1
|
Wu E, Macklin S, Zhang Y, Thai K, Nghiem L, Di Ciano-Oliveira C, Coelho N, Wang H, Advani SL, Desjardins JF, Yuen DA, Misra P, Connelly KA, Nyengaard JR, Gilbert RE. Induction of proximal tubular proliferation and lengthening in response to sodium glucose linked cotransporter-2 inhibition in experimental rats. J Diabetes Investig 2025. [PMID: 40260754 DOI: 10.1111/jdi.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
AIMS/INTRODUCTION While SGLT2 accounts for >90% of kidney glucose reabsorption, its pharmacological inhibition or genetic knockdown reduces glucose reabsorption by only 50%. MATERIALS AND METHODS We postulated that the less than expected glucosuric response to SGLT2 inhibition might result from a compensatory increase in the length of the proximal tubule as seen in experimental diabetes where early tubular proliferation is followed by tubular lengthening. Taking advantage of their differing anatomical locations, stereological techniques were used to differentiate the SGLT1 expressing straight proximal tubule that lies within the outer stripe of the outer medulla (S3 segment) and that of the predominantly SGLT2 expressing early proximal convoluted tubule located within the kidney cortex (S1, S2 segments). RESULTS The SGLT2 inhibitor, dapagliflozin, induced an early, transient hyperplastic response (3-fold increase of Ki67 labelling, P < 0.0001) in S3 proximal tubular cells followed by a 32% increase in its length (P < 0.0001). In contrast, the length of the SGLT2 expressing S1, S2 segments of the proximal tubule was unaffected. CONCLUSIONS The finding that SGLT2 inhibition leads to expansion of the S3 segment of the proximal tubule, the site of SGLT1, is suggestive of a physiological response to diminish urinary glucose loss akin to that occurring in experimental diabetes. These findings provide a cogent explanation for the less-thanthan-expected effect of this drug class on glucose reabsorption.
Collapse
Affiliation(s)
- Ellen Wu
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Macklin
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yanling Zhang
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Linda Nghiem
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Caterina Di Ciano-Oliveira
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nuno Coelho
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hai Wang
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jean-François Desjardins
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Darren A Yuen
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paraish Misra
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jens R Nyengaard
- Section for Stereology and Microscopy, Department of Clinical Medicine, Core Centre for Molecular Morphology, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Richard E Gilbert
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Yerra VG, Connelly KA. Extrarenal Benefits of SGLT2 Inhibitors in the Treatment of Cardiomyopathies. Physiology (Bethesda) 2024; 39:0. [PMID: 38888433 DOI: 10.1152/physiol.00008.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as pivotal medications for heart failure, demonstrating remarkable cardiovascular benefits extending beyond their glucose-lowering effects. The unexpected cardiovascular advantages have intrigued and prompted the scientific community to delve into the mechanistic underpinnings of these novel actions. Preclinical studies have generated many mechanistic theories, ranging from their renal and extrarenal effects to potential direct actions on cardiac muscle cells, to elucidate the mechanisms linking these drugs to clinical cardiovascular outcomes. Despite the strengths and limitations of each theory, many await validation in human studies. Furthermore, whether SGLT2 inhibitors confer therapeutic benefits in specific subsets of cardiomyopathies akin to their efficacy in other heart failure populations remains unclear. By examining the shared pathological features between heart failure resulting from vascular diseases and other causes of cardiomyopathy, certain specific molecular actions of SGLT2 inhibitors (particularly those targeting cardiomyocytes) would support the concept that these medications will yield therapeutic benefits across a broad range of cardiomyopathies. This article aims to discuss the important mechanisms of SGLT2 inhibitors and their implications in hypertrophic and dilated cardiomyopathies. Furthermore, we offer insights into future research directions for SGLT2 inhibitor studies, which hold the potential to further elucidate the proposed biological mechanisms in greater detail.
Collapse
Affiliation(s)
- Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
4
|
Axelsen JS, Andersen S, Ringgaard S, Smal R, Lluciá-Valldeperas A, Nielsen-Kudsk JE, de Man FS, Andersen A. Right ventricular diastolic adaptation to pressure overload in different rat strains. Physiol Rep 2024; 12:e16132. [PMID: 38993022 PMCID: PMC11239975 DOI: 10.14814/phy2.16132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
Different rat strains are used in various animal models of pulmonary hypertension and right ventricular (RV) failure. No systematic assessment has been made to test differences in RV response to pressure overload between rat strains. We compared RV adaptation to pulmonary trunk banding (PTB) in Wistar (W), Sprague Dawley (SD), and Fischer344 (F) rats by hemodynamic profiling focusing on diastolic function. Age-matched male rat weanlings were randomized to sham surgery (W-sham, n = 5; SD-sham, n = 4; F-sham, n = 4) or PTB (W-PTB, n = 8; SD-PTB, n = 8; F-PTB, n = 8). RV function was evaluated after 5 weeks by echocardiography, cardiac MRI, and invasive pressure-volume measurements. PTB caused RV failure and increased RV systolic pressures four-fold in all three PTB groups compared with sham. W- and SD-PTB had a 2.4-fold increase in RV end-systolic volume index compared with sham, while F-PTB rats were less affected. Diastolic and right atrial impairment were evident by increased RV end-diastolic elastance, filling pressure, and E/e' in PTB rats compared with sham, again F-PTB the least affected. In conclusions, PTB caused RV failure with signs of diastolic dysfunction. Despite a similar increase in RV systolic pressure, F-PTB rats showed less RV dilatation and a more preserved diastolic function compared with W- and SD-PTB.
Collapse
Affiliation(s)
- Julie S Axelsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stine Andersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Rowan Smal
- Department of Pulmonary Medicine, PHEniX Laboratory, Amsterdam UMC, Locatie VUmc, Amsterdam, The Netherlands
| | - Aida Lluciá-Valldeperas
- Department of Pulmonary Medicine, PHEniX Laboratory, Amsterdam UMC, Locatie VUmc, Amsterdam, The Netherlands
| | - Jens Erik Nielsen-Kudsk
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frances S de Man
- Department of Pulmonary Medicine, PHEniX Laboratory, Amsterdam UMC, Locatie VUmc, Amsterdam, The Netherlands
| | - Asger Andersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Axelsen JS, Nielsen-Kudsk AH, Schwab J, Ringgaard S, Nielsen-Kudsk JE, de Man FS, Andersen A, Andersen S. Effects of empagliflozin on right ventricular adaptation to pressure overload. Front Cardiovasc Med 2023; 10:1302265. [PMID: 38162132 PMCID: PMC10757621 DOI: 10.3389/fcvm.2023.1302265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Background Right ventricular (RV) failure is the prime cause of death in patients with pulmonary arterial hypertension. Novel treatment strategies that protect the RV are needed. Empagliflozin, a sodium-glucose co-transporter-2 inhibitor, shows cardioprotective effects on the left ventricle in clinical and preclinical studies, but its direct effects on RV remain elusive. We investigated the effects of empagliflozin on RV dysfunction induced by pulmonary trunk banding (PTB). Methods Male Wistar rats (116 ± 10 g) were randomized to PTB or sham surgery. One week after surgery, PTB animals received empagliflozin mixed into the chow (300 mg empagliflozin/kg chow; PTB-empa, n = 10) or standard chow (PTB-control, n = 10). Sham rats (Sham, n = 6) received standard chow. After five weeks, RV function was evaluated by echocardiography, cardiac MRI, and invasive pressure-volume measurements. Results PTB caused RV failure evident by decreased cardiac output compared with sham. PTB-empa rats had a 49% increase in water intake compared with PTB-control yet no differences in hematocrit or blood glucose. Treatment with empagliflozin decreased RV end-systolic pressures without any changes in RV cardiac output or ventricular-arterial coupling (Ees/Ea). The decrease in RV end-systolic pressure was complemented by a slight reduction in RV cross sectional area as a sign of reduced hypertrophy. Load-independent measures of RV systolic and diastolic function were not affected in PTB-empa rats compared with PTB-control. Conclusion Empagliflozin treatment reduced RV end-systolic pressure in RV failure induced by pressure overload. Further studies are needed to elucidate whether this simply relates to a diuretic effect and/or additional independent beneficial RV effects.
Collapse
Affiliation(s)
- Julie S. Axelsen
- Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders H. Nielsen-Kudsk
- Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Janne Schwab
- Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jens Erik Nielsen-Kudsk
- Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frances S. de Man
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Locatie VUmc, Amsterdam, Netherlands
| | - Asger Andersen
- Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stine Andersen
- Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|