N-cadherin), CSC-related genes CD44 and CD133 (PROM1), stemness-related genes OCT4, SOX2, inflammatory cytokines IL-1ß, IL-12, IL-18 and TNF-α and angiogenic factors Angiopoietin-1, Angiopoietin-2, bFGF and VEGF while levels of epithelial gene CDH1 (E-cadherin) decreased in comparison to mixed cell population. The genetic and secretome profiling of the CD44+ CSCs could serve as diagnostic and prognostic tools in the treatment of oral cancers.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
30
|
Chen YS, Xu YP, Liu WH, Li DC, Wang H, Li CF. Long Noncoding RNA KCNMB2-AS1 Promotes SMAD5 by Targeting miR-3194-3p to Induce Bladder Cancer Progression. Front Oncol 2021; 11:649778. [PMID: 34026626 PMCID: PMC8138055 DOI: 10.3389/fonc.2021.649778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose Bladder cancer is a common malignant tumor of the urinary system, with the fourth-highest incidence of male malignant tumors in Europe and the United States. So far, the mechanism of bladder cancer progression and metastasis has not been clarified. The aim of our study was to validate the way of long noncoding RNA (lncRNA) KCNMB2-AS1 on the metabolism and growth of bladder cancer cells by miR-3194-3p/SMAD5. Patients and Methods The Gene Expression was analyzed by qRT-PCR in bladder cancer tissues and cell lines, with the highly expressed KCNMB2-AS1 screened out. Cell proliferation was detected by Edu staining and clone formation assay, cell migration, and invasion by wound healing and transwell assays. Cell stemness was determined by assessing sphere-forming ability and stemness marker. Correlation between miRNA and lncRNA/gene was verified by dual‐luciferase assay and RIP, and the effect of KCNMB2-AS1 on bladder cancer growth by nude mice tumor formation experiment. Results Here, we revealed the increased level of KCNMB2-AS1 in bladder cancer for the first time. Knockdown of KCNMB2-AS1 in vitro prevented the ability of proliferation, metastasis, and stemness of cancer cells. In vivo, the silencing of KCNMB2-AS1 also prevented tumor growth in vivo. Next, we revealed that KCNMB2-AS1 could interact with miR-3194-3p and uncovered that SAMD5 was a downstream target of miR-3194-3p. Conclusion In conclusion, KCNMB2-AS1 mediated the bladder cancer cells progress by regulating the miR-3194-3p/SAMD5 signal pathway, which would provide a new target for bladder cancer research.
Collapse
Affiliation(s)
- Yong-Sheng Chen
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yong-Peng Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen-Hua Liu
- Intensive Care Unit (ICU) Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - De-Chao Li
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huan Wang
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chang-Fu Li
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
31
|
van de Merbel AF, van Hooij O, van der Horst G, van Rijt-van de Westerlo CCM, van der Mark MH, Cheung H, Kroon J, Verhaegh GW, Tijhuis J, Wellink A, Maas P, Viëtor H, Schalken JA, van der Pluijm G. The Identification of Small Molecule Inhibitors That Reduce Invasion and Metastasis of Aggressive Cancers. Int J Mol Sci 2021; 22:ijms22041688. [PMID: 33567533 PMCID: PMC7915539 DOI: 10.3390/ijms22041688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Transformed epithelial cells can activate programs of epithelial plasticity and switch from a sessile, epithelial phenotype to a motile, mesenchymal phenotype. This process is linked to the acquisition of an invasive phenotype and the formation of distant metastases. The development of compounds that block the acquisition of an invasive phenotype or revert the invasive mesenchymal phenotype into a more differentiated epithelial phenotype represent a promising anticancer strategy. In a high-throughput assay based on E-cadherin (re)induction and the inhibition of tumor cell invasion, 44,475 low molecular weight (LMW) compounds were screened. The screening resulted in the identification of candidate compounds from the PROAM02 class. Selected LMW compounds activated E-cadherin promoter activity and inhibited cancer cell invasion in multiple metastatic human cancer cell lines. The intraperitoneal administration of selected LMW compounds reduced the tumor burden in human prostate and breast cancer in vivo mouse models. Moreover, selected LMW compounds decreased the intra-bone growth of xenografted human prostate cancer cells. This study describes the identification of the PROAM02 class of small molecules that can be exploited to reduce cancer cell invasion and metastases. Further clinical evaluation of selected candidate inhibitors is warranted to address their safety, bioavailability and antitumor efficacy in the management of patients with aggressive cancers.
Collapse
Affiliation(s)
- Arjanneke F. van de Merbel
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
| | - Onno van Hooij
- Department of Urology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (O.v.H.); (C.C.M.v.R.-v.d.W.); (G.W.V.); (J.A.S.)
| | - Geertje van der Horst
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
| | - Cindy C. M. van Rijt-van de Westerlo
- Department of Urology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (O.v.H.); (C.C.M.v.R.-v.d.W.); (G.W.V.); (J.A.S.)
- Oncodrone BV, 6525 GA Nijmegen, The Netherlands; (A.W.); (H.V.)
| | - Maaike H. van der Mark
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
| | - Henry Cheung
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
| | - Jan Kroon
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
- Department of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gerald W. Verhaegh
- Department of Urology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (O.v.H.); (C.C.M.v.R.-v.d.W.); (G.W.V.); (J.A.S.)
| | - Johan Tijhuis
- Specs, 2712 PB Zoetermeer, The Netherlands; (J.T.); (P.M.)
| | - Antoine Wellink
- Oncodrone BV, 6525 GA Nijmegen, The Netherlands; (A.W.); (H.V.)
| | - Peter Maas
- Specs, 2712 PB Zoetermeer, The Netherlands; (J.T.); (P.M.)
| | - Henk Viëtor
- Oncodrone BV, 6525 GA Nijmegen, The Netherlands; (A.W.); (H.V.)
| | - Jack A. Schalken
- Department of Urology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (O.v.H.); (C.C.M.v.R.-v.d.W.); (G.W.V.); (J.A.S.)
- Oncodrone BV, 6525 GA Nijmegen, The Netherlands; (A.W.); (H.V.)
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
- Correspondence: ; Tel.: +31-715265255
| |
Collapse
|
32
|
An epithelial-mesenchymal transition-related long noncoding RNA signature correlates with the prognosis and progression in patients with bladder cancer. Biosci Rep 2021; 41:227198. [PMID: 33289830 PMCID: PMC7786330 DOI: 10.1042/bsr20203944] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer is a common malignant tumour worldwide. Epithelial-mesenchymal transition (EMT)-related biomarkers can be used for early diagnosis and prognosis of cancer patients. To explore, accurate prediction models are essential to the diagnosis and treatment for bladder cancer. In the present study, an EMT-related long noncoding RNA (lncRNA) model was developed to predict the prognosis of patients with bladder cancer. Firstly, the EMT-related lncRNAs were identified by Pearson correlation analysis, and a prognostic EMT-related lncRNA signature was constructed through univariate and multivariate Cox regression analyses. Then, the diagnostic efficacy and the clinically predictive capacity of the signature were assessed. Finally, Gene set enrichment analysis (GSEA) and functional enrichment analysis were carried out with bioinformatics. An EMT-related lncRNA signature consisting of TTC28-AS1, LINC02446, AL662844.4, AC105942.1, AL049840.3, SNHG26, USP30-AS1, PSMB8-AS1, AL031775.1, AC073534.1, U62317.2, C5orf56, AJ271736.1, and AL139385.1 was constructed. The diagnostic efficacy of the signature was evaluated by the time-dependent receiver-operating characteristic (ROC) curves, in which all the values of the area under the ROC (AUC) were more than 0.73. A nomogram established by integrating clinical variables and the risk score confirmed that the signature had a good clinically predict capacity. GSEA analysis revealed that some cancer-related and EMT-related pathways were enriched in high-risk groups, while immune-related pathways were enriched in low-risk groups. Functional enrichment analysis showed that EMT was associated with abundant GO terms or signaling pathways. In short, our research showed that the 14 EMT-related lncRNA signature may predict the prognosis and progression of patients with bladder cancer.
Collapse
|
33
|
Liu Q, Gu J, Zhang E, He L, Yuan ZX. Targeted Delivery of Therapeutics to Urological Cancer Stem Cells. Curr Pharm Des 2020; 26:2038-2056. [PMID: 32250210 DOI: 10.2174/1381612826666200403131514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Urological cancer refers to cancer in organs of the urinary system and the male reproductive system. It mainly includes prostate cancer, bladder cancer, renal cancer, etc., seriously threatening patients' survival. Although there are many advances in the treatment of urological cancer, approved targeted therapies often result in tumor recurrence and therapy failure. An increasing amount of evidence indicated that cancer stem cells (CSCs) with tumor-initiating ability were the source of treatment failure in urological cancer. The development of CSCstargeted strategy can provide a possibility for the complete elimination of urological cancer. This review is based on a search of PubMed, Google scholar and NIH database (http://ClinicalTrials.gov/) for English language articles containing the terms: "biomarkers", "cancer stem cells", "targeting/targeted therapy", "prostate cancer", bladder cancer" and "kidney cancer". We summarized the biomarkers and stem cell features of the prostate, bladder and renal CSCs, outlined the targeted strategies for urological CSCs from signaling pathways, cytokines, angiogenesis, surface markers, elimination therapy, differentiation therapy, immunotherapy, microRNA, nanomedicine, etc., and highlighted the prospects and future challenges in this research field.
Collapse
Affiliation(s)
- Qiang Liu
- Yaopharma Co., Ltd. Chongqing, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - E Zhang
- Officers college of PAP, Chengdu, Sichuan, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Long-Term Helicobacter pylori Infection Switches Gastric Epithelium Reprogramming Towards Cancer Stem Cell-Related Differentiation Program in Hp-Activated Gastric Fibroblast-TGFβ Dependent Manner. Microorganisms 2020; 8:microorganisms8101519. [PMID: 33023180 PMCID: PMC7599721 DOI: 10.3390/microorganisms8101519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (Hp)-induced inflammatory reaction leads to a persistent disturbance of gastric mucosa and chronic gastritis evidenced by deregulation of tissue self-renewal and local fibrosis with the crucial role of epithelial–mesenchymal transition (EMT) in this process. As we reported before, Hp activated gastric fibroblasts into cells possessing cancer-associated fibroblast properties (CAFs), which secreted factors responsible for EMT process initiation in normal gastric epithelial RGM1 cells. Here, we showed that the long-term incubation of RGM1 cells in the presence of Hp-activated gastric fibroblast (Hp-AGF) secretome induced their shift towards plastic LGR5+/Oct4high/Sox-2high/c-Mychigh/Klf4low phenotype (l.t.EMT+RGM1 cells), while Hp-non-infected gastric fibroblast (GF) secretome prompted a permanent epithelial–myofibroblast transition (EMyoT) of RGM1 cells favoring LGR−/Oct4high/Sox2low/c-Myclow/Klf4high phenotype (l.t.EMT−RGM1 cells). TGFβ1 rich secretome from Hp-reprogrammed fibroblasts prompted phenotypic plasticity and EMT of gastric epithelium, inducing pro-neoplastic expansion of post-EMT cells in the presence of low TGFβR1 and TGFβR2 activity. In turn, TGFβR1 activity along with GF-induced TGFβR2 activation in l.t.EMT−RGM1 cells prompted their stromal phenotype. Collectively, our data show that infected and non-infected gastric fibroblast secretome induces alternative differentiation programs in gastric epithelium at least partially dependent on TGFβ signaling. Hp infection-activated fibroblasts can switch gastric epithelium microevolution towards cancer stem cell-related differentiation program that can potentially initiate gastric neoplasm.
Collapse
|
35
|
Tripathi K, Goel A, Singhai A, Garg M. Mutational analysis of Ras hotspots in patients with urothelial carcinoma of the bladder. World J Clin Oncol 2020; 11:614-628. [PMID: 32879848 PMCID: PMC7443835 DOI: 10.5306/wjco.v11.i8.614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/21/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutational activation of Ras genes is established as a prognostic factor for the genesis of a constitutively active RAS-mitogen activated protein kinase pathway that leads to cancer. Heterogeneity among the distribution of the most frequent mutations in Ras isoforms is reported in different patient populations with urothelial carcinoma of the bladder (UCB). AIM To determine the presence/absence of mutations in Ras isoforms in patients with UCB in order to predict disease outcome. METHODS This study was performed to determine the mutational spectrum at the hotspot regions of H-Ras, K-Ras and N-Ras genes by polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing followed by their clinical impact (if any) by examining the relationship of mutational spectrum with clinical histopathological variables in 87 UCB patients. RESULTS None of the 87 UCB patients showed point mutations in codon 12 of H-Ras gene; codon 61 of N-Ras gene and codons 12, 13 of K-Ras gene by PCR-RFLP. Direct DNA sequencing of tumor and normal control bladder mucosal specimens followed by Blastn alignment with the reference wild-type sequences failed to identify even one nucleotide difference in the coding exons 1 and 2 of H-Ras, N-Ras and K-Ras genes in the tumor and control bladder mucosal specimens. CONCLUSION Our findings on the lack of mutations in H-Ras, K-Ras and N-Ras genes could be explained on the basis of different etiological mechanisms involved in tumor development/progression, inherent genetic susceptibility, tissue specificity or alternative Ras dysfunction such as gene amplification and/or overexpression in a given cohort of patients.
Collapse
Affiliation(s)
- Kiran Tripathi
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Apul Goel
- Department of Urology, King George Medical University, Lucknow 226003, India
| | - Atin Singhai
- Department of Pathology, King George Medical University, Lucknow 226003, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
36
|
Xu C, Sun M, Zhang X, Xu Z, Miyamoto H, Zheng Y. Activation of Glucocorticoid Receptor Inhibits the Stem-Like Properties of Bladder Cancer via Inactivating the β-Catenin Pathway. Front Oncol 2020; 10:1332. [PMID: 32850423 PMCID: PMC7419687 DOI: 10.3389/fonc.2020.01332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Glucocorticoid receptor (GR) signaling pathway has been shown to involve epithelial -to- mesenchymal transition which was implicated in the regulation of bladder cancer stem cells (CSCs) in our previous study. Herein, we aim to figure out how GR affects the stem-like properties of bladder cancer cells. Methods: We used dexamethasone (DEX) treatment or gene-knockdown/-knockout techniques to activate or silence the GR pathway, respectively. Then we applied immunohistochemical staining and flow cytometry to assess the associations between the expression levels of GR and a stem cell surface marker CD44. Stem-like properties were assessed by reactive oxygen species (ROS), sphere-formation and side population assays. The expression levels of cancer stem cell-associated molecules were assessed by quantitative PCR and Western blotting. Tumor growth was compared using mouse xenograft models. Results: In GR-positive bladder cancer cells, DEX significantly reduced the expression of CD44 as well as pluripotency transcription factors including β-catenin and its downstream target (C-MYC, Snail, and OCT-4), the rate of sphere formation, and the proportion of side populations, and induced the intracellular levels of ROS. By contrast, GR silencing in bladder cancer cells showed the opposite effects. In xenograft-bearing mice, GR silencing resulted in the enhancement of tumor growth. Conclusions: These data suggested that GR activity was inversely associated with the stem-like properties of bladder cancer cells, potentially via inactivating the β-catenin pathway.
Collapse
Affiliation(s)
- Congcong Xu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Urology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mingwei Sun
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Xu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Yichun Zheng
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Exosome-Derived LINC00960 and LINC02470 Promote the Epithelial-Mesenchymal Transition and Aggressiveness of Bladder Cancer Cells. Cells 2020; 9:cells9061419. [PMID: 32517366 PMCID: PMC7349410 DOI: 10.3390/cells9061419] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are essential for several tumor progression-related processes, including the epithelial–mesenchymal transition (EMT). Long non-coding RNAs (lncRNAs) comprise a major group of exosomal components and regulate the neoplastic development of several cancer types; however, the progressive role of exosomal lncRNAs in bladder cancer have rarely been addressed. In this study, we identified two potential aggressiveness-promoting exosomal lncRNAs, LINC00960 and LINC02470. Exosomes derived from high-grade bladder cancer cells enhanced the viability, migration, invasion and clonogenicity of recipient low-grade bladder cancer cells and activated major EMT-upstream signaling pathways, including β-catenin signaling, Notch signaling, and Smad2/3 signaling pathways. Nevertheless, LINC00960 and LINC02470 were expressed at significantly higher levels in T24 and J82 cells and their secreted exosomes than in TSGH-8301 cells. Moreover, exosomes derived from LINC00960 knockdown or LINC02470 knockdown T24 cells significantly attenuated the ability of exosomes to promote cell aggressiveness and activate EMT-related signaling pathways in recipient TSGH-8301 cells. Our findings indicate that exosome-derived LINC00960 and LINC02470 from high-grade bladder cancer cells promote the malignant behaviors of recipient low-grade bladder cancer cells and induce EMT by upregulating β-catenin signaling, Notch signaling, and Smad2/3 signaling. Both lncRNAs may serve as potential liquid biomarkers for the prognostic surveillance of bladder cancer progression.
Collapse
|
38
|
Abugomaa A, Elbadawy M, Yamawaki H, Usui T, Sasaki K. Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for Bladder Cancer. Cells 2020; 9:235. [PMID: 31963556 PMCID: PMC7016964 DOI: 10.3390/cells9010235] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer (BC) is a complex and highly heterogeneous stem cell disease associated with high morbidity and mortality rates if it is not treated properly. Early diagnosis with personalized therapy and regular follow-up are the keys to a successful outcome. Cancer stem cells (CSCs) are the leading power behind tumor growth, with the ability of self-renewal, metastasis, and resistance to conventional chemotherapy. The fast-developing CSC field with robust genome-wide screening methods has found a platform for establishing more reliable therapies to target tumor-initiating cell populations. However, the high heterogeneity of the CSCs in BC disease remains a large issue. Therefore, in the present review, we discuss the various types of bladder CSC heterogeneity, important regulatory pathways, roles in tumor progression and tumorigenesis, and the experimental culture models. Finally, we describe the current stem cell-based therapies for BC disease.
Collapse
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahliya, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan;
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| |
Collapse
|
39
|
Chen S, Lu M, Peng T, Wang Y, Liu X, Xiao Y, Wang X. Establishing the prediction models for recurrence and progression of T1G3 bladder urothelial carcinoma. J Cancer 2019; 10:5891-5902. [PMID: 31762799 PMCID: PMC6856570 DOI: 10.7150/jca.35866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/26/2019] [Indexed: 11/29/2022] Open
Abstract
We aim to determine clinical recurrence and progression risk factors of T1G3 bladder cancer (BCa), and to establish recurrence and progression prediction models. 5-year follow-up records of 106 T1G3 BCa patients from January 2012 to December 2016 were analyzed for recurrence and progression. Two-sample T-test, Chi-square test, Mann-Whitney test, Kaplan-Meier curves, Cox univariate and multivariate analyses were performed to determine the independent risk factors. Effective prognostic nomograms were established to provide individualized prediction, and the calibration curves were founded to evaluate the agreements of the predicted probability with the actual observed probability. Receiver operating characteristic (ROC) curves were generated for the recurrence and progression prediction models. The stability of prediction models was validated with an external cohort included 61 T1G3 BCa patients. Of the 106 T1G3 BCa patients, 77 were males (72.6%) and 29 were females (27.4%), with median age 70 years. Within 5 years, recurrence was identified in 67 cases (63.2%), and progression was identified in 31 cases (29.2%). The results showed that large size of tumor, multifocal tumors, recrudescent tumor, non-BCG perfusion therapy were the independent risk factors for recurrence, and large size of tumor, multifocal tumors, recrudescent tumor, concomitant carcinoma in situ (CIS) were the independent risk factors for progression. However, no evidence shown that tumor location or operative method was independent risk factors for recurrence and progression. Based on the results of Cox regression analyses, the independent risk factors were used to establish the prediction nomograms to calculate the recurrence and progression probability of each T1G3 BCa patient. Calibration curves, ROC curves and external validation displayed that the nomograms had great value of prediction.
Collapse
Affiliation(s)
- Song Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, 430071 China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, 430071 China
| | - Tianchen Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Yejinpeng Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington DC, USA
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, 430071 China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, 430071 China.,Medical Research Institute, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
40
|
Bao Z, Zhan Y, He S, Li Y, Guan B, He Q, Yang X, Li X, Fang D, Zhou L. Increased Expression Of SOX2 Predicts A Poor Prognosis And Promotes Malignant Phenotypes In Upper Tract Urothelial Carcinoma. Cancer Manag Res 2019; 11:9095-9106. [PMID: 31695499 PMCID: PMC6817346 DOI: 10.2147/cmar.s219568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/05/2019] [Indexed: 01/22/2023] Open
Abstract
Background The transcription factor SRY-related HMG-box 2 (SOX2) plays important regulatory roles in diverse biological processes (cell proliferation, migration, invasion and tumorigenicity). However, the relationship between SOX2 and upper tract urothelial carcinoma (UTUC) have not been intensively investigated. This study aims to analyze the expression of SOX2 in UTUC as well as the predictive value for prognosis and the effect on tumor aggressiveness of SOX2. Methods Formalin-fixed, paraffin-embedded blocks containing samples from 341 patients with UTUC who underwent radical nephroureterectomy (RNU) at our institute were analyzed for SOX2 expression by immunohistochemistry (IHC). Associations between the SOX2 expression level and clinicopathological characteristics, disease-free survival (DFS) and cancer-specific survival (CSS) were analyzed. SOX2 expression in a normal urothelial cell line, urothelial carcinoma cell lines, 16 UTUC tissues and their pair-matched adjacent normal tissues was evaluated by RT-qPCR. Using RNA interference in vitro, the effects of SOX2 inhibition on cell proliferation, migration, invasion and tumorigenicity were determined. Results SOX2 expression was significantly upregulated in UTUC tissue samples compared with paired-adjacent nontumorous tissue samples. SOX2 expression was correlated with important clinicopathological features, including tumor stage, tumor grade, tumor architecture and the presence of glandular or sarcoma differentiation, and was an independent predictor of poor DFS and CSS. Further experiments indicated that SOX2 expression was higher in UTUC cell lines than in a normal urothelial cell line. Knocking down SOX2 expression could inhibit malignant phenotypes (cell proliferation, stemness, migration, invasion and tumorigenicity) in UTUC cells. Conclusion SOX2 is an independent prognostic marker of poor DFS and CSS in UTUC patients who have undergone RNU. Moreover, these data suggest that SOX2 may be a promising therapeutic target in UTUC.
Collapse
Affiliation(s)
- Zhengqing Bao
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Yonghao Zhan
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China.,Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, People's Republic of China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Yifan Li
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Bao Guan
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Qun He
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Xinyu Yang
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China.,Andrology Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| |
Collapse
|
41
|
Integrated analysis of quantitative proteome and transcriptional profiles reveals abnormal gene expression and signal pathway in bladder cancer. Genes Genomics 2019; 41:1493-1503. [PMID: 31576517 DOI: 10.1007/s13258-019-00868-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Bladder cancer (BCa) is a tumor associated with high morbidity and mortality and its incidence is increasing worldwide. However, the pathogenesis of bladder cancer is not well understood. OBJECTIVE To further illustrate the molecular mechanisms involved in the pathogenesis of BCa and identify potential therapeutic targets, we combined the transcriptomic analysis with RNA sequencing and tandem mass tags (TMT)-based proteomic methods to quantitatively screen the differentially expressed genes and proteins between bladder cancer tissues (BC) and adjacent normal tissues (AN). RESULTS Transcriptome and proteome studies indicated 7094 differentially expressed genes (DEGs) and 596 differentially expressed proteins (DEPs) between BC and AN, respectively. GO enrichment analyses revealed that cell adhesion, calcium ion transport, and regulation of ATPase activity were highly enriched in BCa. Moreover, several key signaling pathway were identified as of relevance to BCa, in particular the ECM-receptor interaction, cell adhesion molecules (CAMs), and PPAR signaling pathway. Interestingly, 367 genes were shared by DEGs and DEPs, and a significant positive correlation between mRNA and translation profiles was found. CONCLUSION In summary, this joint analysis of transcript and protein profiles provides a comprehensive reference map of gene activity regarding the disease status of BCa.
Collapse
|
42
|
Garg M, Maurya N. WNT/β-catenin signaling in urothelial carcinoma of bladder. World J Nephrol 2019; 8:83-94. [PMID: 31624709 PMCID: PMC6794554 DOI: 10.5527/wjn.v8.i5.83] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Urothelial carcinoma of bladder is the second most prevalent genitourinary disease. It is a highly heterogeneous disease as it represents a spectrum of neoplasms, including non-muscle invasive bladder cancer (NMIBC), muscle invasive bladder cancer (MIBC) and metastatic lesions. Genome-wide approaches and candidate gene analysis suggest that malignant transformation of the bladder is multifactorial and a multitude of genes are involved in the development of MIBC or NMIBC phenotypes. Wnt signaling is being examined to control and maintain balance between stemness and differentiation in adult stem cell niches. Owing to its participation in urothelial development and maintenance of adult urothelial tissue homeostasis, the components of Wnt signaling are reported as an important diagnostic and prognostic markers as well as novel therapeutic targets. Mutations/epigenetic alterations in the key molecules of Wnt/β-catenin canonical pathway have been linked with tumorigenesis, development of drug resistance and enhanced survival. Present review extends our understanding on the functions of key regulatory molecules of canonical Wnt/β-catenin pathway in urothelial tumorigenesis by inducing cancer stem cell phenotype (UCSCs). UCSCs may be responsible for tumor heterogeneity, high recurrence rates and complex biological behavior of bladder cancer. Therefore, understanding the role of UCSCs and the regulatory mechanisms that are responsible for high relapse rates and metastasis could help to develop pathway inhibitors and augment current therapies. Potential implications in the treatment of urothelial carcinoma of bladder by targeting this pathway primarily in UCSCs as well as in bulk tumor population that are responsible for high relapse rates and metastasis may facilitate potential therapeutic avenues and better prognosis.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Niharika Maurya
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
43
|
Shrestha S, Garrett SH, Sens DA, Zhou XD, Guyer R, Somji S. Characterization and determination of cadmium resistance of CD133 +/CD24 + and CD133 -/CD24 + cells isolated from the immortalized human proximal tubule cell line, RPTEC/TERT1. Toxicol Appl Pharmacol 2019; 375:5-16. [PMID: 31078587 PMCID: PMC6766375 DOI: 10.1016/j.taap.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022]
Abstract
Stem/progenitor cells are involved in the regeneration of the renal tubules after damage due to a toxic insult. However, the mechanism involved in the regeneration of the tubules by the stem cells is not well understood due to the lack of immortal cell lines that represent the stem/progenitor cells of the kidney. A previous study from our laboratory has shown that the immortalized cell line RPTEC/TERT1 contains two populations of cells, one co-expressing CD24 and CD133, the other expressing CD24 only. The goal of the present study was to determine if both these populations could be sorted into separate independent cultures and if so, determine their characteristic features and response to the nephrotoxicant cadmium. The results of our study show that both the populations of cells could grow as independent cultures and maintain their phenotype after extended sub-culture. The CD133+/CD24+ co-expressing cells formed multicellular spheroids (nephrospheres), a characteristic feature of stem/progenitor cells, and formed branched tubule-like structures when grown on the surface of matrigel, whereas the CD133-/CD24+ cells were unable to form these structures. The CD133+/CD24+ cells were able to grow and undergo neurogenic, adipogenic, osteogenic, and tubulogenic differentiation, whereas the CD133-/CD24+ cells expressed some of the differentiation markers but were unable to grow in some of the specialized growth media. The CD133+/ CD24+ co-expressing cells had a shorter doubling time compared to the cells that expressed only CD24, and were more resistant to the toxic effects of the heavy metal, cadmium. In conclusion, the isolation and characterization of these two cell populations form the RPTEC/TERT1 cell line will facilitate the development of studies that determine the mechanisms involved in tubular damage and regeneration particularly after a toxic insult.
Collapse
Affiliation(s)
- Swojani Shrestha
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| | - Scott H Garrett
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| | - Donald A Sens
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| | - Xu Dong Zhou
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| | - Rachel Guyer
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| | - Seema Somji
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States of America.
| |
Collapse
|
44
|
Lu M, Chen S, Zhou Q, Wang L, Peng T, Wang G. Predicting recurrence of nonmuscle-invasive bladder cancer (Ta-T1): A study based on 477 patients. Medicine (Baltimore) 2019; 98:e16426. [PMID: 31305463 PMCID: PMC6641864 DOI: 10.1097/md.0000000000016426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to determine clinical recrudescent risk factors of 477 patients with newly discovered nonmuscle-invasive bladder cancer (NMIBC) (Ta-T1) in our hospital, and based on these factors, to establish a recurrence risk prediction model of each NMIBC patient.This study included 477 patients with newly discovered NMIBC (Ta-T1) from January 2012 to December 2016; all patients were treated surgically by transurethral resection of bladder tumor (TURBT). The outcomes of patients were with or without recurrence within 2 years. The nomograms were based on Cox regression analyses, and the calibration curves were founded to evaluate the agreements of the predicted probability with the actual observed probability.Of the 477 patients with NMIBC, 392 were males (82.2%) and 85 were females (17.8%), with median age 64 years. Recurrence was identified in 327 cases (68.6%). The results showed that old age, female sex, smoking history, large size of tumor, multifocal tumors, high grade, and high stage are risk factors for NMIBC recurrence, whereas no significant association was seen between tumor location and recurrence in our study. Based on the results of Cox regression analyses, several independent risk factors, including smoking history, tumor size, multifocal, immediate infusion therapy, T stage, and tumor grade, were used to establish a nomogram to calculate the recurrence probability of each NMIBC patient, and the calibration curve displayed that this nomogram had a great value of prediction.Old age, female sex, smoking history, large size of tumor, multifocal tumors, high grade, and high stage are risk factors for NMIBC recurrence, whereas immediate infusion therapy is a protective factor. And a nomogram was established as a prediction model to calculate the recurrence probability of NMIBC patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| |
Collapse
|
45
|
Hoggarth ZE, Osowski DB, Slusser-Nore A, Shrestha S, Pathak P, Solseng T, Garrett SH, Patel DH, Savage E, Sens DA, Somji S. Enrichment of genes associated with squamous differentiation in cancer initiating cells isolated from urothelial cells transformed by the environmental toxicant arsenite. Toxicol Appl Pharmacol 2019; 374:41-52. [PMID: 31047981 DOI: 10.1016/j.taap.2019.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 01/09/2023]
Abstract
Arsenic is an environmental toxicant with long-term exposure associated with the development of urothelial carcinomas. Our lab has developed an in-vitro model of urothelial carcinoma by exposing the immortal, but non-tumorigenic bladder cell line, the UROtsa, to arsenite (As3+). These transformed cells form tumors in immune-compromised mice, which resemble urothelial carcinomas with components of the tumor exhibiting squamous differentiation. The goal of the present study was to determine the differences in global gene expression patterns between the As3+-transformed UROtsa cells and the urospheres (spheroids containing putative cancer initiating cells) isolated from these cell lines and to determine if the genes involved in the development of squamous differentiation were enriched in the urospheres. The results obtained in this study show an enrichment of genes such as KRT1, KRT5, KRT6A, KRT6B, KRT6C, KRT14 and KRT16 associated with squamous differentiation, a characteristic feature seen in aggressive basal subtypes of urothelial cell carcinoma (UCC) in the urospheres isolated from As3+-transformed UROtsa cells. In addition, there is increased expression of several of the small proline-rich proteins (SPRR) in the urospheres and overexpression of these genes occur in UCC's displaying squamous differentiation. In conclusion, the cancer initiating cells present in the urospheres are enriched with genes associated with squamous differentiation.
Collapse
Affiliation(s)
- Zachary E Hoggarth
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Danyelle B Osowski
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Andrea Slusser-Nore
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Swojani Shrestha
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Prakash Pathak
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Theoren Solseng
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Scott H Garrett
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Divyen H Patel
- Genome Explorations, 1910 Nonconnah Avenue, Suite 120, Memphis, TN 38132, United States.
| | - Evan Savage
- Genome Explorations, 1910 Nonconnah Avenue, Suite 120, Memphis, TN 38132, United States.
| | - Donald A Sens
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| | - Seema Somji
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, United States.
| |
Collapse
|
46
|
Maurya N, Singh R, Goel A, Singhai A, Singh UP, Agrawal V, Garg M. Clinicohistopathological implications of phosphoserine 9 glycogen synthase kinase-3β/ β-catenin in urinary bladder cancer patients. World J Clin Oncol 2019; 10:166-182. [PMID: 31114749 PMCID: PMC6506422 DOI: 10.5306/wjco.v10.i4.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/25/2019] [Accepted: 02/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aberrant activation of phosphorylated form of glycogen synthase kinase-3β [pS9GSK-3β (Serine 9 phosphorylation)] is known to trigger Wnt/β-catenin signal cascade but its clinicohistopathological implications in bladder carcinogenesis remain unknown. AIM To investigate the diagnostic and prognostic relevance of expressions of pS9GSK-3β, β-catenin and its target genes in the pathobiology of bladder cancer. METHODS Bladder tumor tissues from ninety patients were analyzed for quantitative expression and cellular localization of pS9GSK-3β by immunohistochemical (IHC) staining. Real time-quantitative polymerase chain reaction and IHC were done to check the expression of β-catenin, Cyclin D1, Snail and Slug at transcriptome and protein level respectively. Clinicohistopathological variables were obtained from histology reports, follow up and OPD visits of patients. Expressions of the markers were statistically correlated with these variables to determine their significance in clinical setting. Results were analysed using SPSS 20.0 software. RESULTS Aberrant (low or no membranous/high nuclear/high cytoplasmic) expression of pS9GSK-3β was noted in 51% patients and found to be significantly associated with tumor stage and tumor grade (P = 0.01 and 0.04; Mann Whitney U test). Thirty one percent tumors exhibited aberrant co-expression of pS9GSK-3β and β-catenin proteins and showed strong statistical association with tumor stage, tumor type, smoking/tobacco chewing status (P = 0.01, 0.02 and 0.04, Mann-Whitney U test) and shorter overall survival probabilities of patients (P = 0.02; Kaplan Meier test). Nuclear immunostaining of Cyclin D1 in tumors with altered pS9GSK-3β/β-catenin showed relevance with tumor stage, grade and type. CONCLUSION β-catenin and pS9GSK-3β proteins are identified as markers of diagnostic/prognostic significance in disease pathogenesis. Observed histopathological association of Cyclin D1 identifies it as marker of potential relevance in tumors with altered pS9GSK-3β/β-catenin.
Collapse
Affiliation(s)
- Niharika Maurya
- Department of Biochemistry, Lucknow University, Lucknow 226007, India
| | - Rinni Singh
- Department of Biochemistry, Lucknow University, Lucknow 226007, India
| | - Apul Goel
- Department of Urology, King George Medical University, Lucknow 226003, India
| | - Atin Singhai
- Department of Pathology, King George Medical University, Lucknow 226003, India
| | - Uday Pratap Singh
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vinita Agrawal
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Minal Garg
- Department of Biochemistry, Lucknow University, Lucknow 226007, India
| |
Collapse
|
47
|
Aghaalikhani N, Rashtchizadeh N, Shadpour P, Allameh A, Mahmoodi M. Cancer stem cells as a therapeutic target in bladder cancer. J Cell Physiol 2018; 234:3197-3206. [PMID: 30471107 DOI: 10.1002/jcp.26916] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Bladder cancer is one of the most prevalent genitourinary cancers responsible for about 150,000 deaths per year worldwide. Currently, several treatments, such as endoscopic and open surgery, appended by local or systemic immunotherapy, chemotherapy, and radiotherapy are used to treat this malignancy. However, the differences in treatment outcome among patients suffering from bladder cancer are considered as one of the important challenges. In recent years, cancer stem cells, representing a population of undifferentiated cells with stem-cell like properties, have been eyed as a major culprit for the high recurrence rate in superficial papillary bladder cancer. Cancer stem cells have been reported to be resistant to conventional treatments, such as chemotherapy, radiation, and immunotherapy, which induce selective pressure on tumoral populations resulting in selection and growth of the resistant cells. Therefore, targeting the therapeutic aspects of cancer stem cells in bladder cancer may be promising. In this study, we briefly discuss the biology of bladder cancer and then address the possible relationship between molecular biology of bladder cancer and cancer stem cells. Subsequently, the mechanisms of resistance applied by cancer stem cells against the conventional therapeutic tools, especially chemotherapy, are discussed. Moreover, by emphasizing the biomarkers described for cancer stem cells in bladder cancer, we have provided, described, and proposed targets on cancer stem cells for therapeutic interventions and, finally, reviewed some immunotargeting strategies against bladder cancer stem cells.
Collapse
Affiliation(s)
- Nazi Aghaalikhani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadereh Rashtchizadeh
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pejman Shadpour
- Hasheminejad Kidney Centre (HKC), Hospital Management Research Centre (HMRC), University of Medical Sciences (IUMS), Tehran, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Mahmoodi
- Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
48
|
Wu P, Meng X, Zheng H, Zeng Q, Chen T, Wang W, Zhang X, Su J. Kaempferol Attenuates ROS-Induced Hemolysis and the Molecular Mechanism of Its Induction of Apoptosis on Bladder Cancer. Molecules 2018; 23:molecules23102592. [PMID: 30309003 PMCID: PMC6222750 DOI: 10.3390/molecules23102592] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer has become the most common malignant urinary carcinoma. Studies have shown that significant antioxidant and bladder cancer-fighting properties of several plant-based diets like Psidium guajava, ginger and amomum, are associated with their high kaempferol content. In this paper, we evaluated the antioxidant and anticancer activities of kaempferol and its mechanism of induction to apoptosis on bladder cancer cells. Our findings demonstrated that kaempferol showed an obvious radical scavenging activity in erythrocytes damaged by oxygen. Kaempferol promoted antioxidant enzymes, inhibited ROS generation and lipid peroxidation and finally prevented the occurrence of hemolysis. Additionally, kaempferol exhibited a strong inhibitory effect on bladder cancer cells and high safety on normal bladder cells. At the molecular level, kaempferol suppressed EJ bladder cancer cell proliferation by inhibiting the function of phosphorylated AKT (p-AKT), CyclinD1, CDK4, Bid, Mcl-1 and Bcl-xL, and promoting p-BRCA1, p-ATM, p53, p21, p38, Bax and Bid expression, and finally triggering apoptosis and S phase arrest. We found that Kaempferol exhibited strong anti-oxidant activity on erythrocyte and inhibitory effects on the growth of cancerous bladder cells through inducing apoptosis and S phase arrest. These findings suggested that kaempferol might be regarded as a bioactive food ingredient to prevent oxidative damage and treat bladder cancer.
Collapse
Affiliation(s)
- Ping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Xiaofeng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Huade Zheng
- Department of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qin Zeng
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
49
|
Miki M, Ishii K, Sasaki T, Kato M, Kajiwara S, Kanda H, Arima K, Hirokawa Y, Watanabe M, Sugimura Y. Predicting the tumorigenic phenotype of human bladder cancer cells by combining with fetal rat mesenchyme. Urol Oncol 2018; 36:472.e1-472.e9. [PMID: 30139660 DOI: 10.1016/j.urolonc.2018.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND In nonmuscle invasive bladder cancer patients, prediction of pTa and pT1 bladder cancer recurrence and progression must be established. Micropapillary structures have been defined as small clusters of invasive cancer cells having features of the epithelial-mesenchymal transition. Since the stromal microenvironment helps to induce the epithelial-mesenchymal transition, interactions between cancer cells and stroma should be closely examined to predict the tumorigenic phenotype of human bladder cancer cells. MATERIALS AND METHODS To investigate differences in the responsiveness of cancer cells to stroma, we combined 3 established human bladder cancer cell lines (high-grade T24 and UM-UC-3 cells, and low-grade papillary RT4 cells) with fetal rat mesenchyme. RESULTS Among 3 bladder cancer cell lines, the expression profiles of p63 isoforms were distinct, i.e., p63γ in T24 cells, p63β in UM-UC-3 cells, and p63α in RT4 cells. Tumors formed by T24 cells combined with fetal mesenchyme formed micropapillary-like structures, whereas those formed by T24 cells alone did not. T24 cells combined with fetal mesenchyme showed poor differentiation, e.g., innumerable chromatic atypia in the nuclei, higher levels of chromatic condensation, and increased nucleoli. In contrast, both UM-UC-3 and RT4 cells combined with fetal mesenchyme did not form micropapillary-like structures. Ki-67 and p63 labeling indices were significantly elevated by combining fetal mesenchyme with T24 cells but not with the others. CONCLUSIONS By mixing cancer cells with fetal mesenchyme, our data demonstrated that formation of micropapillary-like structures may predict the tumorigenic phenotype of invasive bladder cancer cells. Taken together, distinct expression profiles of p63 isoforms may predict poor outcomes in invasive bladder cancer.
Collapse
Affiliation(s)
- Manabu Miki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenichiro Ishii
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan; Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Manabu Kato
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Shinya Kajiwara
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hideki Kanda
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kiminobu Arima
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yoshiki Sugimura
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan.
| |
Collapse
|
50
|
Bellmunt J. Stem-Like Signature Predicting Disease Progression in Early Stage Bladder Cancer. The Role of E2F3 and SOX4. Biomedicines 2018; 6:biomedicines6030085. [PMID: 30072631 PMCID: PMC6164884 DOI: 10.3390/biomedicines6030085] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
The rapid development of the cancer stem cells (CSC) field, together with powerful genome-wide screening techniques, have provided the basis for the development of future alternative and reliable therapies aimed at targeting tumor-initiating cell populations. Urothelial bladder cancer stem cells (BCSCs) that were identified for the first time in 2009 are heterogenous and originate from multiple cell types; including urothelial stem cells and differentiated cell types—basal, intermediate stratum and umbrella cells Some studies hypothesize that BCSCs do not necessarily arise from normal stem cells but might derive from differentiated progenies following mutational insults and acquisition of tumorigenic properties. Conversely, there is data that normal bladder tissues can generate CSCs through mutations. Prognostic risk stratification by identification of predictive markers is of major importance in the management of urothelial cell carcinoma (UCC) patients. Several stem cell markers have been linked to recurrence or progression. The CD44v8-10 to standard CD44-ratio (total ratio of all CD44 alternative splicing isoforms) in urothelial cancer has been shown to be closely associated with tumor progression and aggressiveness. ALDH1, has also been reported to be associated with BCSCs and a worse prognosis in a large number of studies. UCC include low-grade and high-grade non-muscle invasive bladder cancer (NMIBC) and high-grade muscle invasive bladder cancer (MIBC). Important genetic defects characterize the distinct pathways in each one of the stages and probably grades. As an example, amplification of chromosome 6p22 is one of the most frequent changes seen in MIBC and might act as an early event in tumor progression. Interestingly, among NMIBC there is a much higher rate of amplification in high-grade NMIBC compared to low grade NMIBC. CDKAL1, E2F3 and SOX4 are highly expressed in patients with the chromosomal 6p22 amplification aside from other six well known genes (ID4, MBOAT1, LINC00340, PRL, and HDGFL1). Based on that, SOX4, E2F3 or 6q22.3 amplifications might represent potential targets in this tumor type. Focusing more in SOX4, it seems to exert its critical regulatory functions upstream of the Snail, Zeb, and Twist family of transcriptional inducers of EMT (epithelial–mesenchymal transition), but without directly affecting their expression as seen in several cell lines of the Cancer Cell Line Encyclopedia (CCLE) project. SOX4 gene expression correlates with advanced cancer stages and poor survival rate in bladder cancer, supporting a potential role as a regulator of the bladder CSC properties. SOX4 might serve as a biomarker of the aggressive phenotype, also underlying progression from NMIBC to MIBC. The amplicon in chromosome 6 contains SOX4 and E2F3 and is frequently found amplified in bladder cancer. These genes/amplicons might be a potential target for therapy. As an existing hypothesis is that chromatin deregulation through enhancers or super-enhancers might be the underlying mechanism responsible of this deregulation, a potential way to target these transcription factors could be through epigenetic modifiers.
Collapse
Affiliation(s)
- Joaquim Bellmunt
- Department of Medical Oncology, Hospital del Mar, IMIM (PSMAR-Hospital del Mar Research Institute), 08003 Barcelona, Spain.
- Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|