1
|
Bhole R, Shinkar J, Labhade S, Karwa P, Kapare H. MED12 dysregulation: insights into cancer and therapeutic resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04006-0. [PMID: 40105922 DOI: 10.1007/s00210-025-04006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025]
Abstract
MED12, a critical subunit of the mediator (MED) complex, plays a central role in transcriptional regulation by bridging signal-dependent transcription factors and RNA polymerase II. Dysregulation of MED12, often through mutation, has emerged as a significant driver in various cancers, including uterine leiomyomas, breast cancer (B.C.), and prostate cancer (P.C.). These mutations disrupt normal transcriptional processes by impairing the mediator complex's ability to properly regulate gene expression, which activates oncogenic pathways such as Wnt/β-catenin and TGF-β signaling, promoting tumorigenesis and drug resistance. Specifically, mutations in the MED12 gene lead to altered interactions with the transcriptional machinery, fostering aberrant activation of oncogenic networks. MED12 alterations have also been implicated in chemoresistance, particularly to therapies targeting EGFR, ALK, and BRAF, highlighting its role as a barrier to effective treatment. This review explores the mechanisms underlying MED12 dysregulation, its impact on cancer progression, and its association with therapeutic resistance. By examining its potential as a predictive biomarker and a therapeutic target, the article underscores the importance of MED12 in advancing precision oncology. Understanding MED12-mediated mechanisms offers insights into overcoming therapeutic resistance and paves the way for innovative, personalized cancer treatments.
Collapse
Affiliation(s)
- Ritesh Bhole
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India.
- Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Jagruti Shinkar
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Sonali Labhade
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Pawan Karwa
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Harshad Kapare
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| |
Collapse
|
2
|
Hasan S, Awasthi P, Malik S, Dwivedi M. Immunotherapeutic strategies to induce inflection in the immune response: therapy for cancer and COVID-19. Biotechnol Genet Eng Rev 2024; 40:3571-3610. [PMID: 36411974 DOI: 10.1080/02648725.2022.2147661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
Cancer has agonized the human race for millions of years. The present decade witnesses biological therapeutics to combat cancer effectively. Cancer Immunotherapy involves the use of therapeutics for manipulation of the immune system by immune agents like cytokines, vaccines, and transfection agents. Recently, this therapeutic approach has got vast attention due to the current pandemic COVID-19 and has been very effective. Concerning cancer, immunotherapy is based on the activation of the host's antitumor response by enhancing effector cell number and the production of soluble mediators, thereby reducing the host's suppressor mechanisms by induction of a tumour killing environment and by modulating immune checkpoints. In the present era, immunotherapies have gained traction and momentum as a pedestal of cancer treatment, improving the prognosis of many patients with a wide variety of haematological and solid malignancies. Food supplements, natural immunomodulatory drugs, and phytochemicals, with recent developments, have shown positive trends in cancer treatment by improving the immune system. The current review presents the systematic studies on major immunotherapeutics and their development for the effective treatment of cancers as well as in COVID-19. The focus of the review is to highlight comparative analytics of existing and novel immunotherapies in cancers, concerning immunomodulatory drugs and natural immunosuppressants, including immunotherapy in COVID-19 patients.
Collapse
Affiliation(s)
- Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Ranchi, Jharkhand, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
3
|
Lee HJ, Seo Y, Park Y, Yi EC, Han D, Min H. Comprehensive immune cell spectral library for large-scale human primary T, B, and NK cell proteomics. Sci Data 2024; 11:871. [PMID: 39127789 PMCID: PMC11316730 DOI: 10.1038/s41597-024-03721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Although proteomics is extensively used in immune research, there is currently no publicly accessible spectral assay library for the comprehensive proteome of immune cells. This study generated spectral assay libraries for five human immune cell lines and four primary immune cells: CD4 T, CD8 T, natural killer (NK) cells, and B cells. This was achieved by utilizing data-dependent acquisition (DDA) and employing fractionated samples from over 100 µg of proteins, which was applied to acquire the highest-quality MS/MS spectral data. In addition, Data-indedendent acquisition (DIA) was used to obtain sufficient data points for analyzing proteins from 10,000 primary CD4 T, CD8 T, NK, and B cells. The immune cell spectral assay library generated included 10,544 protein groups and 127,106 peptides. The proteomic profiles of 10,000 primary human immune cells obtained from 15 healthy volunteers analyzed using DIA revealed the highest heterogeneity of B cells among other immune cell types and the similarity between CD4 T and CD8 T cells. All data and spectral library are deposited in ProteomeXchange (PXD047742).
Collapse
Affiliation(s)
- Hyeon-Jeong Lee
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Korea
| | - Yoondam Seo
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03080, Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| |
Collapse
|
4
|
Pan S, Wan M, Jin H, Ning R, Zhang J, Han X. LCP1 correlates with immune infiltration: a prognostic marker for triple-negative breast cancer. BMC Immunol 2024; 25:42. [PMID: 38977952 PMCID: PMC11229261 DOI: 10.1186/s12865-024-00635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE Triple-Negative Breast Cancer (TNBC) is known for its aggressiveness and treatment challenges due to the absence of ER, PR, and HER2 receptors. Our work emphasizes the prognostic value of LCP1 (Lymphocyte cytosolic protein 1), which plays a crucial role in cell processes and immune cell activity, to predict outcomes and guide treatments in TNBC. METHODS We explored LCP1 as a potential biomarker in TNBC and investigated the mRNA and protein expression levels of LCP1. We investigated different databases, including GTEX, TCGA, GEO, cBioPortal and Kaplan-Meier Plotter. Immunohistochemistry on TNBC and benign tumor samples was performed to examine LCP1's relationship with patient clinical characteristics and macrophage markers. We also assessed survival rates, immune cell infiltration, and drug sensitivity related to LCP1 using various bioinformatics tools. RESULTS The results indicated that LCP1 expression was higher in TNBC tissues compared to adjacent normal tissues. However, high expression of LCP1 was significantly associated with favorable survival outcomes in patients with TNBC. Enrichment analysis revealed that genes co-expressed with LCP1 were significantly enriched in various immune processes. LCP1 showed a positive correlation with the infiltration of resting dendritic cells, M1 macrophages, and memory CD4 T cells, and a negative correlation with M2 macrophages. Further analysis suggested a link between high levels of LCP1 and increased survival outcomes in cancer patients receiving immunotherapy. CONCLUSION LCP1 may serve as a potential diagnostic and prognostic biomarker for TNBC, which was closely associated with immune cell infiltration, particularly M1 and M2 macrophages. Our findings may provide valuable insights into immunotherapeutic strategies for TNBC patients.
Collapse
Affiliation(s)
- Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, China
| | - Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ran Ning
- Department of Pathology, The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Huang M, Liu Y, Yan Q, Peng M, Ge J, Mo Y, Wang Y, Wang F, Zeng Z, Li Y, Fan C, Xiong W. NK cells as powerful therapeutic tool in cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:733-757. [PMID: 38170381 DOI: 10.1007/s13402-023-00909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results. CONCLUSION This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.
Collapse
Affiliation(s)
- Mao Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yixuan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Comprehensive Cancer Center, Baylor College of Medicine, Alkek Building, RM N720, Houston, TX, USA
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, 410013, Changsha, Hunan Province, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Wang Y, Li G, Su J, Liu Y, Zhang X, Zhang G, Wu Z, Li J, Zhang Y, Wang X, Yang Z, Wang R, Wang C, Wang L, Sun F, Zhao W, Wang X, Peng X, Shao K. Spatiotemporal Controllable Sono-Nanovaccines Driven by Free-Field Based Whole-Body Ultrasound for Personalized Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307920. [PMID: 38308196 PMCID: PMC11005707 DOI: 10.1002/advs.202307920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Therapeutic cancer vaccines fail to produce satisfactory outcomes against solid tumors since vaccine-induced anti-tumor immunity is significantly hampered by immunosuppression. Generating an in situ cancer vaccine targeting immunological cold tumor microenvironment (TME) appears attractive. Here, a type of free-field based whole-body ultrasound (US)-driven nanovaccines are constructed, named G5-CHC-R, by conjugating the sonosensitizer, Chenghai chlorin (CHC) and the immunomodulator, resiquimod (R848) on top of a super small-sized dendrimeric nanoscaffold. Once entering tumors, R848 can be cleaved from a hypoxia-sensitive linker, thus modifying the TME via converting macrophage phenotypes. The animals bearing orthotopic pancreatic cancer with intestinal metastasis and breast cancer with lung metastasis are treated with G5-CHC-R under a free-field based whole-body US system. Benefit from the deep penetration capacity and highly spatiotemporal selectiveness, G5-CHC-R triggered by US represented a superior alternative for noninvasive irradiation of deep-seated tumors and magnification of local immune responses via driving mass release of tumor antigens and "cold-warm-hot" three-state transformation of TME. In addition to irradiating primary tumors, a robust adaptive anti-tumor immunity is potentiated, leading to successful induction of systemic tumor suppression. The sono-nanovaccines with good biocompatibility posed wide applicability to a broad spectrum of tumors, revealing immeasurable potential for translational research in oncology.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Guangzhe Li
- State Key Laboratory of Fine ChemicalsDepartment of PharmacySchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Jianlong Su
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Yiming Liu
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Xiaomai Zhang
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Guanyi Zhang
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Zhihao Wu
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Jinrong Li
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Yuxuan Zhang
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Xu Wang
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Zejia Yang
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Ruimin Wang
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Chengdong Wang
- Nuclear MedicineFirst Affiliated Hospital of Dalian Medical UniversityDalian116021China
| | - Liu Wang
- State Key Laboratory of Fine ChemicalsDepartment of PharmacySchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Fangfang Sun
- Nuclear MedicineFirst Affiliated Hospital of Dalian Medical UniversityDalian116021China
| | - Weijie Zhao
- State Key Laboratory of Fine ChemicalsDepartment of PharmacySchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Xuejian Wang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalian116021China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Kun Shao
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| |
Collapse
|
7
|
Xu Y, Lin Z, Ji Y, Zhang C, Tang X, Li C, Liu T. Pan-cancer analysis identifies RNF43 as a prognostic, therapeutic and immunological biomarker. Eur J Med Res 2023; 28:438. [PMID: 37848933 PMCID: PMC10580550 DOI: 10.1186/s40001-023-01383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND RING finger protein 43 (RNF43), an E3 ubiquitin ligase, is a homologous gene mutated in several cancers. However, the pan-cancer panoramic picture of RNF43 and its predictive value for tumor immune phenotypes and immunotherapeutic efficacy are still largely unclear. Our study aims to clarify the functions of RNF43 in predicting the prognosis, immune signature, and immunotherapeutic efficacy in pan-cancer. METHODS By using RNA-seq, mutation, and clinical data from the TCGA database, the expression levels and prognostic significance of RNF43 in pan-cancer were analyzed. The genetic alteration characteristics of RNF43 were displayed by the cBioPortal database. Gene Set Enrichment Analysis (GSEA) was performed to investigate the potential biological functions and signaling pathways modulated by RNF43 in cancers. The relationship of RNF43 expression with immune cell infiltration, and immune modulators expression was interpreted by the ESTIMATE algorithm, CIBERSORT algorithm, and TISIDB database. The correlations between RNF43, microsatellite instability (MSI), and tumor mutation burden (TMB) were also investigated. Furthermore, the predictive value of RNF43 for immunotherapeutic efficacy and drug sensitivity was further illustrated. Besides, immunohistochemistry (IHC) was employed to validate the expression of the RNF43 in different cancer types by our clinical cohorts, including patients with lung cancer, sarcoma, breast cancer, and kidney renal clear cell carcinoma. RESULTS The results demonstrated that RNF43 was abnormally expressed in multiple cancers, and RNF43 is a critical prognosis-related factor in several cancers. RNF43 was frequently mutated in several cancers with a high frequency of 4%, and truncating mutation was the most frequent RNF43 mutation type. RNF43 expression was linked to the abundance of several immune cell types, including CD8+ T cells, B cells, and macrophages within the tumor immune microenvironment. Furthermore, RNF43 expression was significantly correlated with the efficacy of anti-PD-1/PD-L1 treatment, and it could predict the sensitivity of various anti-cancer drugs. Finally, IHC explored and validated the different expression levels of RNF43 in different cancers by our clinical samples. CONCLUSION Our results first present the expression pattern and the mutation signature of RNF43, highlighting that RNF43 is an important prognostic biomarker in pan-cancer. Furthermore, RNF43 seems to be a critical modulator in the tumor immune microenvironment and can function as a promising biomarker for predicting the immunotherapeutic efficacy of anti-PD-1/PD-L1 treatment, and drug sensitivity in cancer treatment.
Collapse
Affiliation(s)
- Yingting Xu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yuqiao Ji
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, 410013, Hunan, People's Republic of China
| | - Chen Zhang
- Department of The Emergency, The Fourth People's Hospital of Zigong, Zigong, 643000, Sichuan, China
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou No.1, People's Hospital, Chenzhou, 423000, Hunan, China
| | - Chuan Li
- Department of Orthopaedic, 920Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming, Yunnan, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Zhang PF, Shi XQ, Li Q. Nivolumab plus chemotherapy versus chemotherapy alone as first-line treatment for advanced gastric, gastroesophageal junction, and esophageal adenocarcinoma: a cost-effectiveness analysis. COST EFFECTIVENESS AND RESOURCE ALLOCATION 2023; 21:65. [PMID: 37705023 PMCID: PMC10500934 DOI: 10.1186/s12962-023-00476-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/09/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND The aim of the study was to evaluate the cost-effectiveness of nivolumab plus chemotherapy as first-line treatment for patients with advanced gastric, gastroesophageal junction (GEJ), or esophageal adenocarcinoma from the perspective of Chinese and US society. METHODS To conduct the analysis, a state-transitioned Markov model, which included three mutually exclusive health states (progression-free survival (PFS), progressive disease (PD), and death), was developed. Cycle length was set at 3 weeks and lifetime horizon was set at 10 years. Costs, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratio (ICER) were calculated in the analysis. Willingness-to-pay (WTP) thresholds in the model were set at $37,653.00/QALY in China and $100,000.00/QALY in the US, respectively. Meanwhile, one-way sensitivity analyses and probabilistic sensitivity analyses were conducted to investigate the robustness of the model. RESULTS Over a lifetime horizon, the ICERs of nivolumab plus chemotherapy versus chemotherapy alone were $430,185.04/QALY and $944,089.78/QALY in China and the US, respectively. Cost of nivolumab and utility for the PFS state had the most significant impact on ICERs both in the US and China based on the results of the one-way sensitivity analyses. In the probabilistic sensitivity analyses, the proportions of nivolumab plus chemotherapy being cost-effective compared with chemotherapy alone were 0%. CONCLUSIONS In conclusion, nivolumab plus chemotherapy is unlikely to be a cost-effective treatment option compared with chemotherapy alone in the first-line setting of advanced gastric, GEJ, or esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Gastric Cancer Center, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuan-Qiong Shi
- Gastric Cancer Center, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu Li
- Med-X Center for Informatics, Sichuan University, Chengdu, China.
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Sobhani N, Bouchè V, Aldegheri G, Rocca A, D’Angelo A, Giudici F, Bottin C, Donofrio CA, Pinamonti M, Ferrari B, Panni S, Cominetti M, Aliaga J, Ungari M, Fioravanti A, Zanconati F, Generali D. Analysis of PD-L1 and CD3 Expression in Glioblastoma Patients and Correlation with Outcome: A Single Center Report. Biomedicines 2023; 11:biomedicines11020311. [PMID: 36830847 PMCID: PMC9953166 DOI: 10.3390/biomedicines11020311] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
With the advent of immunotherapies, the field of cancer therapy has been revived with new hope, especially for cancers with dismal prognoses, such as the glioblastoma multiforme (GBM). Currently, immunotherapies should potentiate the host's own antitumor immune response against cancer cells, but it has been documented that they are effective only in small subsets of patients. Therefore, accurate predictors of response are urgently needed to identify who will benefit from immune-modulatory therapies. Brain tumors are challenging in terms of treatments. The immune response in the brain is highly regulated, and the immune microenvironment in brain metastases is active with a high density of tumor-infiltrating lymphocytes (TILs, CD3+ T cells) in certain patients and, therefore, may serve as a potential treatment target. In our study, we performed immunohistochemistry for CD3 and PD-L1 along the routine assessment of the O6-methylguanine-methyltransferase (MGMT) promoter methylation status and the IDH1 and 2 status in a single center cohort of 69 patients with GBM (58 primary tumors and 11 recurrences) who underwent standard multimodal therapies (surgery/radiotherapy/adjuvant temozolamide). We analyzed the association of PD-L1 tumor expression and TILs with overall survival (OS). The PD-L1 expression was observed in 25 of 58 (43%) newly diagnosed primary glioblastoma specimens. The sparse-to-moderate density of TILs, identified with CD3+ expression, was found in 48 of 58 (83%) specimens. Neither PD-L1 expression nor TILs were associated with overall survival. In conclusion, TILs and/or PD-L1 expression are detectable in the majority of glioblastoma samples, and even if they slightly relate to the outcome, they do not show a statistically significant correlation.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (N.S.); (D.G.)
| | - Victoria Bouchè
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Giovanni Aldegheri
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Andrea Rocca
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Alberto D’Angelo
- Department of Biology & Biochemistry, University of Bath, Bath BA27AY, UK
| | - Fabiola Giudici
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Cristina Bottin
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Carmine Antonio Donofrio
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maurizio Pinamonti
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Benvenuto Ferrari
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Stefano Panni
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Marika Cominetti
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Jahard Aliaga
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Marco Ungari
- Pathology Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | | | - Fabrizio Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
- Correspondence: (N.S.); (D.G.)
| |
Collapse
|
10
|
Application of Plant Polysaccharide Nanoparticles as Polymeric Carrier Materials for the Construction of Medicine Carriers. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Li H, Wu X, Bu D, Wang L, Xu X, Wang Y, Liu Y, Zhu P. Recombinant jurkat cells (HMGN2-T cells) secrete cytokines and inhibit the growth of tumor cells. J Mol Histol 2022; 53:741-751. [PMID: 35861945 DOI: 10.1007/s10735-022-10084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
High Mobility Group Chromosomal Protein N2 (HMGN2) can recognize tumor cells and enhance the anti-tumor effect of immune cells. This study aimed to establish a lentiviral vector of recombinant HMGN2 gene, establish recombinant T cells (HMGN2-T cells), and observe their anti-tumor effects. Total RNA was isolated from peripheral blood mononuclear cells. HMGN2, cluster of differentiation (CD) 8 A, CD28, CD137, and CD3ζ genes were amplified and connected. Jurkat cells were transfected with the recombinant lentivirus vector. The viability, apoptosis, and cell cycle of HMGN2-T cells were detected using Cell Counting Kit-8 assay and flow cytometry. The co-culture was performed by adding HMGN2-T cells to tumor cells with different effect-to-target (E:T) ratios. The cytotoxic activity was measured by lactate dehydrogenase (LDH) releasing assay. The sequences of HMGN2, CD8A, CD28, CD137, and CD3ζ gene plasmids were confirmed using gene sequencing. After the lentiviral transfection for 72 h, green fluorescence cells (HMGN2-T cells) could be seen. Cell viability and apoptosis were increased in HMGN2-T cells. The cytokine levels of interleukin 2 (IL-2) and tumor necrosis factor α (TNF-α) increased in cell supernatants of HMGN2-T cells. The percentage of G0/G1 phase cells was lower, the rate of S phase cells was higher in HMGN2-T cells than control cells. The co-culture of HMGN2-T cells and tumor cells could promote the cytokines' release. The LDH level was increased with the elevation of E:T ratios. In conclusion, the HMGN2-T cells were well-established and have the effect of secreting cytokines and killing tumor cells.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, 450052, Zhengzhou, China
| | - Xueqiang Wu
- Institute of Hematology & Oncology, Beijing Aerospace General Hospital, 100076, Beijing, China
| | - Dingfang Bu
- Department of Hematology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, 100034, Beijing, China
| | - Lihua Wang
- Institute of Hematology & Oncology, Beijing Aerospace General Hospital, 100076, Beijing, China
| | - Xueju Xu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, 450052, Zhengzhou, China
| | - Yingchao Wang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, 450052, Zhengzhou, China
| | - Yufeng Liu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, 450052, Zhengzhou, China.
| | - Ping Zhu
- Department of Hematology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, 100034, Beijing, China.
| |
Collapse
|
12
|
Li X, Li M, Huang M, Lin Q, Fang Q, Liu J, Chen X, Liu L, Zhan X, Shan H, Lu D, Li Q, Li Z, Zhu X. The multi-molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother 2022; 150:113064. [PMID: 35658234 DOI: 10.1016/j.biopha.2022.113064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
Clinically, cancer drug therapy is still dominated by chemotherapy drugs. Although the emergence of targeted drugs has greatly improved the survival rate of patients with advanced cancer, drug resistance has always been a difficult problem in clinical cancer treatment. At the current level of medicine, most drugs cannot escape the fate of drug resistance. With the emergence and development of gene detection, liquid biopsy ctDNA technology, and single-cell sequencing technology, the molecular mechanism of tumor drug resistance has gradually emerged. Drugs can also be updated in response to drug resistance mechanisms and bring higher survival benefits. The use of new drugs often leads to new mechanisms of resistance. In this review, the multi-molecular mechanisms of drug resistance are introduced, and the overcoming of drug resistance is discussed from the perspective of the tumor microenvironment.
Collapse
Affiliation(s)
- Xinming Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Meiying Huang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qiuping Fang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Jianjiang Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xiaohui Chen
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Lin Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xuliang Zhan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Huisi Shan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Deshuai Lu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qinlan Li
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| | - Xiao Zhu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
13
|
Rawat P, Dhingra M, Kosta K, Das A. Microflora impacts immune system and its antitumor function. MICROBIAL CROSSTALK WITH IMMUNE SYSTEM 2022:177-205. [DOI: 10.1016/b978-0-323-96128-8.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Diehl V, Huber LS, Trebicka J, Wygrecka M, Iozzo RV, Schaefer L. The Role of Decorin and Biglycan Signaling in Tumorigenesis. Front Oncol 2021; 11:801801. [PMID: 34917515 PMCID: PMC8668865 DOI: 10.3389/fonc.2021.801801] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The complex and adaptive nature of malignant neoplasm constitute a major challenge for the development of effective anti-oncogenic therapies. Emerging evidence has uncovered the pivotal functions exerted by the small leucine-rich proteoglycans, decorin and biglycan, in affecting tumor growth and progression. In their soluble forms, decorin and biglycan act as powerful signaling molecules. By receptor-mediated signal transduction, both proteoglycans modulate key processes vital for tumor initiation and progression, such as autophagy, inflammation, cell-cycle, apoptosis, and angiogenesis. Despite of their structural homology, these two proteoglycans interact with distinct cell surface receptors and thus modulate distinct signaling pathways that ultimately affect cancer development. In this review, we summarize growing evidence for the complex roles of decorin and biglycan signaling in tumor biology and address potential novel therapeutic implications.
Collapse
Affiliation(s)
- Valentina Diehl
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Lisa Sophie Huber
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Member of the German Center for Lung Research, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|
15
|
Ta HDK, Wang WJ, Phan NN, An Ton NT, Anuraga G, Ku SC, Wu YF, Wang CY, Lee KH. Potential Therapeutic and Prognostic Values of LSM Family Genes in Breast Cancer. Cancers (Basel) 2021; 13:4902. [PMID: 34638387 PMCID: PMC8508234 DOI: 10.3390/cancers13194902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/26/2022] Open
Abstract
In recent decades, breast cancer (BRCA) has become one of the most common diseases worldwide. Understanding crucial genes and their signaling pathways remain an enormous challenge in evaluating the prognosis and possible therapeutics. The "Like-Smith" (LSM) family is known as protein-coding genes, and its member play pivotal roles in the progression of several malignancies, although their roles in BRCA are less clear. To discover biological processes associated with LSM family genes in BRCA development, high-throughput techniques were applied to clarify expression levels of LSMs in The Cancer Genome Atlas (TCGA)-BRCA dataset, which was integrated with the cBioPortal database. Furthermore, we investigated prognostic values of LSM family genes in BCRA patients using the Kaplan-Meier database. Among genes of this family, LSM4 expression levels were highly associated with poor prognostic outcomes with a hazard ratio of 1.35 (95% confidence interval 1.21-1.51, p for trend = 3.4 × 10-7). MetaCore and GlueGo analyses were also conducted to examine transcript expression signatures of LSM family members and their coexpressed genes, together with their associated signaling pathways, such as "Cell cycle role of APC in cell cycle regulation" and "Immune response IL-15 signaling via MAPK and PI3K cascade" in BRCA. Results showed that LSM family members, specifically LSM4, were significantly correlated with oncogenesis in BRCA patients. In summary, our results suggested that LSM4 could be a prospective prognosticator of BRCA.
Collapse
Affiliation(s)
- Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jan Wang
- Department of Biological Science and Technology, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan;
| | - Nam Nhut Phan
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Nu Thuy An Ton
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Su-Chi Ku
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yung-Fu Wu
- National Defense Medical Center, Department of Medical Research, School of Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
16
|
Abstract
The development of tumors requires an initiator event, usually exposure to DNA damaging agents that cause genetic alterations such as gene mutations or chromosomal abnormalities, leading to deregulated cell proliferation. Although the mere stochastic accumulation of further mutations may cause tumor progression, it is now clear that an inflammatory microenvironment has a major tumor-promoting influence on initiated cells, in particular when a chronic inflammatory reaction already existed before the initiated tumor cell was formed. Moreover, inflammatory cells become mobilized in response to signals emanating from tumor cells. In both cases, the microenvironment provides signals that initiated tumor cells perceive by membrane receptors and transduce via downstream kinase cascades to modulate multiple cellular processes and respond with changes in cell gene expression, metabolism, and morphology. Cytokines, chemokines, and growth factors are examples of major signals secreted by immune cells, fibroblast, and endothelial cells and mediate an intricate cell-cell crosstalk in an inflammatory microenvironment, which contributes to increased cancer cell survival, phenotypic plasticity and adaptation to surrounding tissue conditions. Eventually, consequent changes in extracellular matrix stiffness and architecture, coupled with additional genetic alterations, further fortify the malignant progression of tumor cells, priming them for invasion and metastasis. Here, we provide an overview of the current knowledge on the composition of the inflammatory tumor microenvironment, with an emphasis on the major signals and signal-transducing events mediating different aspects of stromal cell-tumor cell communication that ultimately lead to malignant progression.
Collapse
|