1
|
Kang CM, Zhao JJ, Xie XX, Yu KW, Lai BC, Wang YX, Li TT, Ke PF, Huang XZ. Unveiling the role of GATA4 in endothelial cell senescence and atherosclerosis development. Atherosclerosis 2025; 404:119183. [PMID: 40209341 DOI: 10.1016/j.atherosclerosis.2025.119183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND AND AIMS Cellular senescence is intimately linked to atherosclerosis development and progression. However, the mechanism is not well known. GATA4 is a classical regulator in human fibroblast senescence. This study aimed to determine the role of GATA4 in endothelial cell (EC) senescence and atherosclerosis development and the mechanisms by which it acts. METHODS Senescence ECs were induced using H2O2 by isolating human primary umbilical vein ECs from umbilical veins. The level of GATA4 was examined in endothelial progenitor cells (EPCs), ECs of arterial tissue from older individuals (>65 years), and aged mice (>24 months). Adeno-associated virus with EC-selective Tie1 promoter, an EC-specific gene transduction system, was used to explore the role of GATA4 in EC senescence and atherosclerosis development in ApoE-/- mice. RT-qPCR, Western blot, ChIP-PCR, and ELISA were conducted to further explore the mechanism of GATA4 in EC senescence and atherosclerosis development. RESULTS GATA4 protein levels are elevated in EC senescence induced by H2O2 and EPCs in older individuals. Additionally, GATA4 protein levels are increased in the ECs of arterial tissue from older individuals and aged mice and are strongly correlated with the progression of atherosclerosis plaques. Knockdown of GATA4 decreased EC senescence, dysfunction, and monocyte adhesion. Mechanistically, we found that GATA4 activates NFκB2 transcription and induces senescence-associated secretory phenotype (SASP) expression (IL-6, IL-8, CXCL1, CXCL3, ICAM-1). In vivo experiments on ApoE-/- mice demonstrated that GATA4 overexpression in ECs contributes to higher SASP expression, vascular senescence, atherosclerotic plaque formation, and impaired cardiac function. CONCLUSIONS Taken together, our findings indicate that elevated EC GATA4 levels contribute to the progression of atherosclerosis through the GATA4-NFκB2-SASP pathway, suggesting potential therapeutic targets for atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Chun-Min Kang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Jing-Jing Zhao
- Department of Laboratory Medicine, Nanfang Hospital Affiliated to Southern Medical University, Guangdong, 510515, China
| | - Xi-Xi Xie
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Ke-Wei Yu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Bai-Cong Lai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Yun-Xiu Wang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Ting Ting Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Pei-Feng Ke
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Xian-Zhang Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
2
|
Makarczyk MJ, Zhang Y, Aguglia A, Bartholomew O, Hines S, Sinkar S, Liu S, Duvall C, Lin H. Aging-associated Increase of GATA4 levels in Articular Cartilage is Linked to Impaired Regenerative Capacity of Chondrocytes and Osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643933. [PMID: 40166328 PMCID: PMC11957000 DOI: 10.1101/2025.03.18.643933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Although the causal association between aging and osteoarthritis (OA) has been documented, our understanding of the underlying mechanism remains incomplete. To define the regulatory molecules governing chondrocyte aging, we performed transcriptomic analysis of young and old human chondrocytes from healthy donors. The data predicted that GATA binding protein 4 (GATA4) may play a key role in mediating the difference between young and old chondrocytes. Results from immunostaining and western blot showed significantly higher GATA4 levels in old human or mouse chondrocytes when compared to young cells. Moreover, overexpressing GATA4 in young chondrocytes remarkably reduced their cartilage-forming capacity in vitro and induced the upregulation of proinflammatory cytokines. Conversely, suppressing GATA4 expression in old chondrocytes, through either siRNA or a small-molecule inhibitor NSC140905, increased the production of aggrecan and collagen type II, and also decreased levels of matrix-degrading enzymes. In OA mice induced by surgical destabilization of the medial meniscus, intraarticular injection of lentiviral vectors carrying mouse Gata4 resulted in a higher OA severity, synovial inflammation, and pain level when compared to control vectors. Mechanistically, we found that overexpressing GATA4 significantly increased the phosphorylation of SMAD1/5. Our work demonstrates that the aging-associated increase of GATA4 in chondrocytes plays a vital role in OA progression, which may also serve as a target to reduce osteoarthritis in the older population.
Collapse
|
3
|
Wang R, Zhang H, Li S, Yan P, Shao S, Liu B, Li N. Current progress of in vitrovascular models on microfluidic chips. Biofabrication 2025; 17:022004. [PMID: 39899982 DOI: 10.1088/1758-5090/adb182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
The vascular tissue, as an integral component of the human circulatory system, plays a crucial role in retaining normal physiological functions within the body. Pathologies associated with the vasculature, whether direct or indirect, also constitute significant public health concerns that afflict humanity, leading to the wide studies on vascular physiology and pathophysiology. Given the precious nature of human derived vascular tissue, substantial efforts have been dedicated to the construction of vascular models. Due to the high cost associated with animal experimentation and the inability to directly translate results to human, there is an increasing emphasis on the use of primary human cells for the development ofin vitrovascular models. For instance, obtaining an ApoE-/-mouse model for atherosclerosis research typically requires feeding a high-fat diet for over 10 weeks, whereasin vitrovascular models can usually be formed within 2 weeks. With advancements in microfluidic technology,in vitrovascular models capable of precisely emulating the hemodynamic environment within human vessels are becoming increasingly sophisticated. Microfluidic vascular models are primarily constructed through two approaches: (1) directly constructing the vascular models based on the three-layer structure of the vascular wall; (2) co-culture of endothelial cells and supporting cells within hydrogels. The former is effective to replicate vascular tissue structure mimicking vascular wall, while the latter has the capacity to establish microvascular networks. This review predominantly presents and discusses recent advancements in template design, construction methods, and potential applications of microfluidic vascular models based on polydimethylsiloxane (PDMS) soft lithography. Additionally, some refined methodologies addressing the limitations of conventional PDMS-based soft lithography techniques are also elaborated, which might hold profound importance in the field of vascular tissue engineering on microfluidic chips.
Collapse
Affiliation(s)
- Ran Wang
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Hangyu Zhang
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Shijun Li
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian 116033, People's Republic of China
| | - Peishi Yan
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian 116033, People's Republic of China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
4
|
Mannion AJ, Holmgren L. Nuclear mechanosensing of the aortic endothelium in health and disease. Dis Model Mech 2023; 16:dmm050361. [PMID: 37909406 PMCID: PMC10629673 DOI: 10.1242/dmm.050361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
The endothelium, the monolayer of endothelial cells that line blood vessels, is exposed to a number of mechanical forces, including frictional shear flow, pulsatile stretching and changes in stiffness influenced by extracellular matrix composition. These forces are sensed by mechanosensors that facilitate their transduction to drive appropriate adaptation of the endothelium to maintain vascular homeostasis. In the aorta, the unique architecture of the vessel gives rise to changes in the fluid dynamics, which, in turn, shape cellular morphology, nuclear architecture, chromatin dynamics and gene regulation. In this Review, we discuss recent work focusing on how differential mechanical forces exerted on endothelial cells are sensed and transduced to influence their form and function in giving rise to spatial variation to the endothelium of the aorta. We will also discuss recent developments in understanding how nuclear mechanosensing is implicated in diseases of the aorta.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| | - Lars Holmgren
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| |
Collapse
|
5
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
6
|
Huang T, Cheng J, Feng H, Zhou W, Qiu P, Zhou D, Yang D, Zhang J, Willer C, Chen YE, Mizrak D, Yang B. Bicuspid Aortic Valve-Associated Regulatory Regions Reveal GATA4 Regulation and Function During Human-Induced Pluripotent Stem Cell-Based Endothelial-Mesenchymal Transition-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:312-322. [PMID: 36519469 PMCID: PMC10038164 DOI: 10.1161/atvbaha.122.318566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The endothelial-mesenchymal transition (EndoMT) is a fundamental process for heart valve formation and defects in EndoMT cause aortic valve abnormalities. Our previous genome-wide association study identified multiple variants in a large chromosome 8 segment as significantly associated with bicuspid aortic valve (BAV). The objective of this study is to determine the biological effects of this large noncoding segment in human induced pluripotent stem cell (hiPSC)-based EndoMT. METHODS A large genomic segment enriched for BAV-associated variants was deleted in hiPSCs using 2-step CRISPR/Cas9 editing. To address the effects of the variants on GATA4 expression, we generated CRISPR repression hiPSC lines (CRISPRi) as well as hiPSCs from BAV patients. The resulting hiPSCs were differentiated to mesenchymal/myofibroblast-like cells through cardiovascular-lineage endothelial cells for molecular and cellular analysis. Single-cell RNA sequencing was also performed at different stages of EndoMT induction. RESULTS The large deletion impaired hiPSC-based EndoMT in multiple biallelic clones compared with their isogenic control. It also reduced GATA4 transcript and protein levels during EndoMT, sparing the other genes nearby the deletion segment. Single-cell trajectory analysis revealed the molecular reprogramming during EndoMT. Putative GATA-binding protein targets during EndoMT were uncovered, including genes implicated in endocardial cushion formation and EndoMT process. Differentiation of cells derived from BAV patients carrying the rs117430032 variant as well as CRISPRi repression of the rs117430032 locus resulted in lower GATA4 expression in a stage-specific manner. TWIST1 was identified as a potential regulator of GATA4 expression, showing specificity to the locus tagged by rs117430032. CONCLUSIONS BAV-associated distal regions regulate GATA4 expression during hiPSC-based EndoMT, which in turn promotes EndoMT progression, implicating its contribution to heart valve development.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaxi Cheng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ping Qiu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dong Zhou
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Dongshan Yang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Cristen Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Y. Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Xiong H, Hua F, Dong Y, Lin Y, Ying J, Liu J, Wang X, Zhang L, Zhang J. DNA damage response and GATA4 signaling in cellular senescence and aging-related pathology. Front Aging Neurosci 2022; 14:933015. [PMID: 36177479 PMCID: PMC9513149 DOI: 10.3389/fnagi.2022.933015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is the continuous degradation of biological function and structure with time, and cellular senescence lies at its core. DNA damage response (DDR) can activate Ataxia telangiectasia-mutated serine/threonine kinase (ATM) and Rad3-related serine/threonine kinase (ATR), after which p53 activates p21, stopping the cell cycle and inducing cell senescence. GATA4 is a transcription factor that plays an important role in the development of many organs, such as the heart, testis, ovary, foregut, liver, and ventral pancreas. Studies have shown that GATA4 can also contribute to the DDR, leading to aging. Consistently, there is also evidence that the GATA4 signaling pathway is associated with aging-related diseases, including atherosclerosis and heart failure. This paper reviews the relationship between GATA4, DDR, and cellular senescence, as well as its effect on aging-related diseases.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jie Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Xifeng Wang
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
- *Correspondence: Lieliang Zhang
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
NOX1 and NOX2: two enzymes that promote endothelial-to-mesenchymal transition induced by melanoma conditioned media. Pharmacol Res 2022; 177:106097. [DOI: 10.1016/j.phrs.2022.106097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/11/2022]
|
9
|
Hunyenyiwa T, Hendee K, Matus K, Kyi P, Mammoto T, Mammoto A. Obesity Inhibits Angiogenesis Through TWIST1-SLIT2 Signaling. Front Cell Dev Biol 2021; 9:693410. [PMID: 34660572 PMCID: PMC8511494 DOI: 10.3389/fcell.2021.693410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis is required for functional adipose tissue maintenance, remodeling, and expansion. Physiologically balanced adipogenesis and angiogenesis are inhibited in subcutaneous adipose tissue in obese humans. However, the mechanism by which angiogenesis is inhibited in obese adipose tissue is not fully understood. Transcription factor TWIST1 controls angiogenesis and vascular function. TWIST1 expression is lower in obese human adipose tissues. Here, we have demonstrated that angiogenesis is inhibited in endothelial cells (ECs) isolated from adipose tissues of obese humans through TWIST1-SLIT2 signaling. The levels of TWIST1 and SLIT2 are lower in ECs isolated from obese human adipose tissues compared to those from lean tissues. Knockdown of TWIST1 in lean human adipose ECs decreases, while overexpression of TWIST1 in obese adipose ECs restores SLIT2 expression. DNA synthesis and cell migration are inhibited in obese adipose ECs and the effects are restored by TWIST1 overexpression. Obese adipose ECs also inhibit blood vessel formation in the gel subcutaneously implanted in mice, while these effects are restored when gels are mixed with SLIT2 or supplemented with ECs overexpressing TWIST1. These findings suggest that obesity impairs adipose tissue angiogenesis through TWIST1-SLIT2 signaling.
Collapse
Affiliation(s)
- Tendai Hunyenyiwa
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathryn Hendee
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kienna Matus
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Liu C, Mo LH, Feng BS, Jin QR, Li Y, Lin J, Shu Q, Liu ZG, Liu Z, Sun X, Yang PC. Twist1 contributes to developing and sustaining corticosteroid resistance in ulcerative colitis. Am J Cancer Res 2021; 11:7797-7812. [PMID: 34335965 PMCID: PMC8315068 DOI: 10.7150/thno.62256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Rationale: Corticosteroid resistance (CR) is a serious drawback to steroid therapy in patients with ulcerative colitis (UC); the underlying mechanism is incompletely understood. Twist1 protein (TW1) is an apoptosis inhibitor and has immune regulatory functions. This study aims to elucidate the roles of TW1 in inducing and sustaining the CR status in UC. Methods: Surgically removed colon tissues of patients with ulcerative colitis (UC) were collected, from which neutrophils were isolated by flow cytometry. The inflammation-related gene activities in neutrophils were analyzed by RNA sequencing. A CR colitis mouse model was developed with the dextran sulfate sodium approach in a hypoxia environment. Results: Higher TW1 gene expression was detected in neutrophils isolated from the colon tissues of UC patients with CR and the CR mouse colon tissues. TW1 physically interacted with glucocorticoid receptor (GR)α in CR neutrophils that prevented GRα from interacting with steroids; which consequently abrogated the effects of steroids on regulating the cellular activities of neutrophils. STAT3 (Signal Transducer and Activator of Transcription-3) interacted with Ras protein activator like 1 to sustain the high TW1 expression in colon mucosal neutrophils of CR patients and CR mice. Inhibition of TW1 restored the sensitivity to corticosteroid of neutrophils in the colon tissues of a CR murine model. Conclusions: UC patients at CR status showed high TW1 expression in neutrophils. TW1 prevented steroids from regulating neutrophil activities. Inhibition of TW1 restored the sensitivity to corticosteroids in the colon tissues at the CR status.
Collapse
|
11
|
Liu HT, Zhou ZX, Ren Z, Yang S, Liu LS, Wang Z, Wei DH, Ma XF, Ma Y, Jiang ZS. EndMT: Potential Target of H 2S against Atherosclerosis. Curr Med Chem 2021; 28:3666-3680. [PMID: 33200693 DOI: 10.2174/0929867327999201116194634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic arterial wall illness that forms atherosclerotic plaques within the arteries. Plaque formation and endothelial dysfunction are atherosclerosis' characteristics. It is believed that the occurrence and development of atherosclerosis mainly include endothelial cell damage, lipoprotein deposition, inflammation and fibrous cap formation, but its molecular mechanism has not been elucidated. Therefore, protecting the vascular endothelium from damage is one of the key factors against atherosclerosis. The factors and processes involved in vascular endothelial injury are complex. Finding out the key factors and mechanisms of atherosclerosis caused by vascular endothelial injury is an important target for reversing and preventing atherosclerosis. Changes in cell adhesion are the early characteristics of EndMT, and cell adhesion is related to vascular endothelial injury and atherosclerosis. Recent researches have exhibited that endothelial-mesenchymal transition (EndMT) can urge atherosclerosis' progress, and it is expected that inhibition of EndMT will be an object for anti-atherosclerosis. We speculate whether inhibition of EndMT can become an effective target for reversing atherosclerosis by improving cell adhesion changes and vascular endothelial injury. Studies have shown that H2S has a strong cardiovascular protective effect. As H2S has anti- inflammatory, anti-oxidant, inhibiting foam cell formation, regulating ion channels and enhancing cell adhesion and endothelial functions, the current research on H2S in cardiovascular aspects is increasing, but anti-atherosclerosis's molecular mechanism and the function of H2S in EndMT have not been explicit. In order to explore the mechanism of H2S against atherosclerosis, to find an effective target to reverse atherosclerosis, we sum up the progress of EndMT promoting atherosclerosis, and Hydrogen sulfide's potential anti- EndMT effect is discussed in this review.
Collapse
Affiliation(s)
- Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Sai Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Xiao-Feng Ma
- Department of Cardiology, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan Province 421001, China
| | - Yun Ma
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| |
Collapse
|
12
|
Stojanović SD, Fiedler J, Bauersachs J, Thum T, Sedding DG. Senescence-induced inflammation: an important player and key therapeutic target in atherosclerosis. Eur Heart J 2021; 41:2983-2996. [PMID: 31898722 PMCID: PMC7453834 DOI: 10.1093/eurheartj/ehz919] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/13/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a hallmark and potent driver of pathological vascular remodelling in atherosclerosis. However, current anti-inflammatory therapeutic strategies have shown mixed results. As an alternative perspective on the conundrum of chronic inflammation emerging evidence points towards a small subset of senescent cells as a critical player and central node driving atherosclerosis. Senescent cells belonging to various cell types are a dominant and chronic source of a large array of pro-inflammatory cytokines and various additional plaque destabilizing factors, being involved with various aspects of atherosclerosis pathogenesis. Antagonizing these key agitators of local chronic inflammation and plaque instability may provide a causative and multi-purpose therapeutic strategy to treat atherosclerosis. Anti-senescence treatment options with translational potential are currently in development. However, several questions and challenges remain to be addressed before these novel treatment approaches may enter the clinical setting.
Collapse
Affiliation(s)
- Stevan D Stojanović
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Daniel G Sedding
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| |
Collapse
|
13
|
Grieve DJ. Special Issue: British Society for Cardiovascular Research : Introduction. Cardiovasc Drugs Ther 2020; 33:201. [PMID: 30895487 DOI: 10.1007/s10557-019-06877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David J Grieve
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7AE, UK.
| |
Collapse
|
14
|
Platel V, Faure S, Corre I, Clere N. Endothelial-to-Mesenchymal Transition (EndoMT): Roles in Tumorigenesis, Metastatic Extravasation and Therapy Resistance. JOURNAL OF ONCOLOGY 2019; 2019:8361945. [PMID: 31467544 PMCID: PMC6701373 DOI: 10.1155/2019/8361945] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Cancer cells evolve in a very complex tumor microenvironment, composed of several cell types, among which the endothelial cells are the major actors of the tumor angiogenesis. Today, these cells are also characterized for their plasticity, as endothelial cells have demonstrated their potential to modify their phenotype to differentiate into mesenchymal cells through the endothelial-to-mesenchymal transition (EndoMT). This cellular plasticity is mediated by various stimuli including transforming growth factor-β (TGF-β) and is modulated dependently of experimental conditions. Recently, emerging evidences have shown that EndoMT is involved in the development and dissemination of cancer and also in cancer cell to escape from therapeutic treatment. In this review, we summarize current updates on EndoMT and its main induction pathways. In addition, we discuss the role of EndoMT in tumorigenesis, metastasis, and its potential implication in cancer therapy resistance.
Collapse
Affiliation(s)
- Valentin Platel
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| | - Sébastien Faure
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| | - Isabelle Corre
- Sarcomes Osseux et Remodelage des Tissus Calcifiés Phy-OS, Université de Nantes INSERM UMR U1238, Faculté de Médecine, F-44035 Nantes, France
| | - Nicolas Clere
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| |
Collapse
|