1
|
Peiu SN, Iosep DG, Danciu M, Scripcaru V, Ianole V, Mocanu V. Ghrelin Expression in Atherosclerotic Plaques and Perivascular Adipose Tissue: Implications for Vascular Inflammation in Peripheral Artery Disease. J Clin Med 2024; 13:3737. [PMID: 38999303 PMCID: PMC11242600 DOI: 10.3390/jcm13133737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Atherosclerosis, a leading cause of peripheral artery disease (PAD), is driven by lipid accumulation and chronic inflammation within arterial walls. Objectives: This study investigates the expression of ghrelin, an anti-inflammatory peptide hormone, in plaque morphology and inflammation in patients with PAD, highlighting its potential role in age-related vascular diseases and metabolic syndrome. Methods: The analysis specifically focused on the immunohistochemical expression of ghrelin in atherosclerotic plaques and perivascular adipose tissue (PVAT) from 28 PAD patients. Detailed immunohistochemical staining was performed to identify ghrelin within these tissues, comparing its presence in various plaque types and assessing its association with markers of inflammation and macrophage polarization. Results: Significant results showed a higher prevalence of calcification in fibro-lipid plaques (63.1%) compared to fibrous plaques, with a notable difference in inflammatory infiltration between the two plaque types (p = 0.027). Complicated plaques exhibited increased ghrelin expression, suggesting a modulatory effect on inflammatory processes, although this did not reach statistical significance. The correlation between ghrelin levels and macrophage presence, especially the pro-inflammatory M1 phenotype, indicates ghrelin's involvement in the inflammatory dynamics of atherosclerosis. Conclusions: The findings propose that ghrelin may influence plaque stability and vascular inflammation, pointing to its therapeutic potential in managing atherosclerosis. The study underlines the necessity for further research to clarify ghrelin's impact on vascular health, particularly in the context of metabolic syndrome and age-related vascular alterations.
Collapse
Affiliation(s)
- Sorin Nicolae Peiu
- Vascular Surgery Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Morpho-Functional Sciences II (Physiopathology) Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Diana Gabriela Iosep
- Pathology Department, "Sf. Spiridon" Emergency Clinical Hospital, 700111 Iasi, Romania
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, "Sf. Spiridon" Emergency Clinical Hospital, 700111 Iasi, Romania
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Scripcaru
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Victor Ianole
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Mocanu
- Morpho-Functional Sciences II (Physiopathology) Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Ma Y, Zhang H, Guo W, Yu L. Potential role of ghrelin in the regulation of inflammation. FASEB J 2022; 36:e22508. [PMID: 35983825 DOI: 10.1096/fj.202200634r] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Several diseases are caused or progress due to inflammation. In the past few years, accumulating evidence suggests that ghrelin, a gastric hormone of 28-amino acid residue length, exerts protective effects against inflammation by modulating the related pathways. This review focuses on ghrelin's anti-inflammatory and potential therapeutic effects in neurological, cardiovascular, respiratory, hepatic, gastrointestinal, and kidney disorders. Ghrelin significantly alleviates excessive inflammation and reduces damage to different target organs mainly by reducing the secretion of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and inhibiting the nuclear factor kappa-B (NF-κB) and NLRP3 inflammasome signaling pathways. Ghrelin also regulates inflammation and apoptosis through the p38 MAPK/c-Jun N-terminal kinase (JNK) signaling pathway; restores cerebral microvascular integrity, and attenuates vascular leakage. Ghrelin activates the phosphoInositide-3 kinase (PI3K)/protein kinase B (Akt) pathway and inhibits inflammatory responses in cardiovascular diseases and acute kidney injury. Some studies show that ghrelin exacerbates colonic and intestinal manifestations of colitis. Interestingly, some inflammatory states, such as non-alcoholic steatohepatitis, inflammatory bowel diseases, and chronic kidney disease, are often associated with high ghrelin levels. Thus, ghrelin may be a potential new therapeutic target for inflammation-related diseases.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haifeng Zhang
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Perivascular Adipose Tissue Inflammation: The Anti-Inflammatory Role of Ghrelin in Atherosclerosis Progression. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Perivascular adipose tissue (PVAT) and its adipokines engage in bidirectional crosstalk with the vascular wall. Atherosclerosis disrupts this interaction through inflammation, rupture-prone plaques, and subsequent thrombosis. The cardioprotective effects of ghrelin are in contradiction to its adipogenic properties. The concurrent research of anti-/pro-atherogenic mechanisms of ghrelin and PVAT-derived adipokines provides a better understanding of atherosclerosis progression in metabolic disorders. In-depth coverage of the characteristic features of PVAT concerning vascular dysfunction, with a survey of ghrelin-induced anti-inflammatory effects on adipose tissue macrophage infiltration and the inhibitory activity of ghrelin on the proinflammatory adipokine secretion, show that the impact of ghrelin on the endothelial function should be studied in relation to PVAT.
Collapse
|
5
|
Research progress of ghrelin on cardiovascular disease. Biosci Rep 2021; 41:227556. [PMID: 33427286 PMCID: PMC7823193 DOI: 10.1042/bsr20203387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
Ghrelin, a 28-aminoacid peptide, was isolated from the human and rat stomach and identified in 1999 as an endogenous ligand for the growth hormone secretagogue-receptor (GHS-R). In addition to stimulating appetite and regulating energy balance, ghrelin and its receptor GHS-R1a have a direct effect on the cardiovascular system. In recent years, it has been shown that ghrelin exerts cardioprotective effects, including the modulation of sympathetic activity and hypertension, enhancement of the vascular activity and angiogenesis, inhibition of arrhythmias, reduction in heart failure and inhibition of cardiac remodeling after myocardial infarction (MI). The cardiovascular protective effect of ghrelin may be associated with anti-inflammation, anti-apoptosis, inhibited sympathetic nerve activation, regulated autophagy, and endothelial dysfunction. However, the molecular mechanisms underlying the effects of ghrelin on the cardiovascular system have not been fully elucidated, and no specific therapeutic agent has been established. It is important to further explore the pharmacological potential of ghrelin pathway modulation for the treatment of cardiovascular diseases.
Collapse
|
6
|
Li Y, Guo J, Yu H, Zhou J, Chu X, Hou B, Ge J, Li T, Duan S, Xu H, Yang X. The effect of olmesartan on aortic intimal thickening after balloon injury through Apelin/APJ. Cardiovasc Pathol 2020; 49:107230. [PMID: 32585603 DOI: 10.1016/j.carpath.2020.107230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Restenosis is the main complication after percutaneous coronary intervention. The proliferation of new intima contributes to the process. In this study, we aimed to explore the effect of olmesartan on intimal thickening after balloon injury and possible mechanism. METHODS Aortic endothelial denudation model was made by a 2F balloon catheter. Thirty-six rats were randomly allocated into three groups: Control (n = 12) Surgery (n = 12, received vascular balloon injury) and Olmesartan (n = 12, received 3 mg.kg-1.d-1olmesartan after injury). Fourteen and 28 days after injury, HE staining was used to assess the aortic endothelial injury. Radioimmunological method was used to examine the level of angiotensin II (Ang II). Western blotting and reverse transcription polymerse chain reaction (RT-PCR) were employed to detect the protein and mRNA level of Apelin/APJ. RESULTS After vascular balloon injury, the proliferation of vascular smooth muscle cells and the intimal thickening were increased. The mRNA and protein level of Ang II, AT1, Apelin and APJ mRNA were promoted by vascular balloon injury. Olmesartan decreased the proliferation of vascular smooth muscle cells and the intimal thickening. Olmesartan decreased the expression of Ang II and AT1, but further increased the expression of Apelin and APJ. Balloon injury also induced the activation of Extracellular signal-regulated kinase (ERK) signaling and olmesartan decreased the effect. CONCLUSION Olmesartan inhibits the intimal thickening through activating Apelin/APJ and inhibiting AngII-AT1 and ERK pathway.
Collapse
Affiliation(s)
- Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China.
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Jingwei Zhou
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Bo Hou
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Junhua Ge
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Tingting Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Shuo Duan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Hui Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| | - Xi Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003,China
| |
Collapse
|
7
|
Ghrelin Ameliorates Angiotensin II-Induced Myocardial Fibrosis by Upregulating Peroxisome Proliferator-Activated Receptor Gamma in Young Male Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9897581. [PMID: 30175152 PMCID: PMC6098901 DOI: 10.1155/2018/9897581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023]
Abstract
Angiotensin (Ang) II contributes to the formation and development of myocardial fibrosis. Ghrelin, a gut peptide, has demonstrated beneficial effects against cardiovascular disease. In the present study, we explored the effect and related mechanism of Ghrelin on myocardial fibrosis in Ang II-infused rats. Adult Sprague-Dawley (SD) rats were divided into 6 groups: Control, Ang II (200ng/kg/min, microinfusion), Ang II+Ghrelin (100 μg/kg, subcutaneously twice daily), Ang II+Ghrelin+GW9662 (a specific PPAR-γ inhibitor, 1 mg/kg/d, orally), Ang II+GW9662, and Ghrelin for 4 wks. In vitro, adult rat cardiac fibroblasts (CFs) were pretreated with or without Ghrelin, Ghrelin+GW9662, or anti-Transforming growth factor (TGF)-β1 antibody and then stimulated with or without Ang II (100 nmol/L) for 24 h. Ang II infusion significantly increased myocardial fibrosis, expression of collagen I, collagen III, and TGF-β1, as well as TGF-β1 downstream proteins p-Smad2, p-Smad3, TRAF6, and p-TAK1 (all p<0.05). Ghrelin attenuated these effects. Similar results were seen in Ang II-stimulated rat cardiac fibroblasts in vitro. In addition, Ghrelin upregulated PPAR-γ expression in vivo and in vitro, and treatment with GW9662 counteracted the effects of Ghrelin. In conclusion, Ghrelin ameliorated Ang II-induced myocardial fibrosis by upregulating PPAR-γ and in turn inhibiting TGF-β1signaling.
Collapse
|
8
|
Çelik N, Cinaz P, Bideci A, Derinkuyu B, Emeksiz HC, Döğer E, Damar Ç, Yüce Ö, Çamurdan O. Endoglin and obestatin levels, cardiometabolic risk factors and subclinical atherosclerosis in children aged 10-18 years. J Pediatr Endocrinol Metab 2016; 29:1173-1180. [PMID: 27682709 DOI: 10.1515/jpem-2016-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND The aim of this study was to investigate the early signs of atherosclerosis and to evaluate serum endoglin and obestatin levels as predictors of subclinical atherosclerosis in obese children. METHODS A total of 95 children (60 obese and 35 controls) aged 10-18 years were included in the study. Their endoglin and obestatin levels and biochemical parameters were measured. The carotid intima media thickness (cIMT) and brachial artery flow-mediated dilatation (FMD) responses were evaluated. RESULTS The cIMT values were higher (p < 0.001) and FMD responses were lower (p = 0.003) in the obese group than in the control group. A logistic regression multivariate analysis revealed that cIMT was independently associated with the body mass index (BMI) Z-score (β = 0.323, p = 0.003) and low density lipoprotein (LDL) (β = 0.29, p = 0.008), while FMD % was independently associated with waist circumference (β = -0.36, p = 0.002). The obese and control groups were similar in endoglin (p = 0.67) and obestatin levels (p = 0.70). The endoglin level was inversely correlated with the cholesterol and LDL levels (r = -0.23, p = 0.032; rho = -0.25, p = 0.019). CONCLUSIONS The cIMT and brachial artery FMD response in obese children are significantly different compared to healthy controls. Circulating endoglin and obestatin levels are not predictive markers for subclinical atherosclerosis in obese children aged 10-18 years old.
Collapse
|
9
|
Phenotypic transformation of smooth muscle cells from porcine coronary arteries is associated with connexin 43. Mol Med Rep 2016; 14:41-8. [PMID: 27175888 PMCID: PMC4918540 DOI: 10.3892/mmr.2016.5286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022] Open
Abstract
The current study aimed to investigate the relevance of the gap junction protein connexin Cx43 in coronary artery smooth muscle cell (SMC) heterogeneity and coronary artery restenosis. SMCs were isolated from the coronary artery of 3‑month‑old pigs using enzymatic digestion. Two distinct SMC populations were isolated: Rhomboid (R) and spindle‑shaped (S) cells. S‑SMCs exhibited relatively lower rates of proliferation, exhibiting a classic ''hills‑and valleys'' growth pattern; R‑SMCs displayed increased proliferation rates, growing as mono‑ or multi‑layers. Immunofluorescent staining, polymerase chain reaction and western blotting were used to assess the expression of Cx40 and Cx43 in SMCs. For further evaluation, cultured SMCs were treated with 10 ng/ml platelet‑derived growth factor (PDGF)‑BB with or without the gap junction blocker 18α‑glycyrrhetinic acid. Stent‑induced restenosis was assessed in vivo. Different expression patterns were observed for Cx40 and Cx43 in R‑ and S‑SMCs. Cx40 was the most abundant Cx in S‑SMCs, whereas CX43 was identified at relatively higher levels than Cx40 in R‑SMCs. Notably, PDGF‑BB converted S‑SMCs to R‑SMCs, with increased Cx43 expression, while 18α‑glycyrrhetinic acid inhibited the PDGF‑BB‑induced phenotypic alterations in S‑SMCs. Additionally, restenosis was confirmed in pigs 1‑month subsequent to stent placement. R‑SMCs were the major cell population isolated from stent‑induced restenosis artery tissues, and exhibited markedly increased Cx43 expression, in accordance with the in vitro data described above. In conclusion, the phenotypic transformation of coronary artery SMCs is closely associated with Cx43, which is involved in restenosis. These observations provide a basis for the use of Cx43 as a novel target in restenosis prevention.
Collapse
|
10
|
Katare R, Rawal S, Munasinghe PE, Tsuchimochi H, Inagaki T, Fujii Y, Dixit P, Umetani K, Kangawa K, Shirai M, Schwenke DO. Ghrelin Promotes Functional Angiogenesis in a Mouse Model of Critical Limb Ischemia Through Activation of Proangiogenic MicroRNAs. Endocrinology 2016; 157:432-445. [PMID: 26672806 DOI: 10.1210/en.2015-1799] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Current therapeutic strategies for the treatment of critical limb ischemia (CLI) have only limited success. Recent in vitro evidence in the literature, using cell lines, proposes that the peptide hormone ghrelin may have angiogenic properties. In this study, we aim to investigate if ghrelin could promote postischemic angiogenesis in a mouse model of CLI and, further, identify the mechanistic pathway(s) that underpin ghrelin's proangiogenic properties. CLI was induced in male CD1 mice by femoral artery ligation. Animals were then randomized to receive either vehicle or acylated ghrelin (150 μg/kg sc) for 14 consecutive days. Subsequently, synchrotron radiation microangiography was used to assess hindlimb perfusion. Subsequent tissue samples were collected for molecular and histological analysis. Ghrelin treatment markedly improved limb perfusion by promoting the generation of new capillaries and arterioles (internal diameter less than 50 μm) within the ischemic hindlimb that were both structurally and functionally normal; evident by robust endothelium-dependent vasodilatory responses to acetylcholine. Molecular analysis revealed that ghrelin's angiogenic properties were linked to activation of prosurvival Akt/vascular endothelial growth factor/Bcl-2 signaling cascade, thus reducing the apoptotic cell death and subsequent fibrosis. Further, ghrelin treatment activated proangiogenic (miR-126 and miR-132) and antifibrotic (miR-30a) microRNAs (miRs) while inhibiting antiangiogenic (miR-92a and miR-206) miRs. Importantly, in vitro knockdown of key proangiogenic miRs (miR-126 and miR-132) inhibited the angiogenic potential of ghrelin. These results therefore suggest that clinical use of ghrelin for the early treatment of CLI may be a promising and potent inducer of reparative vascularization through modulation of key molecular factors.
Collapse
Affiliation(s)
- Rajesh Katare
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Shruti Rawal
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Pujika Emani Munasinghe
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Hirotsugu Tsuchimochi
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Tadakatsu Inagaki
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Yutaka Fujii
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Parul Dixit
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Keiji Umetani
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Kenji Kangawa
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Mikiyasu Shirai
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Daryl O Schwenke
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| |
Collapse
|
11
|
Khatib MN, Shankar A, Kirubakaran R, Agho K, Simkhada P, Gaidhane S, Saxena D, B U, Gode D, Gaidhane A, Zahiruddin SQ. Effect of ghrelin on mortality and cardiovascular outcomes in experimental rat and mice models of heart failure: a systematic review and meta-analysis. PLoS One 2015; 10:e0126697. [PMID: 26016489 PMCID: PMC4446297 DOI: 10.1371/journal.pone.0126697] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Heart failure (HF) continues to be a challenging condition in terms of prevention and management of the disease. Studies have demonstrated various cardio-protective effects of Ghrelin. The aim of the study is to determine the effect of Ghrelin on mortality and cardiac function in experimental rats/mice models of HF. METHODS Data sources: PUBMED, Scopus. We searched the Digital Dissertations and conference proceedings on Web of Science. Search methods: We systematically searched for all controlled trials (upto November 2014) which assessed the effects of Ghrelin (irrespective of dose, form, frequency, duration and route of administration) on mortality and cardiac function in rats/ mice models of HF. Ghrelin administration irrespective of dose, form, frequency, duration and route of administration. Data collection and analysis: Two authors independently assessed each abstract for eligibility and extracted data on characteristics of the experimental model used, intervention and outcome measures. We assessed the methodological quality by SYRCLE's risk of bias tool for all studies and the quality of evidence by GRADEpro. We performed meta-analysis using RevMan 5.3. RESULTS A total of 325 animals (rats and mice) were analyzed across seven studies. The meta-analysis revealed that the mortality in Ghrelin group was 31.1% and in control group was 40% (RR 0.83, 95% CI 0.46 to 1.47) i.e Ghrelin group had 68 fewer deaths per 1000 (from 216 fewer to 188 more) as compared to the control group. The meta-analysis reveals that the heart rate in rats/mice on Ghrelin was higher (MD 13.11, 95% CI 1.14 to 25.08, P=0.66) while the mean arterial blood pressure (MD -1.38, 95% CI -5.16 to 2.41, P=0.48) and left ventricular end diastolic pressure (MD -2.45, 95% CI -4.46 to -0.43, P=0.02) were lower as compared to the those on placebo. There were insignificant changes in cardiac output (SMD 0.28, 95% CI -0.24 to 0.80, P=0.29) and left ventricular end systolic pressure (MD 1.48, 95% CI -3.86 to 6.82, P=0.59). CONCLUSIONS The existing data provides evidence to suggest that Ghrelin may lower the risk of mortality and improve cardiovascular outcomes. However; the quality of evidence as assessed by GRADEpro is low to very low. Clinical judgments to administer Ghrelin to patients with HF must be made on better designed animal studies.
Collapse
Affiliation(s)
- Mahalaqua Nazli Khatib
- Department of Physiology, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra State, India
| | - Anuraj Shankar
- Department of Nutrition, Harvard School of Public Health, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Kingsley Agho
- Department Biostatistics, University of Western Sydney, Sydney, Australia
| | - Padam Simkhada
- Centre for Public Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Shilpa Gaidhane
- Department of Medicine, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra State, India
| | - Deepak Saxena
- Indian Institute of Public Health-Gandhinagar, Public Health Foundation of India, New Delhi, India
| | - Unnikrishnan B
- Department of Community Medicine, Manipal University, Manipal, India
| | - Dilip Gode
- Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra State, India
| | - Abhay Gaidhane
- Department of Community Medicine, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra State, India
| | - Syed Quazi Zahiruddin
- Department of Community Medicine, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra State, India
| |
Collapse
|