1
|
Singh DD. NLRP3 inflammasome: structure, mechanism, drug-induced organ toxicity, therapeutic strategies, and future perspectives. RSC Med Chem 2025:d5md00167f. [PMID: 40370650 PMCID: PMC12070810 DOI: 10.1039/d5md00167f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Drug-induced toxicity is an important issue in clinical medicine, which typically results in organ dysfunction and adverse health consequences. The family of NOD-like receptors (NLRs) includes intracellular proteins involved in recognizing pathogens and triggering innate immune responses, including the activation of the NLRP3 inflammasome. The NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3) inflammasome is a critical component for both innate and adaptive immune responses and has been implicated in various drug-induced toxicities, including hepatic, renal, and cardiovascular diseases. The unusual activation of the NLRP3 inflammasome causes the release of pro-inflammatory cytokines, such as IL-1β and IL-18, which can lead to more damage to tissues. Targeting NLRP3 inflammasome is a potential therapeutic endeavour for suppressing drug-induced toxicity. This review provides insights into the mechanism, drug-induced organ toxicity, therapeutic strategies, and prospective therapeutic approaches of the NLRP3 inflammasome and summarizes the developing therapies that target the inflammasome unit. This review has taken up one of the foremost endeavours in understanding and inhibiting the NLRP3 inflammasome as a means of generating safer pharmacological therapies.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur 303002 India +91 9450078260
| |
Collapse
|
2
|
Chou MY, Lin-Shiau SY. Non-steroidal anti-inflammatory drugs (NSAIDs) regimens enhance synergistic selective anticancer efficacy of chemotherapeutic agents on cultured cells. J Dent Sci 2025; 20:1175-1195. [PMID: 40224060 PMCID: PMC11993116 DOI: 10.1016/j.jds.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/19/2025] [Indexed: 04/15/2025] Open
Abstract
Background/purpose Cancer incidences are rising, presenting challenges due to severe side effects and resistance of chemotherapeutic agents. To address these issues, we propose a strategy involving pharmaceutical compositions of PTM (Phytopolyphenols, Targeting drugs, Metals) regimens. This study aimed to investigate NSAIDs (Non-steroidal anti-inflammatory drugs)-PTM regimens enhancing anticancer selectivity and efficacy of chemotherapeutic agents on cultured cancer cells. Materials and methods Effects of drugs on proliferation of cultured cancer cells and pathogens was assessed using MTT assay and optical density at 600 nm (OD600) respectively. Synergistic effects of drug combinations were determined using combination index and efficacy index. ATPase activity was assayed using a colorimetric method. Results NSAIDs-PTM regimens demonstrated selective and synergistic anticancer effects. They also enhanced anticancer selectivity and efficacy of Cisplatin, 5-Fluorouracil, and Methotrexate. The most effective NSAIDs-PTM regimens increased anticancer efficacy by 16, 4, and 23 fold against oral, lung, and colon cancer cell lines, respectively. Additionally, these NSAIDs-PTM regimens enhanced selective anticancer efficacy of Cisplatin, 5-Fluorouracil, and Methotrexate by 8-21 fold on the three cancer cells. Furthermore, all regimens exhibited synergistic anti-efflux pump ATPase activity and antibacterial effects against four cultured pathogens. Conclusion The findings indicate that NSAIDs-PTM regimens not only possess synergistic and selective anticancer and antibacterial properties but also enhance anticancer selectivity and efficacy of Cisplatin, 5-Fluorouracil, and Methotrexate. Notably, all regimens exhibited anti-efflux pump ATPase, which may help overcome multidrug resistance in cancer treatment. Given that all components of PTM regimens are clinically effective and safe, further clinical studies are warranted.
Collapse
Affiliation(s)
- Ming-Yung Chou
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shoei-Yn Lin-Shiau
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Rodríguez-Moro G, Cabrera-Rubio R, Selma-Royo M, Gómez-Morlote JA, Collado MC, Abril N, García-Barrera T. Modulation of the gut microbiota and the microbial-produced gut metabolites by diclofenac exposure and selenium supplementation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36233-6. [PMID: 40102351 DOI: 10.1007/s11356-025-36233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Diclofenac (DCF) exposure is of great concern due to the ecotoxicological risk linked with a decline of vulture populations in Southeast Asia, but also because it can affect the reproduction and neurotoxicity in mammals. Otherwise, selenium (Se) is an antioxidant essential element with key roles in health and with antagonistic action against pollutants, but in some cases with a synergistic effect. To investigate the potential intertwined mechanisms between DCF, Se, and gut microbiota, gut metabolomic and gut microbiota profiles were determined in mice after DCF exposure and Se supplementation. Speciation of selenoproteins in plasma was carried out by isotopic dilution analysis to quantify the levels of selenoproteins. Significant differences in the levels of 79% of the gut metabolites were determined after DCF exposure. The most significant altered pathway in DCF and DCF-Se groups is the primary bile biosynthesis, being the only pathway altered in mice exposed to DCF, while in DCF-Se, the metabolism of galactose and linoleic acid is also altered. Moreover, specific associations between specific gut microbiota and metabolites were determined in the studied mice groups suggesting intertwined mechanisms. Selenium supplementation modulated the gut metabolic and microbiota profiles affected by DCF.
Collapse
Affiliation(s)
- Gema Rodríguez-Moro
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain
| | - Raúl Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - José Antonio Gómez-Morlote
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071, Córdoba, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain.
| |
Collapse
|
4
|
Kumar H, Dhalaria R, Kimta N, Guleria S, Upadhyay NK, Nepovimova E, Dhanjal DS, Sethi N, Manickam S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother Res 2025; 39:1494-1530. [PMID: 39853860 DOI: 10.1002/ptr.8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately. Nowadays, people use different types of herbal treatments, viz., herbal drinks that contain different spices for detoxification of their bodies. One such example is turmeric, the most commonly available spice in the kitchen and used across all kinds of households. Turmeric contains curcumin, which is a natural polyphenol. Curcumin is a medicinal compound with different biological activities, such as antioxidant, antineoplastic, anti-inflammatory, and antibacterial. Hence, this review gives a comprehensive insight into the promising potential of curcumin in the detoxification of heavy metals, carbon tetrachloride, drugs, alcohol, acrylamide, mycotoxins, nicotine, and plastics. The review encompasses diverse animal-based studies portraying curcumin's role in nullifying the different toxic effects in various organs of the body (especially the liver, kidney, testicles, and brain) by enhancing defensive signaling pathways, improving antioxidant enzyme levels, inhibiting pro-inflammatory markers activities and so on. Furthermore, this review also argues over curcumin's safety assessment for its utilization as a detoxifying agent.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sivakumar Manickam
- Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| |
Collapse
|
5
|
Kow CS, Ramachandram DS, Hasan SS, Thiruchelvam K. Evaluating diclofenac's risks in COVID-19: strategies for mitigating adverse outcomes. Inflammopharmacology 2025; 33:885-887. [PMID: 39601986 DOI: 10.1007/s10787-024-01601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
The use of nonsteroidal anti-inflammatory drugs (NSAIDs), particularly diclofenac, during the COVID-19 pandemic has raised concerns due to its potential to worsen disease progression. This commentary evaluates key risks associated with diclofenac and highlights the critical role of pharmacists in mitigating adverse outcomes through careful medication management and patient education. Diclofenac poses unique risks due to its ability to generate reactive oxygen species (ROS), leading to oxidative stress and mitochondrial dysfunction. In COVID-19, a disease characterized by hyperinflammation, these effects may exacerbate systemic inflammation, contributing to severe outcomes. Moreover, diclofenac's known association with increased cardiovascular risks, such as myocardial infarction and stroke, is especially concerning in patients with COVID-19, who are predisposed to thrombotic complications. The drug's hepatotoxic potential adds another layer of concern, particularly in patients with pre-existing liver dysfunction or those at higher risk due to COVID-19-related liver involvement. Pharmacists play a pivotal role in addressing these risks by conducting thorough medication reviews and assessing patient-specific risk factors. They can guide clinicians and patients toward safer alternatives, such as ibuprofen or naproxen, which demonstrate a lower oxidative and cardiovascular burden. Patient education is equally critical; pharmacists should counsel individuals on potential adverse effects of diclofenac, such as cardiovascular symptoms, renal dysfunction, and liver complications, while advising on lifestyle modifications and adjunctive therapies to reduce NSAID dependence. Additionally, pharmacists contribute to pharmacovigilance by monitoring patients for adverse drug reactions and reporting safety concerns to improve NSAID usage guidelines during the pandemic. By adopting a personalized approach to NSAID therapy, pharmacists can minimize risks and enhance patient safety, ultimately improving outcomes in the management of COVID-19 and other inflammatory conditions. This underscores their indispensable role in optimizing care during complex clinical scenarios.
Collapse
Affiliation(s)
- Chia Siang Kow
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | | | - Syed Shahzad Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | | |
Collapse
|
6
|
Chen G, Xin Y, Hammour MM, Braun B, Ehnert S, Springer F, Vosough M, Menger MM, Kumar A, Nüssler AK, Aspera-Werz RH. Establishment of a human 3D in vitro liver-bone model as a potential system for drug toxicity screening. Arch Toxicol 2025; 99:333-356. [PMID: 39503877 PMCID: PMC11742461 DOI: 10.1007/s00204-024-03899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 01/19/2025]
Abstract
Drug toxicity is an important cause of chronic liver damage, which in the long term can lead to impaired bone homeostasis through an imbalance in the liver-bone axis. For instance, non-steroidal anti-inflammatory drugs (e.g., diclofenac), which are commonly used to control pain during orthopaedic interventions, are known to reduce bone quality and are the most prevalent causes of drug-induced liver damage. Therefore, we used human cell lines to produce a stable, reproducible, and reliable in vitro liver-bone co-culture model, which mimics the impaired bone homeostasis seen after diclofenac intake in vivo. To provide the best cell culture conditions for the two systems, we tested the effects of supplements contained in liver and bone cell culture medium on liver and bone cell lines, respectively. Additionally, different ratios of culture medium combinations on bone cell scaffolds and liver spheroids' viability and function were also analysed. Then, liver spheroids and bone scaffolds were daily exposed to 3-6 µM diclofenac alone or in co-culture to compare and evaluate its effect on the liver and bone system. Our results demonstrated that a 50:50 liver:bone medium combination maintains the function of liver spheroids and bone scaffolds for up to 21 days. Osteoclast-like cell activity was significantly upregulated after chronic exposure to diclofenac only in bone scaffolds co-cultured with liver spheroids. Consequently, the mineral content and stiffness of bone scaffolds treated with diclofenac in co-culture with liver spheroids were significantly reduced. Interestingly, our results show that the increase in osteoclastic activity in the system is not related to the main product of diclofenac metabolism. However, osteoclast activation correlated with the increase in oxidative stress and inflammation associated with chronic diclofenac exposure. In summary, we established a long-term stable liver-bone system that represents the interaction between the two organs, meanwhile, it is also an outstanding model for studying the toxicity of drugs on bone homeostasis.
Collapse
Affiliation(s)
- Guanqiao Chen
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Yuxuan Xin
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Mohammad Majd Hammour
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Fabian Springer
- Department of Radiology, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian M Menger
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Ashok Kumar
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Andreas K Nüssler
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany.
| | - Romina H Aspera-Werz
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| |
Collapse
|
7
|
Cruz-Antonio L, Sánchez-Mendoza ME, García-Machorro J, López-Lorenzo Y, Arrieta J. Study of the Effect of Methyl Eugenol on Gastric Damage Produced by Spinal Cord Injury Model in the Rat. Molecules 2024; 30:86. [PMID: 39795143 PMCID: PMC11721453 DOI: 10.3390/molecules30010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Traumatic spinal cord injury (SCI) is a serious medical condition that places patients at high risk of developing gastric ulceration and gastrointestinal bleeding. One preventative strategy involves the use of omeprazole; however, its chronic use is associated with adverse effects, highlighting the need for alternative therapies. This study evaluated the protective effects of methyl eugenol (ME) on gastric mucosal damage in a rat model of SCI. ME was administered orally at doses of 30, 100, and 177 mg/kg in SCI induced at the T9 level, alongside diclofenac or ketorolac (30 mg/kg each). The enzymatic activity of superoxide dismutase, catalase, and glutathione peroxidase was assessed, and the levels of total glutathione and malondialdehyde were determined using biochemical kits. Additionally, stomach histological sections were analyzed. ME exhibited dose-dependent gastroprotective effects, with maximal protection observed at 177 mg/kg in the presence of diclofenac (9.78 ± 2.16 mm2) or ketorolac (12.49 ± 2.17 mm2). A histological analysis confirmed these findings. In conclusion, methyl eugenol protects the gastric mucosa from SCI-induced damage, with glutathione peroxidase and catalase playing key roles in its mechanism of gastroprotection.
Collapse
Affiliation(s)
- Leticia Cruz-Antonio
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Av. Guelatao No. 66, Colonia Ejército de Oriente, Iztapalapa, Ciudad de México 09230, Mexico;
| | - María Elena Sánchez-Mendoza
- Laboratorio de Farmacología de Plantas Medicinales Mexicanas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (M.E.S.-M.); (Y.L.-L.)
| | - Jazmín García-Machorro
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico;
| | - Yaraset López-Lorenzo
- Laboratorio de Farmacología de Plantas Medicinales Mexicanas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (M.E.S.-M.); (Y.L.-L.)
| | - Jesús Arrieta
- Laboratorio de Farmacología de Plantas Medicinales Mexicanas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (M.E.S.-M.); (Y.L.-L.)
| |
Collapse
|
8
|
Martins C, Carvalho LM, Cabral IM, Saúde L, Dreij K, Costa PM. A mechanistic study on the interaction effects between legacy and pollutants of emerging concern: A case study with B[a]P and diclofenac. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125189. [PMID: 39454814 DOI: 10.1016/j.envpol.2024.125189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
To study the intricate toxicological mechanisms triggered by exposure to mixed pollutants, we exposed zebrafish embryos to legacy and emerging pollutants through binary mixtures of benzo[a]pyrene (B[a]P) and diclofenac (DFC). The combination of next-generation transcriptomics and toxicopathology disclosed instances where exposure to mixtures did not attain the expected sum of acute effects of individual toxicants, indicating potential antagonism. Despite overall higher mortality in DFC treatments, the same antagonistic trend was noted in genotoxicity and molecular pathways related to RNA turnover, cell proliferation, apoptosis and cell-cycle control. The formation of oedemas in the heart cavity and yolk sac can be an adverse outcome (AO) resulting from exposure to DFC isolated or combined, whose potential key events (KEs) may involve cell cycle arrest and apoptosis via p53 and MAPK pathways. From the findings it can be hypothesised that, rather than genotoxicity, the molecular initiating event (MIE) maybe inflammation triggered by oxidative stress. Nonetheless, the exact role of ROS in the process needs further clarification. Impaired eye function by action of DFC and B[a]P combined may be another AO, in the case caused by ocular degeneration following the suppression of biologic processes and molecular functions involved in eye development and its functionalities, possibly linked to hindered regulation of the expression of hsf4 and cryaa. Altogether, toxicopathology suggests predominance of antagonistic effects, but its integration with mechanism suggests that interactions between DFC and B[a]P in environmentally-relevant concentrations that may lead to hindrance of key functions such as the control of inflammation and cell cycle. These outcomes suggest potentially severe implications for health and survival, in case of prolonged chronic exposure to combined toxicants.
Collapse
Affiliation(s)
- Carla Martins
- Associate Laboratory I4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal.
| | - Lara M Carvalho
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisboa, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-035 Lisboa, Portugal
| | - Inês Moutinho Cabral
- Associate Laboratory I4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Leonor Saúde
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisboa, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-035 Lisboa, Portugal
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Pedro M Costa
- Associate Laboratory I4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal.
| |
Collapse
|
9
|
S DL, B VG, Murali V. From prescription to pollution: The ecological consequences of NSAIDs in aquatic ecosystems. Toxicol Rep 2024; 13:101775. [PMID: 39526238 PMCID: PMC11543912 DOI: 10.1016/j.toxrep.2024.101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs are widely utilised to alleviate pain and reduce inflammation in both human and veterinary medicine. Despite their therapeutic benefits, NSAIDs pose environmental concerns due to their possible ecotoxicity. NSAIDs can enter aquatic ecosystems through wastewater discharge as it is very difficult to extract NSAIDs by conventional wastewater treatment, thus affecting aquatic life. These drugs induce cytotoxic and genotoxic effects, affect the functioning of endocrine systems, influence behavioural changes, and impair reproduction in fish and other aquatic organisms. This review article also discusses the use of bioindicators such as fish, bivalves, and crustaceans, to estimate NSAIDs exposure in aquatic ecosystems. It emphasises the importance of monitoring these organisms to evaluate potential risks linked with NSAIDs in aquatic environments. Addressing the environmental consequences of NSAIDs requires an inclusive strategy, including regulatory measures, public awareness, and the development of environmentally friendly alternatives to mitigate the risks caused by these widely used pharmaceuticals in aquatic environments.
Collapse
Affiliation(s)
- Divya Lakshmi S
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Chennai, Tamil Nadu 105, India
| | - Vijaya Geetha B
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Chennai, Tamil Nadu 105, India
| | - Vibha Murali
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Chennai, Tamil Nadu 105, India
| |
Collapse
|
10
|
Ricciotti E, Haines PG, Beerens M, Kartoun U, Castro C, Tang SY, Ghosh S, Das US, Lahens NF, Wang T, Griffin JL, Shaw SY, MacRae CA, FitzGerald GA. Suppression of cyclooxygenase-2 predisposes to heart failure with preserved ejection fraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615616. [PMID: 39651314 PMCID: PMC11623491 DOI: 10.1101/2024.09.28.615616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Heart failure (HF) is one of the most strongly associated adverse cardiovascular events linked to the use of cyclooxygenase (COX)-2 selective and non-selective nonsteroidal anti-inflammatory drug (NSAID). Nevertheless, it remains uncertain whether NSAID exposure is more likely to lead to heart failure with reduced ejection fraction (HFrEF) or preserved ejection fraction (HFpEF). In adult mice, postnatal genetic deletion or pharmacological inhibition of COX-2 did not affect cardiac function. In contrast, aged female inducible COX-2 (iCOX-2) knockout (KO) mice displayed diastolic dysfunction, cardiac hypertrophy, pulmonary congestion, and elevated levels of plasma N-terminal pro B-type natriuretic peptide (BNP) when compared to age- and sex- matched controls, while their ejection fraction (EF) remained preserved (≥ 50%). No such phenotype was observed in aged male iCox-2 KO mice. Aged female iCox-2 KO mice showed a shift from prostanoid to leukotriene biosynthesis, along with changes in the expression of mitochondrial genes and calcium-handling proteins in the myocardium. The ratio of phospholamban to SERCA2a was increased, indicating an inhibitory effect on SERCA2a activity, which may contribute to impaired myocardial relaxation. In larval zebrafish, COX-2 inhibition by celecoxib caused a modest yet significant reduction in heart rate and diastolic function, while EF was preserved. Additionally, celecoxib increased BNP expression and ventricular calcium transient amplitude. Diabetic patients in the Harvard-Partners electronic medical record exposed to NSAIDs selective for COX-2 inhibition were more strongly associated with an increased risk of HFpEF compared to HFrEF. Collectively, these findings indicate that COX-2 deletion or inhibition does not impair systolic cardiac function but instead leads to an HFpEF phenotype in mice, zebrafish, and humans. An imbalance in calcium handling may mediate the impairment of myocardial relaxation following COX-2 suppression. Summary Genetic deletion or pharmacological inhibition of COX-2 results in heart failure with preserved ejection fraction across zebrafish, mice, and humans.
Collapse
|
11
|
Cheng L, Hu Z, Gu J, Li Q, Liu J, Liu M, Li J, Bi X. Exploring COX-Independent Pathways: A Novel Approach for Meloxicam and Other NSAIDs in Cancer and Cardiovascular Disease Treatment. Pharmaceuticals (Basel) 2024; 17:1488. [PMID: 39598398 PMCID: PMC11597362 DOI: 10.3390/ph17111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
As a fundamental process of innate immunity, inflammation is associated with the pathologic process of various diseases and constitutes a prevalent risk factor for both cancer and cardiovascular disease (CVD). Studies have indicated that several non-steroidal anti-inflammatory drugs (NSAIDs), including Meloxicam, may prevent tumorigenesis, reduce the risk of carcinogenesis, improve the efficacy of anticancer therapies, and reduce the risk of CVD, in addition to controlling the body's inflammatory imbalances. Traditionally, most NSAIDs work by inhibiting cyclooxygenase (COX) activity, thereby blocking the synthesis of prostaglandins (PGs), which play a role in inflammation, cancer, and various cardiovascular conditions. However, long-term COX inhibition and reduced PGs synthesis can result in serious side effects. Recent studies have increasingly shown that some selective COX-2 inhibitors and NSAIDs, such as Meloxicam, may exert effects beyond COX inhibition. This emerging understanding prompts a re-evaluation of the mechanisms by which NSAIDs operate, suggesting that their benefits in cancer and CVD treatment may not solely depend on COX targeting. In this review, we will explore the potential COX-independent mechanisms of Meloxicam and other NSAIDs in addressing oncology and cardiovascular health.
Collapse
Affiliation(s)
- Lixia Cheng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Zhenghui Hu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jiawei Gu
- Department of Precision Genomics, Intermountain Healthcare, 5121 Cottonwood St., Murray, UT 84107, USA;
| | - Qian Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jiahao Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Meiling Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jie Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Xiaowen Bi
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
12
|
Mazumder S, Bindu S, Debsharma S, Bandyopadhyay U. Induction of mitochondrial toxicity by non-steroidal anti-inflammatory drugs (NSAIDs): The ultimate trade-off governing the therapeutic merits and demerits of these wonder drugs. Biochem Pharmacol 2024; 228:116283. [PMID: 38750902 DOI: 10.1016/j.bcp.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are most extensively used over-the-counter FDA-approved analgesic medicines for treating inflammation, musculoskeletal pain, arthritis, pyrexia and menstrual cramps. Moreover, aspirin is widely used against cardiovascular complications. Owing to their non-addictive nature, NSAIDs are also commissioned as safer opioid-sparing alternatives in acute trauma and post-surgical treatments. In fact, therapeutic spectrum of NSAIDs is expanding. These "wonder-drugs" are now repurposed against lung diseases, diabetes, neurodegenerative disorders, fungal infections and most notably cancer, due to their efficacy against chemoresistance, radio-resistance and cancer stem cells. However, prolonged NSAID treatment accompany several adverse effects. Mechanistically, apart from cyclooxygenase inhibition, NSAIDs directly target mitochondria to induce cell death. Interestingly, there are also incidences of dose-dependent effects where NSAIDs are found to improve mitochondrial health thereby suggesting plausible mitohormesis. While mitochondria-targeted effects of NSAIDs are discretely studied, a comprehensive account emphasizing the multiple dimensions in which NSAIDs affect mitochondrial structure-function integrity, leading to cell death, is lacking. This review discusses the current understanding of NSAID-mitochondria interactions in the pathophysiological background. This is essential for assessing the risk-benefit trade-offs of NSAIDs for judiciously strategizing NSAID-based approaches to manage pain and inflammation as well as formulating effective anti-cancer strategies. We also discuss recent developments constituting selective mitochondria-targeted NSAIDs including theranostics, mitocans, chimeric small molecules, prodrugs and nanomedicines that rationally optimize safer application of NSAIDs. Thus, we present a comprehensive understanding of therapeutic merits and demerits of NSAIDs with mitochondria at its cross roads. This would help in NSAID-based disease management research and drug development.
Collapse
Affiliation(s)
- Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| |
Collapse
|
13
|
Farag FSAA, El-Mordy FMA, Ibrahim MH, Gad ES, Soliman RHM, Anwar HM. Thunbergia's Flowers Secondary Metabolites a Natural Armor Against Kidney Damage by Diclofenac. Cell Biochem Biophys 2024; 82:2813-2825. [PMID: 39127861 DOI: 10.1007/s12013-024-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
Nephrotoxicity is a common side effect arising from exposure to drugs or toxins. The study investigates the therapeutic effects of Thunbergia alata and Thunbergia erecta flowers on diclofenac-induced renal injury. Secondary metabolite characterization by positive mode high-resolution-ESI (LC-HR-ESI-MS) was followed by assessing their renal protection against diclofenac-induced damage and molecular docking studies. Using positive LC-HR-ESI-MS, 18 compounds from T. erecta and T. alata were identified. Diclofenac administration induced significant deterioration of all parameters in the kidney in addition to renal tissue contents of several inflammatory markers. The flower extracts of T. alata and T. erecta showed a clear improvement in the treated groups compared to the diclofenac-control group. The results were confirmed by histopathological examinations followed by immunohistochemical determination of vascular endothelial growth factor (VEGF), nuclear factor erythroid 2-related factor 2 (Nrf2), and transforming growth factor beta 1 (TGF-β1) expression. Furthermore, a protein-protein network to understand the complex interplay between the target proteins and their counterparts was done in addition to a molecular docking study of the de-replicated compounds in the active sites of NF-κB, TGF-β1, and VEGFR.
Collapse
Affiliation(s)
- Fatma Sayed Abdel-Aal Farag
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt.
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt.
| | - Mona H Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Enas S Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, Egypt
| | - Rania H M Soliman
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hend M Anwar
- Department of Biochemistry, National Organization for Drug Control & Research, Cairo, Egypt
| |
Collapse
|
14
|
Huertas-Abril PV, Prieto-Álamo MJ, Jurado J, Pérez J, Molina-Hernández V, García-Barrera T, Abril N. Transcriptional and biochemical changes in mouse liver following exposure to a metal/drug cocktail. Attenuating effect of a selenium-enriched diet. Food Chem Toxicol 2024; 191:114845. [PMID: 38945390 DOI: 10.1016/j.fct.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Real-life pollution usually involves simultaneous co-exposure to different chemicals. Metals and drugs are frequently and abundantly released into the environment, where they interact and bioaccumulate. Few studies analyze potential interactions between metals and pharmaceuticals in these mixtures, although their joint effects cannot be inferred from their individual properties. We have previously demonstrated that the mixture (PC) of the metals Cd and Hg, the metalloid As and the pharmaceuticals diclofenac (DCF) and flumequine (FLQ) impairs hepatic proteostasis. To gain a deeper vision of how PC affects mouse liver homeostasis, we evaluated here the effects of PC exposure upon some biochemical and morphometric parameters, and on the transcriptional profiles of selected group of genes. We found that exposure to PC caused oxidative damage that exceeded the antioxidant capacity of cells. The excessive oxidative stress response resulted in an overabundance of reducing equivalents, which hindered the metabolism and transport of metabolites, including cholesterol and bile acids, between organs. These processes have been linked to metabolic and inflammatory disorders, cancer, and neurodegenerative diseases. Therefore, our findings suggest that unintended exposure to mixtures of environmental pollutants may underlie the etiology of many human diseases. Fortunately, we also found that a diet enriched with selenium mitigated the harmful effects of this combination of toxicants.
Collapse
Affiliation(s)
- Paula V Huertas-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain.
| | - María-José Prieto-Álamo
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Juan Jurado
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Tamara García-Barrera
- Centro de Investigación de Recursos Naturales, Salud y Medio Ambiente (RENSMA). Departamento de Química, Facultad de Ciencias Experimentales, Campus El Carmen, Universidad de Huelva, Avda. Fuerzas Armadas, 21007, Huelva, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain.
| |
Collapse
|
15
|
Ricciotti E, Haines PG, Chai W, FitzGerald GA. Prostanoids in Cardiac and Vascular Remodeling. Arterioscler Thromb Vasc Biol 2024; 44:558-583. [PMID: 38269585 PMCID: PMC10922399 DOI: 10.1161/atvbaha.123.320045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Philip G Haines
- Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence (P.G.H.)
| | - William Chai
- Health and Human Biology, Division of Biology and Medicine, Brown University, Providence, RI (W.C.)
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Department of Medicine (G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
16
|
Sripratak K, Chamsodsai P, Siriwaseree J, Choowongkomon K, Tabtimmai L. Losartan as a Reproposing Therapeutic Agent in Acute Respiratory Distress Syndrome: Modulating Inflammatory Responses and Cytokine Production. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:120-132. [PMID: 39184821 PMCID: PMC11344567 DOI: 10.22088/ijmcm.bums.13.2.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/14/2024] [Indexed: 08/27/2024]
Abstract
Seeking a new drug has become a significant milestone in drug discovery. However, it might not be immediately used in urgent situations or during a pandemic. Acute Respiratory Distress Syndrome (ARDS) contributes to mild-to-severe symptoms in patients due to cytokine storms, leading to morbidity and mortality. Hypertension is recognized as an independent risk factor for the severity of ARDS regarding to both ACE Inhibitors (ACEIs) and Angiotensin Receptor Blockers (ARBs) treatment, although the precise mechanism remains unclear. In this study, murine macrophage cell lines (RAW264.7) and alveolar epithelial type II-like cell lines (A549) were utilized to investigate the effect of Losartan (LOS). LOS attenuated nitric oxide production in a dose-dependent manner and collectively reduced intracellular reactive oxygen species (ROS) compared to Diclofenac under LPS-stimulation conditions. For ADRS-mimicking conditions, LPS-induced inflammatory A549 cells were performed to monitor the effect of LOS. The results showed that LOS exhibited a protective effect by increasing cell viability and decreasing intracellular ROS levels. Notably, a high dose of LOS increased intracellular ROS levels. Moreover, LOS treatment downregulated NF-kappaB activation and AT1R at the protein level. Correspondingly, proinflammatory mediator cytokines (TNF-alpha and IL-8) were downregulated, but not IL-6, during LOS treatment. Hence, LOS may provide substantial benefits to ARDS patients by modulating proinflammatory cytokine production through AT1R downregulation and NF-kappaB inactivation. The mechanistic insight into LOS's anti-inflammatory effect holds promise for reducing mortality rates among ARDS patients.
Collapse
Affiliation(s)
- Khate Sripratak
- Central Chest Institute of Thailand (CCIT), Department of Medical Services, Minister of Public Health, Nonthaburi, Thailand.
- Khate Sripratak and Phumin Chamsodsai equally contributed to the work.
| | - Phumin Chamsodsai
- Interdisciplinary Program in genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand.
- Khate Sripratak and Phumin Chamsodsai equally contributed to the work.
| | - Jeeraprapa Siriwaseree
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand.
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand.
- Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand.
| |
Collapse
|
17
|
Martín-Reyes F, Bernal M, Rodríguez-Díaz C, Rodríguez-de los Reyes D, Ho-Plagaro A, Rodríguez-Pacheco F, Camacho-Martel L, Camargo-Camero R, Rodríguez-González FJ, Alcain-Martínez G, Martín-Masot R, Navas-López VM, Villanueva-Paz M, Lucena MI, García-Fuentes E, López-Gómez C. Mitochondrial Stress Links Environmental Triggers with Pro-Inflammatory Signaling in Crohn's Disease. Antioxidants (Basel) 2023; 12:2105. [PMID: 38136224 PMCID: PMC10741078 DOI: 10.3390/antiox12122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory Bowel Diseases (IBD) are a group of chronic, inflammatory disorders of the gut. The incidence and activity of IBD are determined by both genetic and environmental factors. Among these factors, polymorphisms in genes related to autophagy and the consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have been consistently associated with IBD. We show that NSAIDs induce mitochondrial stress and mitophagy in intestinal epithelial cells. In an altered mitophagy context simulating that observed in IBD patients, NSAID-induced mitochondrial stress leads to the release of mitochondrial components, which act as Danger Associated Molecular Patterns with pro-inflammatory potential. Furthermore, colonic organoids from Crohn's disease patients and healthy donors show activation of the mitochondrial Unfolded Protein Response (UPRmt) upon treatment with ibuprofen. Finally, colon biopsies from Crohn's disease patients in remission or with low-to-moderate activity also show expression of genes involved in UPRmt, while patients with severe activity show no increase compared to healthy donors. Our results suggest the involvement of mitochondria in the mechanisms triggering inflammation in IBD after NSAID use. Moreover, our results highlight the clinical relevance of mitochondrial stress and activation of the UPRmt pathway in the pathophysiology of Crohn's disease.
Collapse
Affiliation(s)
- Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Manuel Bernal
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29010 Malaga, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Damaris Rodríguez-de los Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Ailec Ho-Plagaro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Francisca Rodríguez-Pacheco
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Laura Camacho-Martel
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Raquel Camargo-Camero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Francisco J. Rodríguez-González
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Guillermo Alcain-Martínez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Rafael Martín-Masot
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Sección de Gastroenterología y Nutrición Infantil, Unidad de Gestión Clínica de Pediatría, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain
| | - Víctor M. Navas-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Sección de Gastroenterología y Nutrición Infantil, Unidad de Gestión Clínica de Pediatría, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain
| | - Marina Villanueva-Paz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain
| | - María Isabel Lucena
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28220 Madrid, Spain
- UICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Carlos López-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (F.M.-R.); (M.B.); (C.R.-D.); (D.R.-d.l.R.); (A.H.-P.); (F.R.-P.); (L.C.-M.); (R.C.-C.); (G.A.-M.); (R.M.-M.); (V.M.N.-L.); (M.V.-P.); (M.I.L.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| |
Collapse
|
18
|
Sule RO, Phinney BS, Salemi MR, Gomes AV. Mitochondrial and Proteasome Dysfunction Occurs in the Hearts of Mice Treated with Triazine Herbicide Prometryn. Int J Mol Sci 2023; 24:15266. [PMID: 37894945 PMCID: PMC10607192 DOI: 10.3390/ijms242015266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. Significant traces of prometryn are documented in the environment, mainly in waters, soil, and plants used for human and domestic consumption. Previous studies have shown that triazine herbicides have carcinogenic potential in humans. However, there is limited information about the effects of prometryn on the cardiac system in the literature, or the mechanisms and signaling pathways underlying any potential cytotoxic effects are not known. It is important to understand the possible effects of exogenous compounds such as prometryn on the heart. To determine the mechanisms and signaling pathways affected by prometryn (185 mg/kg every 48 h for seven days), we performed proteomic profiling of male mice heart with quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) using ten-plex tandem mass tag (TMT) labeling. The data suggest that several major pathways, including energy metabolism, protein degradation, fatty acid metabolism, calcium signaling, and antioxidant defense system were altered in the hearts of prometryn-treated mice. Proteasome and immunoproteasome activity assays and expression levels showed proteasome dysfunction in the hearts of prometryn-treated mice. The results suggest that prometryn induced changes in mitochondrial function and various signaling pathways within the heart, particularly affecting stress-related responses.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
19
|
Mendoza-Fernández PD, Silva-Correa CR, Torre VEVL, Aspajo-Villalaz CL, Calderón-Peña AA, Rosario-Chávarri JD. Hepatoprotective and nephroprotective effects of Tessaria integrifolia Ruiz and Pav. on diclofenac-induced toxicity in rats. Vet World 2023; 16:1933-1939. [PMID: 37859960 PMCID: PMC10583873 DOI: 10.14202/vetworld.2023.1933-1939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Tessaria integrifolia Ruiz and Pav. (also known as "Pájaro bobo") is known for its medicinal properties, including antiulcer, antiasthmatic, leishmanicidal, antipyretic, antispasmodic, diuretic, anti-inflammatory, analgesic, and hepatoprotective effects. Therefore, we aimed to evaluate its hepatoprotective and nephroprotective effects using a rat model of diclofenac-induced toxicity. Materials and Methods We administered three different doses of the methanolic extract of T. integrifolia (100, 200, and 400 mg/kg/day orally) and compared them with the commercial medicine silymarin (100 mg/kg orally). The rats received the T. integrifolia extracts for 5 days, and on days 3 and 4, 1 h after receiving the extracts, diclofenac was administered intraperitoneally at a dose of 50 mg/kg. The animals were euthanized 48 h after the last diclofenac injection, and blood samples were obtained to measure biochemical parameters related to liver and kidney function, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, cholesterol, triglycerides, creatinine, and urea. Kidney and liver tissues were preserved in 10% formaldehyde and sent for histopathological analysis. Results The results show that T. integrifolia has hepatoprotective and nephroprotective effects. These effects are verified by the lower blood levels of ALT, AST, urea, and creatinine compared to the diclofenac group, which exhibited elevated biochemical parameters. In addition, histopathological analysis showed that the groups that received T. integrifolia did not display necrosis or infiltration, which were observed in the diclofenac group. Conclusion The methanolic extract of T. integrifolia has hepatoprotective and nephroprotective effects, with the highest protective activity observed at a dose of 400 mg/kg/day.
Collapse
Affiliation(s)
| | - Carmen R. Silva-Correa
- Department of Pharmacology, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Perú
| | | | - Cinthya L. Aspajo-Villalaz
- Department of Biological Chemistry and Animal Physiology, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Perú
| | - Abhel A. Calderón-Peña
- Department of Biological Chemistry and Animal Physiology, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Perú
| | - Jorge Del Rosario-Chávarri
- Department of Biological Chemistry and Animal Physiology, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Perú
| |
Collapse
|
20
|
Kuretu A, Arineitwe C, Mothibe M, Ngubane P, Khathi A, Sibiya N. Drug-induced mitochondrial toxicity: Risks of developing glucose handling impairments. Front Endocrinol (Lausanne) 2023; 14:1123928. [PMID: 36860368 PMCID: PMC9969099 DOI: 10.3389/fendo.2023.1123928] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Mitochondrial impairment has been associated with the development of insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM). However, the relationship between mitochondrial impairment and insulin resistance is not fully elucidated due to insufficient evidence to support the hypothesis. Insulin resistance and insulin deficiency are both characterised by excessive production of reactive oxygen species and mitochondrial coupling. Compelling evidence states that improving the function of the mitochondria may provide a positive therapeutic tool for improving insulin sensitivity. There has been a rapid increase in reports of the toxic effects of drugs and pollutants on the mitochondria in recent decades, interestingly correlating with an increase in insulin resistance prevalence. A variety of drug classes have been reported to potentially induce toxicity in the mitochondria leading to skeletal muscle, liver, central nervous system, and kidney injury. With the increase in diabetes prevalence and mitochondrial toxicity, it is therefore imperative to understand how mitochondrial toxicological agents can potentially compromise insulin sensitivity. This review article aims to explore and summarise the correlation between potential mitochondrial dysfunction caused by selected pharmacological agents and its effect on insulin signalling and glucose handling. Additionally, this review highlights the necessity for further studies aimed to understand drug-induced mitochondrial toxicity and the development of insulin resistance.
Collapse
Affiliation(s)
- Auxiliare Kuretu
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Charles Arineitwe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
- *Correspondence: Ntethelelo Sibiya,
| |
Collapse
|
21
|
An efficient human stem cells derived cardiotoxicity testing platform for testing oncotherapeutic analogues of quercetin and cinnamic acid. Sci Rep 2022; 12:21362. [PMID: 36494370 PMCID: PMC9734143 DOI: 10.1038/s41598-022-21721-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022] Open
Abstract
Oncotherapeutics research is progressing at a rapid pace, however, not many drugs complete the successful clinical trial because of severe off-target toxicity to cardiomyocytes which ultimately leads to cardiac dysfunction. It is thus important to emphasize the need for early testing for possible cardiotoxicity of emerging oncotherapeutics. In this study, we assessed a novel stem cell-derived cardiac model for testing for cardiotoxicity of novel oncotherapeutics. We evaluated the cardiotoxic effect of synthesized derivatives of oncotherapeutics, quercetin (QMJ-2, -5, and -6) and cinnamic acid (NMJ-1, -2, and -3) using human Wharton's jelly mesenchymal stem cells-derived cardiomyocytes (WJCM) against known cardiotoxic oncologic drugs, doxorubicin, 5-fluorouracil, cisplatin. QMJ-6, NMJ-2, and NMJ-3 were not cardiotoxic and had minimum cardiac side effects. They did not show any effect on cardiomyocyte viability, caused low LDH release, and intracellular ROS production kept the calcium flux minimal and protected the active mitochondrial status in cardiomyocytes. They persevered cardiac-specific gene expression as well. However, compounds QMJ-2, QMJ-5, and NMJ-1 were cardiotoxic and the concentration needs to be reduced to prevent toxic effects on cardiomyocytes. Significantly, we were able to demonstrate that WJCM is an efficient cardiac testing model to analyze the cardiotoxicity of drugs in a human context.
Collapse
|
22
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
23
|
Effective Oriental Magic for Analgesia: Acupuncture. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1451342. [PMID: 35313481 PMCID: PMC8934214 DOI: 10.1155/2022/1451342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Pain is a kind of complex physiological and psychological symptom, which makes the person debilitated and uncomfortable. Some persistent pain is unbearable for the patients, reducing the quality of life and bringing considerable pressure to the individuals and society. Pain killers seem to be effective in analgesia for patients, but their safety and addiction are crucial issues. From the theory of traditional Chinese medicine (TCM), the blocked meridian is the main cause of pain, and effective acupuncture can play a positive analgesic effect. Acupuncture that can date back thousands of years is one of the ancient medical practices in China. Its safety and effectiveness are respected. Based on its superior safety and inferior side effects, it has been gradually recognized as a therapeutic intervention method for complementary medicine, which is also generally used to treat multiple pain diseases. It is shown by modern medical studies that neurotransmitters are the material basis for the acupuncture effect, and the effect of acupuncture analgesia is related to changes in neurotransmitters. However, the specific mechanism has not been elucidated. This review aims to comprehensively discuss the historical evolution of acupuncture analgesia, clinical research of acupuncture analgesia, comparison of acupuncture and drug therapy, the neurotransmitter mechanism of acupuncture analgesia, the effect of acupuncture manipulation on analgesia, and bibliometric analysis of acupuncture treatment for pain, to explore the superiority and related mechanism of acupuncture analgesia from different aspects, and to provide a more effective treatment for alleviating patients' pain.
Collapse
|