1
|
Nascimento MB, Moura YBF, Oliveira REM, Lira GPO, Borges AA, Luna FO, Attademo FLN, Pereira AF. The initial steps toward the formation of somatic tissue banks and cell cultures derived from captive Antillean manatee (Trichechus manatus manatus) skin biopsies. Zoo Biol 2023; 42:709-722. [PMID: 37534734 DOI: 10.1002/zoo.21798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/11/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
The declining population of the Antillean manatee caused by ecosystem degradation and rising pollution has prompted interest in developing conservation strategies for this species. Given this scenario, somatic tissue banks are important tools for acquiring knowledge about the species, as well as for obtaining somatic cells for biotechnological and ecotoxicological applications. Therefore, we aimed to assess the effects of slow freezing (SF) and solid-surface vitrification (SSV) of the dermis of captive Antillean manatees on the histology and ultrastructure of the tissue and cell viability in culture. While the SSV did not change the dermis thickness, the SF maintained the tissue proliferative potential, assessed by the nucleolar organizer region area, similar to noncryopreserved tissues. Moreover, both techniques reduced the number of fibroblasts and increased the percentage of collagen fibers. Nevertheless, only tissues cryopreserved with SF and noncryopreserved tissues were able to produce cells after in vitro culture. Although SF did not alter cell viability and proliferative activity, cells derived from cryopreserved tissues showed decreased metabolism, altered apoptosis, increased levels of reactive oxygen species, and mitochondrial membrane potential compared to cells from noncryopreserved tissues. In summary, we demonstrated for the first time that Antillean manatee somatic tissues can be cryopreserved by SF, and cells can be obtained after in vitro culture. Improvements in cryopreservation conditions, especially vitrification, of somatic samples are needed to increase the quality of somatic tissue banks in this species.
Collapse
Affiliation(s)
- Matheus B Nascimento
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte, Brazil
| | - Yasmin B F Moura
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte, Brazil
| | - Radan E M Oliveira
- Laboratory of Applied Animal Morphophysiology, UFERSA, Mossoró, Rio Grande do Norte, Brazil
| | - Gabriela P O Lira
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte, Brazil
| | - Alana A Borges
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte, Brazil
| | - Fábia O Luna
- National Center for Research and Conservation of Aquatic Mammals by Chico Mendes Institute for Biodiversity Conservation, Santos, São Paulo, Brazil
| | - Fernanda L N Attademo
- National Center for Research and Conservation of Aquatic Mammals by Chico Mendes Institute for Biodiversity Conservation, Santos, São Paulo, Brazil
- Laboratory of Behavior and Conservation Ecology, Department of Zoology, Recife, Pernambuco, Brazil
| | - Alexsandra F Pereira
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Rio Grande do Norte, Brazil
| |
Collapse
|
2
|
Zhang X, Liu X, Liu XL, Wu DY, Zhou K, Yu ZS, Dou CL, Xu T, Yu M, Miao YL. Preserving Porcine Genetics: A Simple and Effective Method for On-Site Cryopreservation of Ear Tissue Using Direct Cover Vitrification. Int J Mol Sci 2023; 24:ijms24087469. [PMID: 37108632 PMCID: PMC10139005 DOI: 10.3390/ijms24087469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Cell cryopreservation is widely used for porcine genetic conservation; however, isolating and freezing primary cells in farms without adequate experimental equipment and environment poses a significant challenge. Therefore, it is necessary to establish a quick and simple method to freeze tissues on-site, which can be used for deriving primary fibroblasts when needed to achieve porcine genetic conservation. In this study, we explored a suitable approach for porcine ear tissue cryopreservation. The porcine ear tissues were cut into strips and frozen by direct cover vitrification (DCV) in the cryoprotectant solution with 15% EG, 15% DMSO and 0.1 M trehalose. Histological analysis and ultrastructural evaluation revealed that thawed tissues had normal tissue structure. More importantly, viable fibroblasts could be derived from these tissues frozen in liquid nitrogen for up to 6 months. Cells derived from thawed tissues did not show any cell apoptosis, had normal karyotypes and could be used for nuclear transfer. These results suggest that this quick and simple ear tissue cryopreservation method can be applied for porcine genetic conservation, especially in the face of a deadly emerging disease in pigs.
Collapse
Affiliation(s)
- Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- National Demonstration Center for Experimental Veterinary Medicine Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Xiao-Li Liu
- National Demonstration Center for Experimental Veterinary Medicine Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan-Ya Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Kai Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Zhi-Sheng Yu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Cheng-Li Dou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
3
|
Araújo JMD, Oliveira RAD, Capobianco NE, Cunha ATM, Dode MAN, Martins CF. Effects of Refrigeration at 5°C for Long Periods of Time on Bovine Ear Skin as a Strategy to Transport Biological Material and Isolate Fibroblasts to Use in the Nuclear Transfer. Biopreserv Biobank 2021; 20:323-330. [PMID: 34756101 DOI: 10.1089/bio.2021.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal cloning is an important technique used to produce clones from valuable farm animals, to rescue animals in risk of extinction, and for producing transgenic animals. The objective of this work was to evaluate the effects of refrigeration on bovine ear skin as a strategy to transport biological material for long periods of time to isolate viable fibroblasts. Ears from eight cows were collected after death and stored for 30 days at 5°C. On days 0, 2, 4, 7, 14, 21, and 30, skin biopsies were cultured in vitro for fibroblast isolation. The time for first fibroblast outgrowth, time to reach 100% confluence. and cell concentration before freezing were observed for each period. In addition, plasma membrane integrity, cell apoptosis, and necrosis in cells were evaluated through fluorescent colorant combination in a flow cytometer from all periods after thawing. Fibroblasts obtained after 30 days of storage, considered a critical period, were tested for embryo production using nuclear transfer (NT) with micromanipulators. All time points allowed for cell culture. The time of cell growth onset was longer in samples refrigerated for 14, 21, and 30 days. The time to reach confluence also increased with longer refrigeration periods. Cells from day 0 reached confluence in 24 ± 2 days, while day 30 cells took 31 ± 0 days. Cell concentration and viability dropped with increased storage time and freezing/thawing, respectively. It was found that a long period of sample storage results in cell damage, making cultivation more difficult and decreasing cell viability post-thawing and cell concentration. However, when cells from day 30 were used as nuclei donors in NT, a 26.05% blastocyst rate after 7 days in culture was obtained. In conclusion, refrigeration at 5°C was shown to be efficient in maintaining viable tissue for up to 30 days, and fibroblasts isolated can be used for cloned embryo production.
Collapse
Affiliation(s)
- Jéssica Maresch de Araújo
- University of Brasília, Brasília, Brazil.,Brazilian Agricultural Research Corporation (Embrapa Cerrados), Brasília, Brazil
| | | | | | - Andrielle Thaina Mendes Cunha
- University of Brasília, Brasília, Brazil.,Brazilian Agricultural Research Corporation (Embrapa Genetic Resources and Biotechnology), Brasília, Brazil
| | - Margot Alves Nunes Dode
- Brazilian Agricultural Research Corporation (Embrapa Genetic Resources and Biotechnology), Brasília, Brazil
| | | |
Collapse
|
4
|
Costa CA, Borges AA, Nascimento MB, Aquino LV, Silva AR, Oliveira MF, Pereira AF. Effects of Vitrification Techniques on the Somatic Tissue Preservation of Agouti (Dasyprocta leporina Linnaeus, 1758). Biopreserv Biobank 2020; 18:165-170. [DOI: 10.1089/bio.2019.0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cibelle A.S. Costa
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | - Alana A. Borges
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | - Matheus B. Nascimento
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | - Leonardo V.C. Aquino
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | - Alexandre R. Silva
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | - Moacir F. Oliveira
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | - Alexsandra F. Pereira
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, Brazil
| |
Collapse
|
5
|
Influence of storage time and nutrient medium on recovery of fibroblast-like cells from refrigerated collared peccary (Pecari tajacu Linnaeus, 1758) skin. In Vitro Cell Dev Biol Anim 2018; 54:486-495. [DOI: 10.1007/s11626-018-0270-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/28/2018] [Indexed: 10/28/2022]
|
6
|
Praxedes ÉA, Borges AA, Santos MVO, Pereira AF. Use of somatic cell banks in the conservation of wild felids. Zoo Biol 2018; 37:258-263. [PMID: 29722907 DOI: 10.1002/zoo.21416] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 11/10/2022]
Abstract
The conservation of biological resources is an interesting strategy for the maintenance of biodiversity, especially for wild felids who are constantly threatened with extinction. For this purpose, cryopreservation techniques have been used for the long-term storage of gametes, embryos, gonadal tissues, and somatic cells and tissues. The establishment of these banks has been suggested as a practical approach to the preservation of species and, when done in tandem with assisted reproductive techniques, could provide the means for reproducing endangered species. Somatic cell banks have been shown remarkable for the conservation of genetic material of felids; by merely obtaining skin samples, it is possible to sample a large group of individuals without being limited by factors such as gender or age. Thus, techniques for somatic tissue recovery, cryopreservation, and in vitro culture of different wild felids have been developed, resulting in a viable method for the conservation of species. One of the most notable conservation programs for wild felines using somatic samples was the one carried out for the Iberian lynx, the most endangered feline in the world. Other wild felids have also been studied in other continents, such as the jaguar in South America. This review aims to present the technical progress achieved in the conservation of somatic cells and tissues in different wild felids, as well address the progress that has been achieved in a few species.
Collapse
Affiliation(s)
- Érika A Praxedes
- Laboratory of Animal Biotechnology, Federal Rural University of Semiarid, Mossoró, RN, Brazil
| | - Alana A Borges
- Laboratory of Animal Biotechnology, Federal Rural University of Semiarid, Mossoró, RN, Brazil
| | - Maria V O Santos
- Laboratory of Animal Biotechnology, Federal Rural University of Semiarid, Mossoró, RN, Brazil
| | - Alexsandra F Pereira
- Laboratory of Animal Biotechnology, Federal Rural University of Semiarid, Mossoró, RN, Brazil
| |
Collapse
|
7
|
Walcott B, Singh M. Recovery of proliferative cells up to 15- and 49-day postmortem from bovine skin stored at 25°C and 4°C, respectively. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/23312025.2017.1333760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Brian Walcott
- Animal Biotechnology Program, Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31088, USA
| | - Mahipal Singh
- Animal Biotechnology Program, Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31088, USA
| |
Collapse
|
8
|
Conservation of somatic tissue derived from collared peccaries (Pecari tajacu Linnaeus, 1758) using direct or solid-surface vitrification techniques. Cytotechnology 2017; 69:643-654. [PMID: 28260212 DOI: 10.1007/s10616-017-0074-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022] Open
Abstract
Cryopreservation of somatic tissue can be applied in biodiversity conservation, especially for wild species as collared peccary. We aimed to evaluate the effect of vitrification techniques of ear tissue of collared peccary [direct vitrification in cryovials (DVC) or solid-surface vitrification (SSV)] on the layers of epidermis and dermis by conventional histology and cell ability during the in vitro culture. Thus, both the vitrification methods were able to maintain normal patterns of the epidermis as the cornea and granular layers, furthermore the intercellular space and dermal-epidermal junction of the spinous layer when compared to fresh control. Nevertheless, DVC and SSV percentage of normality decreased in the morphological integrity of cytoplasm (37.5 and 25.0%) of spinous layer, respectively, as compared to the fresh fragments (100%, p < 0.05). Moreover, other differences between the fresh control (100%) and DVC tissues were verified in the intra-epidermal cleavage of the spinous (37.5%) and basal (37.5%) layers. In general, DVC and SSV techniques were efficient for the recovery of the somatic cells according to most of the evaluated parameters for the in vitro culture (p > 0.05). In addition, only at time of 72 h (D3), in the growth curve, DVC fragments showed a reduced cell concentration than fresh control. In conclusion, SSV was found to be a more efficient method for vitrifying collared peccary skin tissue when compared to DVC. These results are relevant for the tissue cryopreservation from collared peccary and could also be useful for mammals with phylogenetic relationships.
Collapse
|
9
|
Santos ML, Borges AA, Neta LBQ, Santos MV, Oliveira MF, Silva AR, Pereira AF. In vitro culture of somatic cells derived from ear tissue of collared peccary (Pecari tajacu Linnaeus, 1758) in medium with different requirements. PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016001200010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ABSTRACT: The maintenance of metabolic activities during the in vitro culture of somatic cells of wild animals, especially collared peccary (Pecari tajacu), is an interesting step in conservation of these cells for the use in nuclear transfer. In this context, it is necessary to optimize the culture conditions of somatic cells by the establishment of appropriate supplementation to the media. Therefore, this study aimed to analyze the composition of the culture means of somatic cell derived from ear tissue of collared peccaries, evaluating concentrations of fetal bovine serum (FBS; 10% vs. 20%) and epidermal growth factor (EGF; 5ng/mL vs. 10ng/mL). Tissues were submitted to primary culture and subcultures for 40 days and cells were analyzed for morphology, adhesion, subconfluence, and proliferative activity to develop the growth curve and to determine the population doubling time (PDT), viability, and functional/metabolic activity. No difference was observed between the concentrations of FBS for several parameters, except for viability [FBS10: 85.6% vs. FBS20: 98.2%], PDT [FBS10: 155.4h vs. 77.2h], and functional/metabolic assay [FBS10: 0.57-0.55 vs. FBS20: 0.82-0.99 (D5-D7)]. For the EGF in culture, no difference was observed in the evaluated parameters. In all experiments, the growth curves were typical S-shape and the cells passed through a lag, logarithmic, and plateau phase. In conclusion, 20% FBS is suitable for the recovery of somatic cells; nevertheless, EGF does not improve the quality of growing these cells. To our knowledge, this is the first study culturing somatic cells of collared peccaries.
Collapse
|
10
|
Cetinkaya G, Hatipoglu I, Arat S. The value of frozen cartilage tissues without cryoprotection for genetic conservation. Cryobiology 2013; 68:65-70. [PMID: 24291088 DOI: 10.1016/j.cryobiol.2013.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
Abstract
Animal tissues frozen without cryoprotection are thought to be inappropriate for use as a donor for somatic cell nuclear transfer (SCNT) studies. Cells in tissues that have been frozen without a cryoprotectant are commonly thought to be dead or to have lost genomic integrity. However, in this study we show that the frozen auricular cartilage tissues of anatolian buffalo contain a considerable number of viable healthy cells. The cells in auricular cartilage tissues are resistant to cryo-injury at -80°C. Primary cell cultures were established from defrosted ear tissues which were frozen without cryoprotectant. The growth and functional characteristics of primary cell cultures are characterized according to cell growth curve, cell cycle analysis, karyotype and GAG synthesis. The results indicate that frozen cartilage tissues could be valuable materials for the conservation of species and SCNT technology.
Collapse
Affiliation(s)
- Gaye Cetinkaya
- TUBITAK MRC-Genetic Engineering and Biotechnology Institute (GEBI), 41470 Gebze, Kocaeli, Turkey.
| | - Ibrahim Hatipoglu
- TUBITAK MRC-Genetic Engineering and Biotechnology Institute (GEBI), 41470 Gebze, Kocaeli, Turkey.
| | - Sezen Arat
- Namık Kemal University, Faculty of Agriculture, Department of Agricultural Biotechnology, Tekirdağ, Turkey.
| |
Collapse
|