1
|
Zhong X, Wei Q, Tiwari A, Wang Q, Tan Y, Chen R, Yan Y, Cox NJ, Li B. A Genetics-guided Integrative Framework for Drug Repurposing: Identifying Anti-hypertensive Drug Telmisartan for Type 2 Diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.22.25324223. [PMID: 40166562 PMCID: PMC11957187 DOI: 10.1101/2025.03.22.25324223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Drug development is a long and costly process, and repurposing existing drugs for use toward a different disease or condition may serve as a cost-effective alternative. As drug targets with genetic support have a doubled success rate, genetics-informed drug repurposing holds promise in translating genetic findings into therapeutics. In this study, we developed a Genetics Informed Network-based Drug Repurposing via in silico Perturbation (GIN-DRIP) framework and applied the framework to repurpose drugs for type-2 diabetes (T2D). In GIN-DRIP for T2D, it integrates multi-level omics data to translate T2D GWAS signals into a genetics-informed network that simultaneously encodes gene importance scores and a directional effect (up/down) of risk genes for T2D; it then bases on the GIN to perform signature matching with drug perturbation experiments to identify drugs that can counteract the effect of T2D risk alleles. With this approach, we identified 3 high-confidence FDA-approved candidate drugs for T2D, and validated telmisartan, an anti-hypertensive drug, in our EHR data with over 3 million patients. We found that telmisartan users were associated with a reduced incidence of T2D compared to users of other anti-hypertensive drugs and non-users, supporting the therapeutic potential of telmisartan for T2D. Our framework can be applied to other diseases for translating GWAS findings to aid drug repurposing for complex diseases.
Collapse
Affiliation(s)
- Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Qiang Wei
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Anshul Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Quan Wang
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Yuting Tan
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Yan Yan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| |
Collapse
|
2
|
Kalay Z, Sahin OE, Copur S, Danacı S, Ortiz A, Yau K, Cherney DZI, Kanbay M. SGLT-2 inhibitors in nephrotic-range proteinuria: emerging clinical evidence. Clin Kidney J 2022; 16:52-60. [PMID: 36726436 PMCID: PMC9871839 DOI: 10.1093/ckj/sfac189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors are a class of novel oral anti-hyperglycemic agents which are increasingly used in clinical practice. SGLT-2 inhibitors improve glycemic control and cardiorenal outcomes, promote weight loss, and reduce blood pressure. Randomized controlled trials have demonstrated that SGLT-2 inhibitors reduce proteinuria and delay progression of kidney disease in patients with albuminuria. However, whether SGLT-2 inhibitors have similar benefits in patients with nephrotic-range proteinuria has not been well established. Evidence to date has been limited to case reports, case series and secondary analyses of randomized controlled trials. This is the first comprehensive review on the effectiveness of SGLT-2 inhibitors for the treatment of patients with nephrotic-range albuminuria or proteinuria. Overall findings support a likely beneficial role of SGLT-2 inhibitors in reducing proteinuria and delaying chronic kidney disease progression in patients with nephrotic-range proteinuria.
Collapse
Affiliation(s)
- Zeynepgul Kalay
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ozgun E Sahin
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Senem Danacı
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz and School of Medicine, Universidad Autónoma de Madrid, Grupo Español de Estudio de la Nefropatia Diabetica, Madrid, Spain
| | - Kevin Yau
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
3
|
Shah MA, Haris M, Faheem HI, Hamid A, Yousaf R, Rasul A, Shah GM, Khalil AAK, Wahab A, Khan H, Alhasani RH, Althobaiti NA. Cross-Talk between Obesity and Diabetes: Introducing Polyphenols as an Effective Phytomedicine to Combat the Dual Sword Diabesity. Curr Pharm Des 2022; 28:1523-1542. [PMID: 35762558 DOI: 10.2174/1381612828666220628123224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
: Obesity-associated diabetes mellitus, a chronic metabolic affliction accounting for 90% of all diabetic patients, has been affecting humanity extremely badly and escalating the risk of developing other serious disorders. It is observed that 0.4 billion people globally have diabetes, whose major cause is obesity. Currently, innumerable synthetic drugs like alogliptin and rosiglitazone are being used to get through diabetes, but they have certain complications, restrictions with severe side effects, and toxicity issues. Recently, the frequency of plant-derived phytochemicals as advantageous substitutes against diabesity is increasing progressively due to their unparalleled benefit of producing less side effects and toxicity. Of these phytochemicals, dietary polyphenols have been accepted as potent agents against the dual sword "diabesity". These polyphenols target certain genes and molecular pathways through dual mechanisms such as adiponectin upregulation, cannabinoid receptor antagonism, free fatty acid oxidation, ghrelin antagonism, glucocorticoid inhibition, sodium-glucose cotransporter inhibition, oxidative stress and inflammation inhibition etc. which sequentially help to combat both diabetes and obesity. In this review, we have summarized the most beneficial natural polyphenols along with their complex molecular pathways during diabesity.
Collapse
Affiliation(s)
| | - Muhammad Haris
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Hafiza Ishmal Faheem
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Pharmacy, Hazara University, Mansehra, Pakistan.,Department of Botany, Hazara University, Mansehra, Pakistan
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, 21961 Makkah, Saudi Arabia
| | - Nora A Althobaiti
- Department of Biology, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Al Quwaiiyah, Saudi Arabia
| |
Collapse
|
4
|
Alqudah A, Oqal M, Al-Samdi A, Qnais E, Wedyan M, Abu Gneam M, Alnajjar R, Alajarmeh M, Yousef E, Gammoh O. Knowledge and practice of community pharmacists towards SGLT2 inhibitors. F1000Res 2022; 11:659. [PMID: 35811806 PMCID: PMC9237554 DOI: 10.12688/f1000research.122170.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 09/05/2024] Open
Abstract
Background: Sodium/glucose cotransporter 2 (SGLT2) inhibitors are a new class of oral anti-diabetic drugs which improve glycaemic control in type 2 diabetes mellitus (T2DM) by preventing the kidney from reabsorbing glucose back to blood. Community pharmacists have long-term relationships with most of their chronic patients, so they play a key role in care for people with diabetes. Therefore, the objective of this study was to assess pharmacists' knowledge and practice towards SGLT2 inhibitors. Methods: A cross-sectional study was conducted to meet the study objectives. A convenience sample of 348 community pharmacists in Jordan was recruited. knowledge and practice were assessed using a self-administered questionnaire created for the purpose of this study. Results: A total of 400 community pharmacists were reached, of whom 348 answered the survey (response rate 87%). The results indicated that SGLT2 inhibitors knowledge score among community pharmacists in Jordan was 6.61 (out of 12). Factors like age, gender, location of the pharmacy, years of pharmacists' experience had no effect on knowledge score; however, pharmacists who attended training courses on diabetes had higher knowledge scores. Additionally, pharmacists' dispensing practice toward SGLT2 inhibitors had insufficient knowledge, such as lack of knowledge about the superiority of SGLT2 inhibitors over other anti-diabetics and inability to give the best advice to patients. Conclusions: Our findings reflect a moderate knowledge among community pharmacists about SGLT2 inhibitors which may negatively affect the patients' outcome; thus, continuous education for the pharmacists is essential.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of clinical pharmacy and pharmacy practice, Faculty of pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, P.O box 330127, Zarqa 13133, Jordan, Jordan
| | - Muna Oqal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, 13133, Jordan
| | - Ahmad Al-Samdi
- Department of Adult Health Nursing, Princess Salma Faculty of Nursing, Al al-Bayt University, Al-Mafraq, Zarqa, 13133, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, Hashemite University, Zarqa, Zarqa, 13133, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, Hashemite University, Zarqa, Zarqa, 13133, Jordan
| | - Majd Abu Gneam
- Department of clinical pharmacy and pharmacy practice, Faculty of pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, P.O box 330127, Zarqa 13133, Jordan, Jordan
| | - Roaa Alnajjar
- Department of clinical pharmacy and pharmacy practice, Faculty of pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, P.O box 330127, Zarqa 13133, Jordan, Jordan
| | - Manar Alajarmeh
- Department of clinical pharmacy and pharmacy practice, Faculty of pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, P.O box 330127, Zarqa 13133, Jordan, Jordan
| | - Elaf Yousef
- Department of clinical pharmacy and pharmacy practice, Faculty of pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, P.O box 330127, Zarqa 13133, Jordan, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Yarmouk University, Irbid, Zarqa, 13133, Jordan
| |
Collapse
|
5
|
Alqudah A, Oqal M, Al-Samdi A, Qnais E, Wedyan M, Abu Gneam M, Alnajjar R, Alajarmeh M, Yousef E, Gammoh O. Knowledge and practice of community pharmacists towards SGLT2 inhibitors. F1000Res 2022; 11:659. [PMID: 35811806 PMCID: PMC9237554 DOI: 10.12688/f1000research.122170.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Sodium/glucose cotransporter 2 (SGLT2) inhibitors are a new class of oral anti-diabetic drugs which improve glycaemic control in type 2 diabetes mellitus (T2DM) by preventing the kidney from reabsorbing glucose back to blood. Community pharmacists have long-term relationships with most of their chronic patients, so they play a key role in care for people with diabetes. Therefore, the objective of this study was to assess pharmacists' knowledge and practice towards SGLT2 inhibitors. Thus, improving pharmacists' knowledge about this group of medications could improve the treatment outcome of people with diabetes. Methods: A cross-sectional study was conducted to meet the study objectives. A convenience sample of 348 community pharmacists in Jordan was recruited. knowledge and practice were assessed using a self-administered questionnaire created for the purpose of this study. Results: A total of 400 community pharmacists were reached, of whom 348 answered the survey (response rate 87%). The results indicated that SGLT2 inhibitors knowledge score among community pharmacists in Jordan was 6.61 (out of 12). Factors like age, gender, location of the pharmacy, years of pharmacists' experience had no effect on knowledge score; however, pharmacists who attended training courses on diabetes had higher knowledge scores. Additionally, pharmacists' dispensing practice toward SGLT2 inhibitors had insufficient knowledge, such as lack of knowledge about the superiority of SGLT2 inhibitors over other anti-diabetics and inability to give the best advice to patients. Conclusions: Our findings reflect a moderate knowledge among community pharmacists about SGLT2 inhibitors which may negatively affect the patients' outcome; thus, continuous education for the pharmacists is essential.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of clinical pharmacy and pharmacy practice, Faculty of pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, P.O box 330127, Zarqa 13133, Jordan, Jordan
| | - Muna Oqal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, 13133, Jordan
| | - Ahmad Al-Samdi
- Department of Adult Health Nursing, Princess Salma Faculty of Nursing, Al al-Bayt University, Al-Mafraq, Zarqa, 13133, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, Hashemite University, Zarqa, Zarqa, 13133, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, Hashemite University, Zarqa, Zarqa, 13133, Jordan
| | - Majd Abu Gneam
- Department of clinical pharmacy and pharmacy practice, Faculty of pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, P.O box 330127, Zarqa 13133, Jordan, Jordan
| | - Roaa Alnajjar
- Department of clinical pharmacy and pharmacy practice, Faculty of pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, P.O box 330127, Zarqa 13133, Jordan, Jordan
| | - Manar Alajarmeh
- Department of clinical pharmacy and pharmacy practice, Faculty of pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, P.O box 330127, Zarqa 13133, Jordan, Jordan
| | - Elaf Yousef
- Department of clinical pharmacy and pharmacy practice, Faculty of pharmaceutical sciences, The Hashemite University, Zarqa, Zarqa, P.O box 330127, Zarqa 13133, Jordan, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Yarmouk University, Irbid, Zarqa, 13133, Jordan
| |
Collapse
|
6
|
Sipos Á, Szennyes E, Hajnal NÉ, Kun S, Szabó KE, Uray K, Somsák L, Docsa T, Bokor É. Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14040364. [PMID: 33920838 PMCID: PMC8071193 DOI: 10.3390/ph14040364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
A current trend in the quest for new therapies for complex, multifactorial diseases, such as diabetes mellitus (DM), is to find dual or even multi-target inhibitors. In DM, the sodium dependent glucose cotransporter 2 (SGLT2) in the kidneys and the glycogen phosphorylase (GP) in the liver are validated targets. Several (β-D-glucopyranosylaryl)methyl (het)arene type compounds, called gliflozins, are marketed drugs that target SGLT2. For GP, low nanomolar glucose analogue inhibitors exist. The purpose of this study was to identify dual acting compounds which inhibit both SGLTs and GP. To this end, we have extended the structure-activity relationships of SGLT2 and GP inhibitors to scarcely known (C-β-D-glucopyranosylhetaryl)methyl arene type compounds and studied several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitors against SGLT. New compounds, such as 5-arylmethyl-3-(β-D-glucopyranosyl)-1,2,4-oxadiazoles, 5-arylmethyl-2-(β-D-glucopyranosyl)-1,3,4-oxadiazoles, 4-arylmethyl-2-(β-D-glucopyranosyl)pyrimidines and 4(5)-benzyl-2-(β-D-glucopyranosyl)imidazole were prepared by adapting our previous synthetic methods. None of the studied compounds exhibited cytotoxicity and all of them were assayed for their SGLT1 and 2 inhibitory potentials in a SGLT-overexpressing TSA201 cell system. GP inhibition was also determined by known methods. Several newly synthesized (C-β-D-glucopyranosylhetaryl)methyl arene derivatives had low micromolar SGLT2 inhibitory activity; however, none of these compounds inhibited GP. On the other hand, several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitor compounds with low micromolar efficacy against SGLT2 were identified. The best dual inhibitor, 2-(β-D-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole, had a Ki of 31 nM for GP and IC50 of 3.5 μM for SGLT2. This first example of an SGLT-GP dual inhibitor can prospectively be developed into even more efficient dual-target compounds with potential applications in future antidiabetic therapy.
Collapse
Affiliation(s)
- Ádám Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Eszter Szennyes
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Nikolett Éva Hajnal
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Katalin E. Szabó
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| | - Éva Bokor
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| |
Collapse
|
7
|
Ayza MA, Zewdie KA, Tesfaye BA, Gebrekirstos ST, Berhe DF. Anti-Diabetic Effect of Telmisartan Through its Partial PPARγ-Agonistic Activity. Diabetes Metab Syndr Obes 2020; 13:3627-3635. [PMID: 33116714 PMCID: PMC7567533 DOI: 10.2147/dmso.s265399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Telmisartan is an angiotensin II receptor antagonist, which selectively inhibits the angiotensin II type 1 receptor. Thus, it is widely used for hypertension management. Nowadays, telmisartan's effect on peroxisome proliferator-activated receptors (PPARs) is gaining wider attention. PPARs are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. Telmisartan is reported to have a partial PPARγ-agonistic effect while avoiding the safety concerns found with full PPARγ agonists (thiazolidinediones). Telmisartan could be an alternative treatment option, with dual benefit for diabetes mellitus (DM) and hypertension. This review summarizes the anti-diabetic activity of telmisartan via its partial PPARγ-agonistic activity.
Collapse
Affiliation(s)
- Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | | | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
8
|
Ryan SP, Newman AA, Wilburn JR, Rhoades LD, Trikha SRJ, Godwin EC, Schoenberg HM, Battson ML, Ewell TR, Luckasen GJ, Biela LM, Melby CL, Bell C. Sodium Glucose Co-Transporter 2 Inhibition Does Not Favorably Modify the Physiological Responses to Dietary Counselling in Diabetes-Free, Sedentary Overweight and Obese Adult Humans. Nutrients 2020; 12:nu12020510. [PMID: 32085394 PMCID: PMC7071188 DOI: 10.3390/nu12020510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Sedentary obesity is associated with increased risk of many cardio-metabolic diseases, including type 2 diabetes. Weight loss is therefore a desirable goal for sedentary adults with obesity. Weight loss is also a well-documented side effect of sodium glucose co-transporter 2 (SGLT2) inhibition, a pharmaceutical strategy for diabetes treatment. We hypothesized that, compared with placebo, SGLT2 inhibition as an adjunct to out-patient dietary counselling for weight loss would lead to more favorable modification of body mass and composition, and greater improvement in glucose regulation and lipid profile. Using a randomized, double-blind, repeated measures parallel design, 50 sedentary men and women (body mass index: 33.4 ± 4.7 kg/m2; mean ± SD) were assigned to 12 weeks of dietary counselling, supplemented with daily ingestion of either a placebo or SGLT2 inhibitor (dapagliflozin: up to 10 mg/day). Dietary counselling favorably modified body mass, body fat, glucose regulation, and fasting concentrations of triglyceride and very low-density lipoprotein cholesterol (main effects of counselling: p < 0.05); SGLT2 inhibition did not influence any of these adaptations (counselling × medication interactions: p > 0.05). However, SGLT2 inhibition when combined with dietary counselling led to greater loss of fat-free mass (counselling × medication interaction: p = 0.047) and attenuated the rise in high-density lipoprotein cholesterol (counselling × medication interaction: p = 0.028). In light of these data and the health implications of decreased fat-free mass, we recommend careful consideration before implementing SGLT2 inhibition as an adjunct to dietary counselling for weight loss in sedentary adults with obesity.
Collapse
Affiliation(s)
- Shane P.P. Ryan
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA (A.A.N.); (J.R.W.); (S.R.J.T.); (H.M.S.); (T.R.E.); (L.M.B.)
| | - Alissa A. Newman
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA (A.A.N.); (J.R.W.); (S.R.J.T.); (H.M.S.); (T.R.E.); (L.M.B.)
| | - Jessie R. Wilburn
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA (A.A.N.); (J.R.W.); (S.R.J.T.); (H.M.S.); (T.R.E.); (L.M.B.)
| | - Lauren D. Rhoades
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (L.D.R.); (E.C.G.); (M.L.B.); (C.L.M.)
| | - S. Raj J. Trikha
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA (A.A.N.); (J.R.W.); (S.R.J.T.); (H.M.S.); (T.R.E.); (L.M.B.)
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (L.D.R.); (E.C.G.); (M.L.B.); (C.L.M.)
| | - Ellen C. Godwin
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (L.D.R.); (E.C.G.); (M.L.B.); (C.L.M.)
| | - Hayden M. Schoenberg
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA (A.A.N.); (J.R.W.); (S.R.J.T.); (H.M.S.); (T.R.E.); (L.M.B.)
| | - Micah L. Battson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (L.D.R.); (E.C.G.); (M.L.B.); (C.L.M.)
| | - Taylor R. Ewell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA (A.A.N.); (J.R.W.); (S.R.J.T.); (H.M.S.); (T.R.E.); (L.M.B.)
| | - Gary J. Luckasen
- Medical Center of the Rockies Foundation, University of Colorado Health, Loveland, CO 80538, USA;
| | - Laurie M. Biela
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA (A.A.N.); (J.R.W.); (S.R.J.T.); (H.M.S.); (T.R.E.); (L.M.B.)
| | - Christopher L. Melby
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; (L.D.R.); (E.C.G.); (M.L.B.); (C.L.M.)
| | - Christopher Bell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA (A.A.N.); (J.R.W.); (S.R.J.T.); (H.M.S.); (T.R.E.); (L.M.B.)
- Correspondence: ; Tel.: +1-970-491-7522
| |
Collapse
|
9
|
Dowarah J, Singh VP. Anti-diabetic drugs recent approaches and advancements. Bioorg Med Chem 2020; 28:115263. [PMID: 32008883 DOI: 10.1016/j.bmc.2019.115263] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is one of the major diseases worldwide and is the third leading cause of death in the United States. Anti-diabetic drugs are used in the treatment of diabetes mellitus to control glucose levels in the blood. Most of the drugs are administered orally, except for a few of them, such as insulin, exenatide, and pramlintide. In this review, we are going to discuss seven major types of anti-diabetic drugs: Peroxisome proliferator-activated receptor (PPAR) agonist, protein tyrosine phosphatase 1B (PTP1B) inhibitors, aldose reductase inhibitors, α-glucosidase inhibitors, dipeptidyl peptidase IV (DPP-4) inhibitors, G protein-coupled receptor (GPCR) agonists and sodium-glucose co-transporter (SGLT) inhibitors. Here, we are also discussing some of the recently reported anti-diabetic agents with its multi-target pharmacological actions. This review summarises recent approaches and advancement in anti-diabetes treatment concerning characteristics, structure-activity relationships, functional mechanisms, expression regulation, and applications in medicine.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ved Prakash Singh
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
10
|
de Laat MA, Sillence MN. A review of recent developments in the pharmacological prevention and treatment of endocrinopathic laminitis. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite the prevalence of endocrinopathic laminitis, the pharmacologic options for preventing and treating the disease are severely limited. The present review aims to discuss the spectrum of potential therapeutic agents for the condition, ranging from early experimental compounds to agents nearing registration. There are different pharmacologic targets for, and approaches to, managing laminitis. Reducing hyperinsulinaemia is central to diminishing endocrinopathic laminitis risk, and a detailed understanding of the pathophysiology of insulin dysregulation is necessary to identify pathways that can be targeted to minimise post-prandial insulin secretion and action. This area of research is advancing rapidly, with several exciting prospects, such as sodium-dependent glucose co-transporter-2 inhibitors, on the horizon for the treatment of equine metabolic dysfunction. Drugs that directly target the lamellae and aim to reduce the damage inflicted on the lamellae as part of this condition, are not yet available. Although progress in this area of laminitis therapy is slower, improved understanding of the events that lead to lamellar failure has enabled the investigation of novel drugs that aim to prevent laminitis at the site of the lesion. Finally, a brief review is included of the directions being taken in the management of the chronic and acute pain that accompanies laminitis. Medications for relieving the pain associated with laminitis are currently the most-prescribed drugs for the disease, and range from simple, affordable and thoroughly tested options, such as phenylbutazone, to newer, less-understood applications such as paracetamol and gabapentin. In the future, endocrinopathic laminitis management plans will likely take a multi-faceted approach that still hinge on effective dietary management and exercise, but also include drugs that address foot pathology, pain and underlying endocrine disturbances.
Collapse
|
11
|
Wondafrash DZ, Desalegn TZ, Yimer EM, Tsige AG, Adamu BA, Zewdie KA. Potential Effect of Hydroxychloroquine in Diabetes Mellitus: A Systematic Review on Preclinical and Clinical Trial Studies. J Diabetes Res 2020; 2020:5214751. [PMID: 32190699 PMCID: PMC7064866 DOI: 10.1155/2020/5214751] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/14/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia. It affects millions of people globally. In spite of many antidiabetic drugs that are available, an adequate level of control remains challenging. Hydroxychloroquine is an immunomodulatory drug that has been used for the treatment of malaria and autoimmune diseases. There is an emerging evidence that suggests its beneficial effect against diabetes mellitus. Therefore, this systematic review is aimed at discoursing the role of hydroxychloroquine against diabetes mellitus and its potential mechanisms of actions. METHODS A systematic and manual searching was carried out to retrieve relevant articles (preclinical and clinical studies) published from January 2014 to July 2019. Electronic databases including PubMed and Scopus as well as clinicaltrials.gov have been searched using different searching terms: "hydroxychloroquine," "diabetes mellitus," "hyperglycemia," and "insulin resistance." The MeSH terms (PubMed) and text words were combined with "AND" or "OR." In addition, manual searching of Google Engine and Google Scholar was conducted. Quality assessment of all the included studies was performed using CAMARADES (preclinical studies) and the Newcastle-Ottawa Scale and Cochrane Collaboration's tools (clinical studies). RESULTS A total of eighteen studies (three experimental and fifteen clinical studies) were found to be eligible for the present systematic review. Among the included clinical studies (six randomized control trials, five observational studies, and four cohort studies), about 55,776 study participants were involved. Most of these studies showed significant improvement of lipid profile and insulin levels and substantial diminution of hemoglobin A1c, fasting plasma glucose, and postprandial blood glucose levels. Reduction in lysosomal degradation of the internal insulin-insulin receptor complex and enhancement in insulin sensitivity and adiponectin levels are some of the hypothesized mechanisms for the antidiabetic effect of hydroxychloroquine. CONCLUSION The current review provides preliminary evidence for potential antidiabetic properties of hydroxychloroquine. Though the provided available data were promising, further clinical trials and mechanistic studies are needed to determine its long-term effects.
Collapse
Affiliation(s)
- Dawit Zewdu Wondafrash
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Tsion Zewdu Desalegn
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Ebrahim M. Yimer
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Arega Gashaw Tsige
- Clinical Pharmacy Research and Course Unit, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | | | - Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
12
|
Cannizzaro M, Jarošová J, De Paepe B. Relevance of solute carrier family 5 transporter defects to inherited and acquired human disease. J Appl Genet 2019; 60:305-317. [PMID: 31286439 DOI: 10.1007/s13353-019-00502-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/21/2019] [Accepted: 06/30/2019] [Indexed: 01/12/2023]
Abstract
The solute carrier (SLC) group of membrane transport proteins is crucial for cells via their control of import and export of vital molecules across the cellular membrane. Defects in these transporters with narrow substrate specificities cause monogenic disorders, giving us essential clues of their precise roles in cellular functioning. The SLC5 family in particular has been linked to various human diseases, of mild and severe phenotype as well as high and low prevalence. In this review, we describe the effects on health of SLC5 dysfunction and dysregulation by summarizing findings in patients with transporter gene defects. Patients display a plethora of pathologies which include glucose/galactose malabsorption, familiar renal glycosuria, thyroid dyshormonogenesis, and distal hereditary motor neuronopathies. In addition, the therapeutic potential of intervening in transporter activities for treating common diseases such as diabetes and cancer is explored.
Collapse
Affiliation(s)
- Miryam Cannizzaro
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Jana Jarošová
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Boel De Paepe
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
13
|
Kerru N, Singh-Pillay A, Awolade P, Singh P. Current anti-diabetic agents and their molecular targets: A review. Eur J Med Chem 2018; 152:436-488. [PMID: 29751237 DOI: 10.1016/j.ejmech.2018.04.061] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus is a medical condition characterized by the body's loss of control over blood sugar. The frequency of diagnosed cases and consequential increases in medical costs makes it a rapidly growing chronic disease that threatens human health worldwide. In addition, its unnerving statistical projections are perilous to both the economy of the nation and man's life expectancy. Type-I and type-II diabetes are the two clinical forms of diabetes mellitus. Type-II diabetes mellitus (T2DM) is illustrated by the abnormality of glucose homeostasis in the body, resulting in hyperglycemia. Although significant research attention has been devoted to the development of diabetes regimens, which demonstrates success in lowering blood glucose levels, their efficacies are unsustainable due to undesirable side effects such as weight gain and hypoglycemia. Over the years, heterocyclic scaffolds have been the basis of anti-diabetic chemotherapies; hence, in this review we consolidate the use of bioactive scaffolds, which have been evaluated for their biological response as inhibitors against their respective anti-diabetic molecular targets over the past five years (2012-2017). Our investigation reveals a diverse target set which includes; protein tyrosine phosphatase 1 B (PTP1B), dipeptidly peptidase-4 (DPP-4), free fatty acid receptors 1 (FFAR1), G protein-coupled receptors (GPCR), peroxisome proliferator activated receptor-γ (PPARγ), sodium glucose co-transporter-2 (SGLT2), α-glucosidase, aldose reductase, glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), glucagon receptor (GCGr) and phosphoenolpyruvate carboxykinase (PEPCK). This review offers a medium on which future drug design and development toward diabetes management may be modelled (i.e. optimization via structural derivatization), as many of the drug candidates highlighted show promise as an effective anti-diabetic chemotherapy.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ashona Singh-Pillay
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
14
|
The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Renal and Liver Disease in Western Diet Induced Obesity Mice. Int J Mol Sci 2018; 19:ijms19010137. [PMID: 29301371 PMCID: PMC5796086 DOI: 10.3390/ijms19010137] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/25/2017] [Accepted: 12/25/2017] [Indexed: 12/25/2022] Open
Abstract
Obesity and obesity related kidney and liver disease have become more prevalent over the past few decades, especially in the western world. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with promising effects on cardiovascular and renal function. Given SGLT2 inhibitors exert both anti-diabetic and anti-obesity effects by promoting urinary excretion of glucose and subsequent caloric loss, we investigated the effect of the highly selective renal SGLT2 inhibitor dapagliflozin in mice with Western diet (WD) induced obesity. Low fat (LF) diet or WD-fed male C57BL/6J mice were treated with dapagliflozin for 26 weeks. Dapagliflozin attenuated the WD-mediated increases in body weight, plasma glucose and plasma triglycerides. Treatment with dapagliflozin prevented podocyte injury, glomerular pathology and renal fibrosis determined by second harmonic generation (SHG), nephrin, synaptopodin, collagen IV, and fibronectin immunofluorescence microscopy. Oil Red O staining showed dapagliflozin also decreased renal lipid accumulation associated with decreased SREBP-1c mRNA abundance. Moreover, renal inflammation and oxidative stress were lower in the dapagliflozin-treated WD-fed mice than in the untreated WD-fed mice. In addition, dapagliflozin decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), hepatic lipid accumulation as determined by H&E and Oil Red O staining, and Coherent Anti-Stokes Raman Scattering (CARS) microscopy, and hepatic fibrosis as determined by picrosirius red (PSR) staining and TPE-SHG microscopy in WD-fed mice. Thus, our study demonstrated that the co-administration of the SGLT2 inhibitor dapagliflozin attenuates renal and liver disease during WD feeding of mice.
Collapse
|
15
|
Filippatos T, Tzavella E, Rizos C, Elisaf M, Liamis G. Acid-base and electrolyte disorders associated with the use of antidiabetic drugs. Expert Opin Drug Saf 2017; 16:1121-1132. [DOI: 10.1080/14740338.2017.1361400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Theodosios Filippatos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Eleftheria Tzavella
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Christos Rizos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Moses Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - George Liamis
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
16
|
Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse Effects of GLP-1 Receptor Agonists. Rev Diabet Stud 2015; 11:202-30. [PMID: 26177483 DOI: 10.1900/rds.2014.11.202] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are a class of injective anti-diabetic drugs that improve glycemic control and many other atherosclerosis-related parameters in patients with type 2 diabetes (T2D). However, the use of this relatively new class of drugs may be associated with certain adverse effects. Concerns have been expressed regarding the effects of these drugs on pancreatic and thyroid tissue, since animal studies and analyses of drug databases indicate an association of GLP-1 receptor agonists with pancreatitis, pancreatic cancer, and thyroid cancer. However, several meta-analyses failed to confirm a cause-effect relation between GLP-1 receptor agonists and the development of these adverse effects. One benefit of GLP-1 receptor agonists is that they do not cause hypoglycemia when combined with metformin or thiazolidinediones, but the dose of concomitant sulphonylurea or insulin may have to be decreased to reduce the risk of hypoglycemic episodes. On the other hand, several case reports have linked the use of these drugs, mainly exenatide, with the occurrence of acute kidney injury, primarily through hemodynamic derangement due to nausea, vomiting, and diarrhea. The most common symptoms associated with the use of GLP-1 receptor agonists are gastrointestinal symptoms, mainly nausea. Other common adverse effects include injection site reactions, headache, and nasopharyngitis, but these effects do not usually result in discontinuation of the drug. Current evidence shows that GLP-1 receptor agonists have no negative effects on the cardiovascular risk of patients with T2D. Thus, GLP-1 receptor agonists appear to have a favorable safety profile, but ongoing trials will further assess their cardiovascular effects. The aim of this review is to analyze critically the available data regarding adverse events of GLP-1 receptor agonists in different anatomic systems published in Pubmed and Scopus. Whenever possible, certain differences between GLP-1 receptor agonists are described. The review also provides the reader with structured data that compare the rates of the most common adverse effects for each of the various GLP-1 receptor agonists.
Collapse
Affiliation(s)
- Theodosios D Filippatos
- Department of Internal Medicine, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Thalia V Panagiotopoulou
- Department of Internal Medicine, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
17
|
Zhou C, Zhou Y, Wang J, Zhu Y, Deng J, Wang MW. Emergence of Chinese drug discovery research: impact of hit and lead identification. ACTA ACUST UNITED AC 2014; 20:318-29. [PMID: 25520370 DOI: 10.1177/1087057114561950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The identification of hits and the generation of viable leads is an early and yet crucial step in drug discovery. In the West, the main players of drug discovery are pharmaceutical and biotechnology companies, while in China, academic institutions remain central in the field of drug discovery. There has been a tremendous amount of investment from the public as well as private sectors to support infrastructure buildup and expertise consolidation relative to drug discovery and development in the past two decades. A large-scale compound library has been established in China, and a series of high-impact discoveries of lead compounds have been made by integrating information obtained from different technology-based strategies. Natural products are a major source in China's drug discovery efforts. Knowledge has been enhanced via disruptive breakthroughs such as the discovery of Boc5 as a nonpeptidic agonist of glucagon-like peptide 1 receptor (GLP-1R), one of the class B G protein-coupled receptors (GPCRs). Most of the original hit identification and lead generation were carried out by academic institutions, including universities and specialized research institutes. The Chinese pharmaceutical industry is gradually transforming itself from manufacturing low-end generics and active pharmaceutical ingredients to inventing new drugs.
Collapse
Affiliation(s)
- Caihong Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jia Wang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yue Zhu
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jiejie Deng
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ming-Wei Wang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|