1
|
Alborzi N, Maroofi A, Hafizi Barjin Z, Moradi A, Rezvani ME, Safari F. Resveratrol attenuates pressure overload-induced myocardial remodeling in ovariectomized rats by rescuing the adaptive angiogenic response. Life Sci 2025; 370:123573. [PMID: 40122333 DOI: 10.1016/j.lfs.2025.123573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/02/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Resveratrol (RES), a polyphenol with putative estrogen (E2) -like effects, is believed to counteract left ventricular hypertrophy (LVH). However, how RES exerts its protection is not well understood, particularly when prominent risk factors, such as E2 depletion and pressure overload (PO), coexist. Here, we evaluated the impact of RES and E2 on angiogenesis and LVH in rats subjected to ovariectomy (OVX) and PO. METHODS Three weeks after bilateral OVX induction, abdominal aortic banding was performed on Wistar female rats to trigger PO. The animals were treated with either RES or E2 for six weeks. Finally, the heart-to-body weight ratio (HW/BW), cell size, fibrosis, and atrial natriuretic peptide (ANP) mRNA expression were assessed. Angiogenesis was determined by evaluating vascular endothelial growth factor (VEGF) mRNA and protein expression and by CD31 immunostaining. Serum E2 levels were also measured. RESULTS OVX + PO caused more severe myocardial hypertrophy (HW/BW) and fibrosis compared with PO alone, but did not aggravate cell size and ANP mRNA expression. OVX blunted the angiogenic response to PO, with reduced VEGF expression. RES increased VEGF expression and CD31, and abrogated LVH and fibrosis. E2 treatment improved VEGF expression and fibrosis, but not to the same extent as RES. RES improved serum levels of E2 in OVX + PO rats. CONCLUSION Our findings suggest that RES limits OVX-induced exacerbation of LVH and fibrosis in a PO model, and targets systemic E2 levels and myocardial angiogenesis as underpinning protective mechanisms. Thus, RES may provide cardioprotection for post-menopausal women.
Collapse
Affiliation(s)
- Nasrin Alborzi
- Yazd Neuroendocrine Research Center, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Zeinab Hafizi Barjin
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Qu S, Zhang Z, Ju R, Li Z, Leng J, Xue Z, Han X, Tao S, Lv Y, Zhang N. Association between the female hormone intake and cardiovascular disease in the women: a study based on NHANES 1999-2020. BMC Public Health 2024; 24:3578. [PMID: 39719571 PMCID: PMC11667859 DOI: 10.1186/s12889-024-21001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
Although many studies have reported the relationship between female hormone intake and cardiovascular disease (CVD) development, their association has not been fully elucidated and defined, based on data from the Third National Health and Nutrition Examination Survey intending to assess the health and nutritional status of non-institutionalized children and adults in the United States. This study examined the relationship between female hormone intake and coronary artery disease (CVD) development in 38,745 women, averaging 38.10 ± 12.59 years in age. We explored the association between hormone intake and CVD incidence, considering various social determinants of health (SDOH) with statistical methods like Chi-square tests, logistic regression, and stratified Chi-square analysis. Our findings reveal a complex relationship between female hormone intake and CVD development. Hormones appear to reduce CVD risk in women over 60 years old. However, hormone intake correlates with increased CVD risk in highly educated women. Socioeconomic status also influences this relationship; while hormones pose a risk factor for heart failure and stroke in impoverished or wealthy women, they serve as a protective factor against CVD for middle-income women. Additionally, hormonal intake seems beneficial for women who experienced menarche between 13 and 15 years old, menopause between 30 and 49, and had 7-9 pregnancies, especially when coupled with a diet low in sugar, fat, cholesterol, and adequate folic acid intake. These results indicate that while hormones can prevent CVD under specific conditions, their impact can be detrimental in different SDOH contexts. In conclusion, while appropriate hormone intake can prevent CVD, its effects vary across different demographic and health backgrounds. This underscores the necessity for meticulous screening of SDOH factors in clinical settings to maximize the protective benefits of hormones against CVD.
Collapse
Affiliation(s)
- Shenao Qu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of Western China Science and Technology Innovation Harbour, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering Research Center, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Yanta District, Xian, Shaanxi Province, 710061, China
| | - Zhixuan Zhang
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of Western China Science and Technology Innovation Harbour, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering Research Center, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Yanta District, Xian, Shaanxi Province, 710061, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Ran Ju
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of Western China Science and Technology Innovation Harbour, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering Research Center, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Yanta District, Xian, Shaanxi Province, 710061, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering Research Center, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Yanta District, Xian, Shaanxi Province, 710061, China
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xian, 710061, China
| | - Jing Leng
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zihan Xue
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xuan Han
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering Research Center, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Yanta District, Xian, Shaanxi Province, 710061, China
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xian, 710061, China
| | - Shiran Tao
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yi Lv
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of Western China Science and Technology Innovation Harbour, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering Research Center, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Yanta District, Xian, Shaanxi Province, 710061, China.
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xian, 710061, China.
| | - Nana Zhang
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of Western China Science and Technology Innovation Harbour, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering Research Center, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Yanta District, Xian, Shaanxi Province, 710061, China.
| |
Collapse
|
3
|
Wang Z, Zhang G, Hu S, Fu M, Zhang P, Zhang K, Hao L, Chen S. Research progress on the protective effect of hormones and hormone drugs in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 176:116764. [PMID: 38805965 DOI: 10.1016/j.biopha.2024.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Ischemic heart disease (IHD) is a condition where the heart muscle does not receive enough blood flow, leading to cardiac dysfunction. Restoring blood flow to the coronary artery is an effective clinical therapy for myocardial ischemia. This strategy helps lower the size of the myocardial infarction and improves the prognosis of patients. Nevertheless, if the disrupted blood flow to the heart muscle is restored within a specific timeframe, it leads to more severe harm to the previously deprived heart tissue. This condition is referred to as myocardial ischemia/reperfusion injury (MIRI). Until now, there is a dearth of efficacious strategies to prevent and manage MIRI. Hormones are specialized substances that are produced directly into the circulation by endocrine organs or tissues in humans and animals, and they have particular effects on the body. Hormonal medications utilize human or animal hormones as their active components, encompassing sex hormones, adrenaline medications, thyroid hormone medications, and others. While several studies have examined the preventive properties of different endocrine hormones, such as estrogen and hormone analogs, on myocardial injury caused by ischemia-reperfusion, there are other hormone analogs whose mechanisms of action remain unexplained and whose safety cannot be assured. The current study is on hormones and hormone medications, elucidating the mechanism of hormone pharmaceuticals and emphasizing the cardioprotective effects of different endocrine hormones. It aims to provide guidance for the therapeutic use of drugs and offer direction for the examination of MIRI in clinical therapy.
Collapse
Affiliation(s)
- Zhongyi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Gaojiang Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Meilin Fu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Pingyuan Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kuo Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Sichong Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Haybar H, Sarbazjoda E, Purrahman D, Mahmoudian-Sani MR, Saki N. The prognostic potential of long noncoding RNA XIST in cardiovascular diseases: a review. Per Med 2024; 21:257-269. [PMID: 38889283 DOI: 10.1080/17410541.2024.2360380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
There is a significant mortality rate associated with cardiovascular disease despite advances in treatment. long Non-coding RNAs (lncRNAs) play a critical role in many biological processes and their dysregulation is associated with a wide range of diseases in which their downstream pathways are disrupted. A lncRNA X-inactive specific transcript (XIST) is well known as a factor that regulates the physiological process of chromosome dosage compensation for females. According to recent studies, lncRNA XIST is involved in a variety of cellular processes, including apoptosis, proliferation, invasion, metastasis, oxidative stress and inflammation, through molecular networks with microRNAs and their downstream targets in neoplastic and non-neoplastic diseases. Because these cellular processes play a role in the pathogenesis of cardiovascular diseases, we aim to investigate the role that lncRNA XIST plays in this process. Additionally, we wish to determine whether it is a prognostic factor or a potential therapeutic target in these diseases.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ehsan Sarbazjoda
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| |
Collapse
|
5
|
Bai L, Wang Y, Du S, Si Y, Chen L, Li L, Li Y. Lymphangiogenesis: A new strategy for heart disease treatment (Review). Int J Mol Med 2024; 53:35. [PMID: 38391009 PMCID: PMC10903933 DOI: 10.3892/ijmm.2024.5359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Heart disease remains a global health challenge, contributing notably to morbidity and mortality. The lymphatic vasculature, an integral component of the cardiovascular system, plays a crucial role in regulating essential physiological processes, including fluid balance, transportation of extravasated proteins and immune cell trafficking, all of which are important for heart function. Through thorough scientometric analysis and extensive research, the present review identified lymphangiogenesis as a hotspot in cardiovascular disease research, and the mechanisms underlying impaired cardiac lymphangiogenesis and inadequate lymph drainage in various cardiovascular diseases are discussed. Furthermore, the way used to improve lymphangiogenesis to effectively regulate a variety of heart diseases and associated signaling pathways was investigated. Notably, the current review also highlights the impact of Traditional Chinese Medicine (TCM) on lymphangiogenesis, aiming to establish a clinical basis for the potential of TCM to improve cardiovascular diseases by promoting lymphangiogenesis.
Collapse
Affiliation(s)
- Liding Bai
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yanyan Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Siqi Du
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yumeng Si
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lu Chen
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yuhong Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
6
|
Xiao K, Cao H, Yang B, Xv Z, Xiao L, Wang J, Ni S, Feng H, He Z, Xv L, Li J, Xv D. Association between the triglyceride glucose index and chronic total coronary occlusion: A cross-sectional study from southwest China. Nutr Metab Cardiovasc Dis 2024; 34:850-859. [PMID: 38161119 DOI: 10.1016/j.numecd.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIM Insulin resistance (IR) plays an important role in the atherosclerotic process, and the triglyceride glucose (TyG) index is a reliable indicator of IR and is strongly associated with cardiovascular disease. However, there are few studies regarding the relationship between the TyG index and chronic total coronary occlusion (CTO). Herein, the correlation between the TyG index and CTO, as well as their interactions with other traditional cardiovascular risk factors, were investigated. METHODS AND RESULTS We enrolled 2691 patients who underwent coronary angiography at Guangyuan Central Hospital from January 2019 to October 2021. TyG index results were used to create three groups using the trichotomous method. CTO was defined as complete occlusion of the coronary artery for ≥3 months. Univariate and multivariate logistic regression models, restricted cubic splines, receiver operating characteristic (ROC) curves, and subgroup analyses was performed. A significant correlation between the TyG index and CTO was noted. The risk of CTO was increased 2.09-fold in the group with the highest TyG compared with the lowest (OR, 2.09; 95 % CI, 1.05-4.17; P = 0.036). In addition, there was a linear dose-response relationship between the TyG index and CTO (nonlinear P = 0.614). The area under the ROC curve was 0.643 (95 % CI, 0.572-0.654). Using subgroup analyses, we observed that the TyG index was associated with a significantly higher risk of CTO in males and smokers. CONCLUSIONS An elevated TyG index was related to the risk of CTO and may constitute a meaningful predictor of CTO, particularly in males and in smokers.
Collapse
Affiliation(s)
- Kaiyong Xiao
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Guangyuan, Sichuan 628017, China.
| | - Huili Cao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Bin Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Zhe Xv
- Department of Pediatric, Guangyuan Central Hospital, 16 Jingxiangzi, Guangyuan, Sichuan 628017, China
| | - Lian Xiao
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Guangyuan, Sichuan 628017, China
| | - Jianping Wang
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Guangyuan, Sichuan 628017, China
| | - Shuiqing Ni
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Guangyuan, Sichuan 628017, China
| | - Hui Feng
- Medical Laboratory Center, Guangyuan Central Hospital, 16 Jingxiangzi, Guangyuan, Sichuan 628017, China
| | - Zhongwei He
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Guangyuan, Sichuan 628017, China
| | - Lei Xv
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Guangyuan, Sichuan 628017, China
| | - Juan Li
- Department of Cardiology, Guangyuan Central Hospital, 16 Jingxiangzi, Guangyuan, Sichuan 628017, China
| | - Dongmei Xv
- Department of Ultrasonography, Guangyuan Central Hospital, 16 Jingxiangzi, Guangyuan, Sichuan 628017, China
| |
Collapse
|
7
|
He J, Zhang Q, Xia X, Yang L. Lagopsis supina ameliorates myocardial ischemia injury by regulating angiogenesis, thrombosis, inflammation, and energy metabolism through VEGF, ROS and HMGB1 signaling pathways in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155050. [PMID: 37708818 DOI: 10.1016/j.phymed.2023.155050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Lagopsis supina (Steph. ex. Willd.) Ikonn.-Gal. is an important traditional Chinese medicine used to treat various ailments. However, its impact on myocardial ischemia (MI) injury remains unknown. PURPOSE This research aimed to reveal the therapeutic effect, potential mechanism, and metabolomics of L. supina against MI injury in rats. METHODS The therapeutic effects of the ethanolic extract of L. supina (LS) and its four fractions (LSA∼D) on a left anterior descending (LAD) artery occlusion-induced MI model rat were explored. The pharmacodynamics including myocardial infraction area, myocardial tissue pathology and apoptosis, and serum biochemical parameters (CK, CK-MB, CTn-T, SOD, ET-1, NO, eNOS, VEGF, TXB2, 6-keto-PGF1α, TNF-α, IL-6, and CRP) were evaluated. The 24 related protein expressions were detected using western blotting assay. Simultaneously, the qualitative and quantitative analyses of microporous adsorption resin with 30% (LSC) and 60% (LSD) aqueous ethanol fractions were performed using UHPLC-MS and HPLC. Moreover, the serum metabolomics analysis of rats was profiled using UHPLC-MS. RESULTS LS exerted remarkable alleviating effect on MI in rats. Importantly, LSC and LSD, two effective fractions of LS, significantly reduced myocardial infraction area, alleviated myocardial tissue pathology and apoptosis, regulated serum biochemical parameters. Furthermore, LSC and LSD markedly up-regulated the levels of VEGF-A, VEGFR-2, PKC, Bcl-2, Nrf2, HO-1, and thrombin, as well as prominently down-regulated the protein expression of Notch 1, p-PI3K, p-PI3K/PI3K, p-Akt, p-Akt/Akt, Bax, cleaved-caspase-3, cleaved-caspase-3/caspase-3, vWF, p-Erk, p-Erk/Erk, HMGB1, p-p38, p-p38/p38, p-p65, and p-p65/p65. A total of 26 candidate biomarkers were significantly regulated by LSC and LSD and they are mainly involved in amino acid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism. Finally, phenylethanols and flavonoids may be major bio-constituents of LSC and LSD against MI. CONCLUSIONS This work, for the first time, demonstrated that L. supina had a significant therapeutic effect on MI in rats. Additionally, LSC and LSD, two bio-fractions from L. supina, exerted their potential to ameliorate MI injury by promoting angiogenesis, inhibiting thrombosis, blocking inflammation, and facilitating energy metabolism through promotion of VEGF pathway, as well as suppression of ROS and HMGB1 pathways in rats. These findings suggest that LSC and LSD hold promise as potential therapeutic agents for MI injury in clinical application.
Collapse
Affiliation(s)
- Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qingcui Zhang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoyi Xia
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Li Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
8
|
Chen C, Wang J, Liu C, Hu J, Liu L. Pioneering therapies for post-infarction angiogenesis: Insight into molecular mechanisms and preclinical studies. Biomed Pharmacother 2023; 166:115306. [PMID: 37572633 DOI: 10.1016/j.biopha.2023.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
Acute myocardial infarction (MI), despite significant progress in its treatment, remains a leading cause of chronic heart failure and cardiovascular events such as cardiac arrest. Promoting angiogenesis in the myocardial tissue after MI to restore blood flow in the ischemic and hypoxic tissue is considered an effective treatment strategy. The repair of the myocardial tissue post-MI involves a robust angiogenic response, with mechanisms involved including endothelial cell proliferation and migration, capillary growth, changes in the extracellular matrix, and stabilization of pericytes for neovascularization. In this review, we provide a detailed overview of six key pathways in angiogenesis post-MI: the PI3K/Akt/mTOR signaling pathway, the Notch signaling pathway, the Wnt/β-catenin signaling pathway, the Hippo signaling pathway, the Sonic Hedgehog signaling pathway, and the JAK/STAT signaling pathway. We also discuss novel therapeutic approaches targeting these pathways, including drug therapy, gene therapy, protein therapy, cell therapy, and extracellular vesicle therapy. A comprehensive understanding of these key pathways and their targeted therapies will aid in our understanding of the pathological and physiological mechanisms of angiogenesis after MI and the development and application of new treatment strategies.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
9
|
d'Humières T, Saba J, Savale L, Dupuy M, Boyer L, Guillet H, Alassaad L, de Luna G, Iles S, Pham Hung d'Alexandry d'Orengiani AL, Zaouali Y, Boukour N, Pelinski Y, Messonnier L, Audureau E, Derbel H, Habibi A, Lellouche N, Derumeaux G, Bartolucci P. Determinants of ventricular arrhythmias in sickle cell anemia: toward better prevention of sudden cardiac death. Blood 2023; 142:409-420. [PMID: 37216685 DOI: 10.1182/blood.2022019571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Sudden death is 1 of the leading causes of death in adults with sickle cell anemia (SCA) but its etiology remains mostly unknown. Ventricular arrhythmia (VA) carries an increased risk of sudden death; however, its prevalence and determinants in SCA are poorly studied. This study aimed to identify the prevalence and predictors of VA in patients with SCA. From 2019 to 2022, 100 patients with SCA were referred to the physiology department to specifically analyze cardiac function and prospectively included in the DREPACOEUR registry. They underwent a 24-hour electrocardiogram monitoring (24h-Holter), transthoracic echocardiography, and laboratory tests on the same day. The primary end point was the occurrence of VA, defined as sustained or nonsustained ventricular tachycardia (VT), >500 premature ventricular contractions (PVCs) on 24h-Holter, or a recent history of VT ablation. The mean patient age was 46 ± 13 years, and 48% of the patients were male. Overall, VA was observed in 22 (22%) patients. Male sex (81% vs 34%; P = .02), impaired global longitudinal strain (GLS): -16% ± 1.9% vs -18.3% ± 2.7%; P = .02), and decreased platelet count (226 ± 96 giga per liter [G/L] vs 316 ± 130 G/L) were independently associated with VA. GLS correlated with PVC load every 24 hours (r = 0.39; P < .001) and a cutoff of -17.5% could predict VA with a sensitivity of 82% and a specificity of 63%. VAs are common in patients with SCA, especially in men. This pilot study uncovered GLS as a valuable parameter for improving rhythmic risk stratification.
Collapse
MESH Headings
- Adult
- Humans
- Male
- Middle Aged
- Female
- Pilot Projects
- Arrhythmias, Cardiac/etiology
- Death, Sudden, Cardiac/epidemiology
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Tachycardia, Ventricular/diagnosis
- Tachycardia, Ventricular/etiology
- Anemia, Sickle Cell/complications
Collapse
Affiliation(s)
- Thomas d'Humières
- Department of Physiology, FHU SENEC, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, INSERM IMRB U955, Université Paris Est, Créteil, France
- Sickle Cell Referral Center - UMGGR, Plateforme d'expertise Maladies Rares Grand Paris Est, Université Paris Est, FHU SENEC, CHU Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
| | - Joseph Saba
- Department of Physiology, FHU SENEC, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, INSERM IMRB U955, Université Paris Est, Créteil, France
| | - Laurent Savale
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension, Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marie Dupuy
- Department of Physiology, FHU SENEC, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, INSERM IMRB U955, Université Paris Est, Créteil, France
| | - Laurent Boyer
- Department of Physiology, FHU SENEC, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, INSERM IMRB U955, Université Paris Est, Créteil, France
| | - Henri Guillet
- Sickle Cell Referral Center - UMGGR, Plateforme d'expertise Maladies Rares Grand Paris Est, Université Paris Est, FHU SENEC, CHU Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
- Department of Internal Medicine, Henri-Mondor University Hospital-UPEC, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Lara Alassaad
- Department of Physiology, FHU SENEC, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, INSERM IMRB U955, Université Paris Est, Créteil, France
| | - Gonzalo de Luna
- Sickle Cell Referral Center - UMGGR, Plateforme d'expertise Maladies Rares Grand Paris Est, Université Paris Est, FHU SENEC, CHU Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
- Department of Internal Medicine, Henri-Mondor University Hospital-UPEC, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Sihem Iles
- Department of Physiology, FHU SENEC, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, INSERM IMRB U955, Université Paris Est, Créteil, France
| | - Anne L Pham Hung d'Alexandry d'Orengiani
- Sickle Cell Referral Center - UMGGR, Plateforme d'expertise Maladies Rares Grand Paris Est, Université Paris Est, FHU SENEC, CHU Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
| | - Yosr Zaouali
- Sickle Cell Referral Center - UMGGR, Plateforme d'expertise Maladies Rares Grand Paris Est, Université Paris Est, FHU SENEC, CHU Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
| | - Nouhaila Boukour
- Sickle Cell Referral Center - UMGGR, Plateforme d'expertise Maladies Rares Grand Paris Est, Université Paris Est, FHU SENEC, CHU Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
| | - Yanis Pelinski
- Sickle Cell Referral Center - UMGGR, Plateforme d'expertise Maladies Rares Grand Paris Est, Université Paris Est, FHU SENEC, CHU Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
| | - Laurent Messonnier
- Inter-university Laboratory of Human Movement Sciences EA 7424, Université Savoie Mont Blanc, Chambéry, France
| | - Etienne Audureau
- Department of Biostatistics, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, CEpiA IMRB U955, FHU SENEC, Université Paris Est, Créteil, France
| | - Haytham Derbel
- Department of Radiology, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Est, Créteil, France
| | - Anoosha Habibi
- Sickle Cell Referral Center - UMGGR, Plateforme d'expertise Maladies Rares Grand Paris Est, Université Paris Est, FHU SENEC, CHU Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
- Department of Internal Medicine, Henri-Mondor University Hospital-UPEC, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Nicolas Lellouche
- Department of Cardiology, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Est, Créteil, France
| | - Geneviève Derumeaux
- Department of Physiology, FHU SENEC, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, INSERM IMRB U955, Université Paris Est, Créteil, France
| | - Pablo Bartolucci
- Sickle Cell Referral Center - UMGGR, Plateforme d'expertise Maladies Rares Grand Paris Est, Université Paris Est, FHU SENEC, CHU Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
- Department of Internal Medicine, Henri-Mondor University Hospital-UPEC, Assistance Publique-Hôpitaux de Paris, Créteil, France
| |
Collapse
|
10
|
Schüler-Toprak S, Skrzypczak M, Gründker C, Ortmann O, Treeck O. Role of Estrogen Receptor β, G-Protein Coupled Estrogen Receptor and Estrogen-Related Receptors in Endometrial and Ovarian Cancer. Cancers (Basel) 2023; 15:2845. [PMID: 37345182 DOI: 10.3390/cancers15102845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Ovarian and endometrial cancers are affected by estrogens and their receptors. It has been long known that in different types of cancers, estrogens activate tumor cell proliferation via estrogen receptor α (ERα). In contrast, the role of ERs discovered later, including ERβ and G-protein-coupled ER (GPER1), in cancer is less well understood, but the current state of knowledge indicates them to have a considerable impact on both cancer development and progression. Moreover, estrogen related receptors (ERRs) have been reported to affect pathobiology of many tumor types. This article provides a summary and update of the current findings on the role of ERβ, GPER1, and ERRs in ovarian and endometrial cancer. For this purpose, original research articles on the role of ERβ, GPER1, and ERRs in ovarian and endometrial cancers listed in the PubMed database have been reviewed.
Collapse
Affiliation(s)
- Susanne Schüler-Toprak
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| | - Maciej Skrzypczak
- Second Department of Gynecology, Medical University of Lublin, 20-954 Lublin, Poland
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Olaf Ortmann
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| | - Oliver Treeck
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| |
Collapse
|
11
|
Almaghrbi H, Giordo R, Pintus G, Zayed H. Non-coding RNAs as biomarkers of myocardial infarction. Clin Chim Acta 2023; 540:117222. [PMID: 36627010 DOI: 10.1016/j.cca.2023.117222] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Non-coding RNAs (ncRNAs) encompass a family of ubiquitous RNA molecules that lack protein-coding potential and have tissue-specific expression. A significant body of evidence indicates that ncRNA's aberrant expression plays a critical role in disease onset and development. NcRNAs' biochemical characteristics such as disease-associated concentration changes, structural stability, and high abundance in body fluids make them promising prognostic and diagnostic biomarkers. Myocardial infarction (MI) is a leading cause of mortality worldwide. Acute myocardial infarction (AMI), the term in use to describe MI's early phase, is generally diagnosed by physical examination, electrocardiogram (ECG), and the presence of specific biomarkers. In this regard, compared to standard MI biomarkers, such as the cardiac troponin isoforms (cTnT & cTnI) and the Creatinine Kinase (CK), ncRNAs appears to provide better sensitivity and specificity, ensuring a rapid and correct diagnosis, an earlier treatment, and consequently a good prognosis for the patients. This review aims to summarize and discuss the most promising and recent data on the potential clinical use of circulating ncRNAs as MI biomarkers. Specifically, we focused primarily on miRNAs and lncRNAs, highlighting their significant specificity and sensitivity, discussing their limitations, and suggesting possible overcoming approaches.
Collapse
Affiliation(s)
- Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, United Arab Emirates
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
12
|
Zhou Y, Lei P, Han J, Wang Z, Ji A, Wu Y, Zheng L, Zhang X, Qu C, Min J, Zhu W, Xu Z, Liu X, Chen H, Cheng Z. Development of a Novel 18F-Labeled Probe for PET Imaging of Estrogen Receptor β. J Med Chem 2023; 66:1210-1220. [PMID: 36602888 DOI: 10.1021/acs.jmedchem.2c00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Estrogen receptor beta (ERβ) is an important ER subtype that plays crucial roles in many physiological and pathological disorders. Herein, we developed the probe [18F]PVBO for in vivo ERβ targeted PET imaging and obtained promising results. The nonradioactive PVBO showed a 12.5-fold stronger binding affinity to ERβ than to ERα in vitro. In vitro assays revealed the specific uptake of [18F]PVBO by DU145 cells. The uptake of [18F]PVBO by DU145 xenografts increased during the 120 min dynamic scanning, with a maximum uptake of 2.80 ± 0.30% ID/g. Based on time activity curves (TACs), the injection of [18F]PVBO with unlabeled PVBO or ERB-041 resulted in a significant signal reduction with the tumor/muscle (T/M) ratio <1 at 30, 60, 75, and 120 min post-injection (p < 0.05). [18F]PVBO demonstrates the feasibility of noninvasively imaging ERβ-positive tumors by small-animal PET and provides a new strategy for visualizing ERβ in vivo.
Collapse
Affiliation(s)
- Yujing Zhou
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai, 200040, China.,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China.,Department of Nuclear Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Peng Lei
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxin Han
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhiming Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Aiyan Ji
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuyang Wu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lingling Zheng
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai, 200040, China.,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Xiaoqing Zhang
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai, 200040, China.,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Chunrong Qu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Wuhan, Hubei Province, 430062, China.,Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, 430062, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingdang Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai, 200040, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Hao Chen
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| |
Collapse
|
13
|
Wang L, Lai S, Zou H, Zhou X, Wan Q, Luo Y, Wu Q, Wan L, Liu J, Huang H. Ischemic preconditioning/ischemic postconditioning alleviates anoxia/reoxygenation injury via the Notch1/Hes1/VDAC1 axis. J Biochem Mol Toxicol 2022; 36:e23199. [PMID: 35975741 DOI: 10.1002/jbt.23199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 11/07/2022]
Abstract
Ischemic preconditioning (IPC), and ischemic postconditioning (IPost) have a significant protective effect on myocardial ischemia/reperfusion (MI/R) injury by alleviating oxidative stress and mitochondrial disturbances, although the underlying molecular mechanisms are unclear. The study was to demonstrate that cardioprotection against anoxia/reoxygenation (A/R) injury is transduced via the Notch1/Hes1/VDAC1 signaling pathway. Using mass spectrometry and tandem affinity purification (TAP), to screen for differentially expressed proteins associated with Hes1, followed by standard bioinformatics analysis. The co-immunoprecipitation (Co-IP) assay confirmed an interaction between Hes1 and VDAC1 proteins. H9c2 cells were transfected with Hes1 adenoviral N-terminal TAP vector (AD-NTAP/Hes1) and Hes1-short hairpin RNA adenoviral vector (AD-Hes1-shRNA) to establish A/R injury, IPC, and IPost models, respectively. The expression of Hes1 and VDAC1 proteins were measured by western blot analysis, while the levels of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), and apoptosis were evaluated by flow cytometry. AD-NTAP/Hes1 can activate the exogenous protein expression of Hes1, thus decreasing creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) activity and promoting cell viability. The study found that VDAC1 was a potential target protein for Hes1 and the overexpression of Hes1 protein expression downregulated protein expression levels of VDAC1, reduced ROS production, stabilized ΔΨm, and inhibited apoptosis in H9c2 cells. Additionally, downregulation of Hes1 protein expression also upregulated VDAC1 protein expression, increased ROS production, imbalanced ΔΨm, promoted cell apoptosis, and attenuated the cardioprotection afforded by IPC and IPost. The Notch1/Hes1 signaling pathway activated by IPC/IPost can directly downregulate the protein expression of VDAC1 and consequently relieve A/R injury.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Cardiac Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | | | - Huaxi Zou
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Cardiac Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xueliang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Wan
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yong Luo
- Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Qicai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Wan
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jichun Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Cardiac Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huang Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
MicroRNA-34a Promotes Ischemia-Induced Cardiomyocytes Apoptosis through Targeting Notch1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1388415. [PMID: 35265142 PMCID: PMC8901351 DOI: 10.1155/2022/1388415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Myocardial apoptosis occurs during myocardial ischemia. This study aimed to determine the effect of microRNA-34a (miR-34a) in ischemia-induced myocardial apoptosis. Mainly, SD rats were subjected to myocardial ischemia by ligaturing the left anterior descending branch of coronary artery. After rats had myocardial infarction, HE staining and TUNEL staining confirmed a significant increase in apoptosis. The expression of miR-34a was noticeably upregulated, while the expression of Notch1 was downregulated. An increase in caspase-3 and a decrease in Bcl-2/Bax ratio were observed in myocardium. Similar results were observed in the in vitro model of cardiomyocyte ischemia and anoxia of this study. When rat cardiomyocytes were administered with serum starvation and microaerophilic system, apoptosis-related proteins were significantly increased. However, transfecting the miR-34a inhibitor into the cardiomyocyte before the serum starvation and hypoxia treatment could increase the ratio of Bcl-2/Bax and downregulate the expression of caspase-3, as well as prevent cardiomyocytes from apoptosis. As opposed to the abovementioned points, the upregulation of miR-34a expression by transfecting miR-34a mimics induced Notch1 reduce and apoptosis-related proteins increase apparently, while upregulation of Notch1 could stimulate apoptosis attributed to miR-34a. Mechanistically, we demonstrated that Notch1 is a direct target of miR-34a. In conclusion, our current results suggested that miR-34a significantly stimulates ischemia-induced cardiomyocytes apoptosis by targeting Notch1.
Collapse
|
15
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 374] [Impact Index Per Article: 124.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|
16
|
Beikoghli Kalkhoran S, Kararigas G. Oestrogenic Regulation of Mitochondrial Dynamics. Int J Mol Sci 2022; 23:ijms23031118. [PMID: 35163044 PMCID: PMC8834780 DOI: 10.3390/ijms23031118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biological sex influences disease development and progression. The steroid hormone 17β-oestradiol (E2), along with its receptors, is expected to play a major role in the manifestation of sex differences. E2 exerts pleiotropic effects in a system-specific manner. Mitochondria are one of the central targets of E2, and their biogenesis and respiration are known to be modulated by E2. More recently, it has become apparent that E2 also regulates mitochondrial fusion–fission dynamics, thereby affecting cellular metabolism. The aim of this article is to discuss the regulatory pathways by which E2 orchestrates the activity of several components of mitochondrial dynamics in the cardiovascular and nervous systems in health and disease. We conclude that E2 regulates mitochondrial dynamics to maintain the mitochondrial network promoting mitochondrial fusion and attenuating mitochondrial fission in both the cardiovascular and nervous systems.
Collapse
|
17
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
18
|
Wang S, Wang E, Chen Q, Yang Y, Xu L, Zhang X, Wu R, Hu X, Wu Z. Uncovering Potential lncRNAs and mRNAs in the Progression From Acute Myocardial Infarction to Myocardial Fibrosis to Heart Failure. Front Cardiovasc Med 2021; 8:664044. [PMID: 34336943 PMCID: PMC8322527 DOI: 10.3389/fcvm.2021.664044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Morbidity and mortality of heart failure (HF) post-myocardial infarction (MI) remain elevated. The aim of this study was to find potential long non-coding RNAs (lncRNAs) and mRNAs in the progression from acute myocardial infarction (AMI) to myocardial fibrosis (MF) to HF. Methods: Firstly, blood samples from AMI, MF, and HF patients were used for RNA sequencing. Secondly, differentially expressed lncRNAs and mRNAs were obtained in MF vs. AMI and HF vs. MF, followed by functional analysis of shared differentially expressed mRNAs between two groups. Thirdly, interaction networks of lncRNA-nearby targeted mRNA and lncRNA-co-expressed mRNA were constructed in MF vs. AMI and HF vs. MF. Finally, expression validation and diagnostic capability analysis of selected lncRNAs and mRNAs were performed. Results: Several lncRNA-co-expressed/nearby targeted mRNA pairs including AC005392.3/AC007278.2-IL18R1, AL356356.1/AL137145.2-PFKFB3, and MKNK1-AS1/LINC01127-IL1R2 were identified. Several signaling pathways including TNF and cytokine–cytokine receptor interaction, fructose and mannose metabolism and HIF-1, hematopoietic cell lineage and fluid shear stress, and atherosclerosis and estrogen were selected. IL1R2, IRAK3, LRG1, and PLAC4 had a potential diagnostic value for both AMI and HF. Conclusion: Identified AC005392.3/AC007278.2-IL18R1, AL356356.1/AL137145.2-PFKFB3, and MKNK1-AS1/LINC01127-IL1R2 lncRNA-co-expressed/nearby targeted mRNA pairs may play crucial roles in the development of AMI, MF, and HF.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Enmao Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Qincong Chen
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yan Yang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Lei Xu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaolei Zhang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Rubing Wu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xitian Hu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhihong Wu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
19
|
Dong J, Zhu W, Wan D. RETRACTED: Downregulation of microRNA-21-5p from macrophages-derived exosomes represses ventricular remodeling after myocardial infarction via inhibiting tissue inhibitors of metalloproteinase 3. Int Immunopharmacol 2021; 96:107611. [PMID: 33882443 DOI: 10.1016/j.intimp.2021.107611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1E, 5B and 6B, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0 [docs.google.com]). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jing Dong
- Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China.
| | - Wanjie Zhu
- Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Daguo Wan
- Cardiovascular Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| |
Collapse
|
20
|
Wu Z, Cheng S, Wang S, Li W, Liu J. RETRACTED:BMSCs-derived exosomal microRNA-150-5p attenuates myocardial infarction in mice. Int Immunopharmacol 2021; 93:107389. [PMID: 33582480 DOI: 10.1016/j.intimp.2021.107389] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 2B and 7B, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0 [docs.google.com]). Concerns were also raised over the provenance of the flow cytometry plots in Fig. 1F. The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Zheng Wu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shujuan Cheng
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shaoping Wang
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Wenzheng Li
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jinghua Liu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
21
|
da Silva JS, Montagnoli TL, Rocha BS, Tacco MLCA, Marinho SCP, Zapata-Sudo G. Estrogen Receptors: Therapeutic Perspectives for the Treatment of Cardiac Dysfunction after Myocardial Infarction. Int J Mol Sci 2021; 22:E525. [PMID: 33430254 PMCID: PMC7825655 DOI: 10.3390/ijms22020525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptors (ER) mediate functions beyond their endocrine roles, as modulation of cardiovascular, renal, and immune systems through anti-inflammatory and anti-apoptotic effects, preventing necrosis of cardiomyocytes and endothelial cells, and attenuating cardiac hypertrophy. Estradiol (E2) prevents cardiac dysfunction, increases nitric oxide synthesis, and reduces the proliferation of vascular cells, yielding protective effects, regardless of gender. Such actions are mediated by ER (ER-alpha (ERα), ER-beta (ERβ), or G protein-coupled ER (GPER)) through genomic or non-genomic pathways, which regulate cardiovascular function and prevent tissue remodeling. Despite the extensive knowledge on the cardioprotective effects of estrogen, clinical studies conducted on myocardial infarction (MI) and cardiovascular diseases still include favorable and unfavorable profiles. The purpose of this review is to provide up-to-date information regarding molecular, preclinical, and clinical aspects of cardiovascular E2 effects and ER modulation as a potential therapeutic target for the treatment of MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Matheus L. C. A. Tacco
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Sophia C. P. Marinho
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
- Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
22
|
Basalay MV, Yellon DM, Davidson SM. Targeting myocardial ischaemic injury in the absence of reperfusion. Basic Res Cardiol 2020; 115:63. [PMID: 33057804 PMCID: PMC7560937 DOI: 10.1007/s00395-020-00825-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Sudden myocardial ischaemia causes an acute coronary syndrome. In the case of ST-elevation myocardial infarction (STEMI), this is usually caused by the acute rupture of atherosclerotic plaque and obstruction of a coronary artery. Timely restoration of blood flow can reduce infarct size, but ischaemic regions of myocardium remain in up to two-thirds of patients due to microvascular obstruction (MVO). Experimentally, cardioprotective strategies can limit infarct size, but these are primarily intended to target reperfusion injury. Here, we address the question of whether it is possible to specifically prevent ischaemic injury, for example in models of chronic coronary artery occlusion. Two main types of intervention are identified: those that preserve ATP levels by reducing myocardial oxygen consumption, (e.g. hypothermia; cardiac unloading; a reduction in heart rate or contractility; or ischaemic preconditioning), and those that increase myocardial oxygen/blood supply (e.g. collateral vessel dilation). An important consideration in these studies is the method used to assess infarct size, which is not straightforward in the absence of reperfusion. After several hours, most of the ischaemic area is likely to become infarcted, unless it is supplied by pre-formed collateral vessels. Therefore, therapies that stimulate the formation of new collaterals can potentially limit injury during subsequent exposure to ischaemia. After a prolonged period of ischaemia, the heart undergoes a remodelling process. Interventions, such as those targeting inflammation, may prevent adverse remodelling. Finally, harnessing of the endogenous process of myocardial regeneration has the potential to restore cardiomyocytes lost during infarction.
Collapse
Affiliation(s)
- M V Basalay
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - D M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - S M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
23
|
Abstract
Breast cancer, a malignant tumor originating from mammary epithelial tissue, is the most common cancer among women worldwide. Challenges facing the diagnosis and treatment of breast cancer necessitate the search for new mechanisms and drugs to improve outcomes. Estrogen receptor (ER) is considered to be important for determining the diagnosis and treatment strategy. The discovery of the second estrogen receptor, ERβ, provides an opportunity to understand estrogen action. The emergence of ERβ can be traced back to 1996. Over the past 20 years, an increasing body of evidence has implicated the vital effect of ERβ in breast cancer. Although there is controversy among scholars, ERβ is generally thought to have antiproliferative effects in disease progression. This review summarizes available evidence regarding the involvement of ERβ in the clinical treatment and prognosis of breast cancer and describes signaling pathways associated with ERβ. We hope to highlight the potential of ERβ as a therapeutic target.
Collapse
|