1
|
Shah AA, Sheikh AA, Hasin D, Shah F, Aarif O, Shah RA, Ahmad SB, Maqbool S, Pampori ZA. Isolation, in vitro expansion and characterization of ovine fetal adnexa-derived mesenchymal stem cells reveals a source dependent trilineage differentiation and growth kinetics. Anim Biotechnol 2023; 34:3908-3919. [PMID: 37493347 DOI: 10.1080/10495398.2023.2238015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
This study was designed to isolate, cultivate, characterize and evaluate the growth kinetics of mesenchymal stem cells (MSCs) derived from fetal adnexa of sheep. The gravid uteri of ewes were collected from a local abattoir. The MSCs isolated from different fetal regions (Wharton's Jelly [oWJ], cord blood [oCB], amniotic fluid [oAF] and amniotic Sac [oAS]) were expanded in vitro and characterized for surface and pluripotency markers. The growth kinetics of MSCs was compared at 3rd and 5th passages. Similarly, the colony-forming efficiency (CFE) assay was performed at 3rd passage. The fetal adnexa-derived ovine MSCs showed the expression of CD73, CD90 and CD105. Similarly, the MSCs also expressed pluripotency markers, OCT4 and SOX2. Besides, cells also differentiated into osteogenic, chondrogenic and adipogenic lineages. The MSCs in culture showed a typical growth curve with initial lag phase, an exponential phase, a plateau phase and a decline phase. The growth rate was highest in oAF-MSCs at P5. The population doubling time (PDT) was highest in oAS-MSCs (87.28 ± 3.24 h), whereas the colony number was highest in oAF-MSCs (53.67 ± 4.06). The study reveals that oAF-MSCs were superior which outperformed other MSCs indicating that oAF-derived MSCs could be utilized for regenerative medicine.
Collapse
Affiliation(s)
- Aamir Amin Shah
- Division of Veterinary Physiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, J & K, India
| | - Aasif Ahmad Sheikh
- Division of Veterinary Physiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, J & K, India
| | - Dilruba Hasin
- Division of Veterinary Physiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, J & K, India
| | - Fozia Shah
- Division of Veterinary Physiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, J & K, India
| | - Ovais Aarif
- Division of Veterinary Physiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, J & K, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, J & K, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, J & K, India
| | - Showkat Maqbool
- Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, J & K, India
| | - Z A Pampori
- Division of Veterinary Physiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, J & K, India
| |
Collapse
|
2
|
Heyman E, Meeremans M, Van Poucke M, Peelman L, Devriendt B, De Schauwer C. Validation of multiparametric panels for bovine mesenchymal stromal cell phenotyping. Cytometry A 2023; 103:744-755. [PMID: 37173856 DOI: 10.1002/cyto.a.24737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Bovine mesenchymal stromal cells (MSCs) display important features that render them valuable for cell therapy and tissue engineering strategies, such as self-renewal, multi-lineage differentiation, as well as immunomodulatory properties. These cells are also promising candidates to produce cultured meat. For all these applications, it is imperative to unequivocally identify this cell population. The isolation and in vitro tri-lineage differentiation of bovine MSCs is already described, but data on their immunophenotypic characterization is not yet complete. The currently limited availability of monoclonal antibodies (mAbs) specific for bovine MSC markers strongly hampers this research. Following the minimal criteria defined for human MSCs, bovine MSCs should express CD73, CD90, and CD105 and lack expression of CD14 or CD11b, CD34, CD45, CD79α, or CD19, and MHC-II. Additional surface proteins which have been reported to be expressed include CD29, CD44, and CD106. In this study, we aimed to immunophenotype bovine adipose tissue (AT)-derived MSCs using multi-color flow cytometry. To this end, 13 commercial Abs were screened for recognizing bovine epitopes using the appropriate positive controls. Using flow cytometry and immunofluorescence microscopy, cross-reactivity was confirmed for CD34, CD73, CD79α, and CD90. Unfortunately, none of the evaluated CD105 and CD106 Abs cross-reacted with bovine cells. Subsequently, AT-derived bovine MSCs were characterized using multi-color flow cytometry based on their expression of nine markers. Bovine MSCs clearly expressed CD29 and CD44, and lacked expression of CD14, CD45, CD73, CD79α, and MHCII, while a variable expression was observed for CD34 and CD90. In addition, the mRNA transcription level of different markers was analyzed using reverse transcription quantitative polymerase chain reaction. Using these panels, bovine MSCs can be properly immunophenotyped which allows a better characterization of this heterogenous cell population.
Collapse
Affiliation(s)
- Emma Heyman
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Meeremans
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Van Poucke
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - B Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Catharina De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Wang M, Li J, Wang D, Xin Y, Liu Z. The effects of mesenchymal stem cells on the chemotherapy of colorectal cancer. Biomed Pharmacother 2023; 160:114373. [PMID: 36753960 DOI: 10.1016/j.biopha.2023.114373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Colorectal cancer (CRC) has been the third commonest cancer in the world. The prognosis of patients with CRC is related to the molecular subtypes and gene mutations, which is prone to recurrence, metastasis, and drug resistance. Mesenchymal stem cells (MSCs) are a group of progenitor ones with the capabilities of self-renewal, multi-directional differentiation, and tissue re-population, which could be isolated from various kinds of tissues and be differentiated into diverse cell types. In recent years, MSCs are applied for mechanisms study of tissue repairing, graft-versus-host disease (GVHD) and autoimmune-related disease, and tumor development, with the advantages of anti-inflammation, multi-lineage differentiation, and homing capability. Integrating the chemotherapy and MSCs therapy might provide a novel treatment approach for CRC patients. In this review, we summarize the current progress in the integrated treatment of integrating the MSCs and chemotherapy for CRC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Liang RN, Yan DQ, Zhang XP, Chen X, Zhang WH, Jia HL. Kidney Mesenchymal stem cells alleviate cisplatin-induced kidney injury and apoptosis in rats. Tissue Cell 2023; 80:101998. [PMID: 36529038 DOI: 10.1016/j.tice.2022.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This experiment was designed to demonstrate Mesenchymal stem cells (MSCs) derived from kidney can alleviate cisplatin-induced kidney injury and renal cell apoptosis through paracrine pathway. METHODS Firstly, MSCs were isolated from kidney of young rats, and their surface-specific markers were identified by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and immunofluorescence staining. Self-renewal ability of Kidney Mesenchymal Stem Cells (KMSCs) was observed by cell counting and 5-Bromo-2'-deoxyuridine (BrdU) fluorescence staining. KMSCs at logarithmic growth stage were traced and injected into rat through tail vein. RESULTS The results showed that KMSCs homed in the kidney tissues, decreased the secretion of inflammatory factors (CRP, TNFα, IL-1β, IL-6), and alleviated renal function. Hematoxylin and Eosin (H&E), Masson and Periodic Acid-silver Methenamine (PASM) staining showed that KMSCs could alleviate pathological damage in rats. Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling (TUNEL) assay showed that KMSCs could reduce the apoptosis of rat kidney cells induced by cisplatin. Finally, Immunohistochemistry (IHC) results showed that cisplatin could induce higher expression of the pro-apoptotic protein Bax and lower expression of anti-apoptotic Bcl-2 in kidney tissues. However, KMSCs could reverse the pro-apoptotic effect of cisplatin on kidney cells and improve the survival rate of rats. CONCLUSIONS In conclusion, KMSCs were successfully isolated from kidney tissues, and KMSCs have therapeutic effects on rat kidney injury induced by cisplatin.
Collapse
Affiliation(s)
- Rui-Ning Liang
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China.
| | - De-Qi Yan
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China
| | - Xing-Ping Zhang
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China.
| | - Xu Chen
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China
| | - Wen-Hui Zhang
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China
| | - Hong-Lin Jia
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China
| |
Collapse
|
5
|
An Update on Applications of Cattle Mesenchymal Stromal Cells. Animals (Basel) 2022; 12:ani12151956. [PMID: 35953945 PMCID: PMC9367612 DOI: 10.3390/ani12151956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Among livestock species, cattle are crucially important for the meat and milk production industry. Cows can be affected by different pathologies, such as mastitis, endometritis and lameness, which can negatively affect either food production or reproductive efficiency. The use of mesenchymal stromal cells (MSCs) is a valuable tool both in the treatment of various medical conditions and in the application of reproductive biotechnologies. This review provides an update on state-of-the-art applications of bovine MSCs to clinical treatments and reproductive biotechnologies. Abstract Attention on mesenchymal stromal cells (MSCs) research has increased in the last decade mainly due to the promising results about their plasticity, self-renewal, differentiation potential, immune modulatory and anti-inflammatory properties that have made stem cell therapy more clinically attractive. Furthermore, MSCs can be easily isolated and expanded to be used for autologous or allogenic therapy following the administration of either freshly isolated or previously cryopreserved cells. The scientific literature on the use of stromal cells in the treatment of several animal health conditions is currently available. Although MSCs are not as widely used for clinical treatments in cows as for companion and sport animals, they have the potential to be employed to improve productivity in the cattle industry. This review provides an update on state-of-the-art applications of bovine MSCs to clinical treatments and reproductive biotechnologies.
Collapse
|
6
|
Bovine tongue epithelium-derived cells: A new source of bovine mesenchymal stem cells. Biosci Rep 2020; 40:222523. [PMID: 32232387 PMCID: PMC7167252 DOI: 10.1042/bsr20181829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/28/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to differentiate into multiple cell lineages, and thus, confer great potential for use in regenerative medicine and biotechnology. In the present study, we attempted to isolate and characterize bovine tongue tissue epithelium-derived MSCs (boT-MSCs) and investigate the culture conditions required for long-term culturing of boT-MSCs. boT-MSCs were successfully isolated by the collagenase digestion method and their proliferative capacity was maintained for up to 20 or more passages. We observed a significant increase in the proliferation of boT-MSCs during the 20 consecutive passages under low-glucose Dulbecco’s modified Eagle’s medium culture condition among the three culture conditions. These boT-MSCs presented pluripotency markers (octamer-binding transcription factor 3/4 (Oct3/4) and sex determining region Y-box2 (Sox2)) and cell surface markers, which included CD13, CD29, CD44, CD73, CD90, CD105, CD166, and major histocompatibility complex (MHC) class I (MHC-I) but not CD11b, CD14, CD31, CD34, CD45, CD80, CD86, CD106, CD117, and MHC-II at third passage. Moreover, these boT-MSCs could differentiate into mesodermal (adipocyte, osteocyte, and chondrocyte) cell lineages. Thus, the present study suggests that the tongue of bovines could be used as a source of bovine MSCs.
Collapse
|
7
|
Hill ABT, Bressan FF, Murphy BD, Garcia JM. Applications of mesenchymal stem cell technology in bovine species. Stem Cell Res Ther 2019; 10:44. [PMID: 30678726 PMCID: PMC6345009 DOI: 10.1186/s13287-019-1145-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have received a great deal of attention over the past 20 years mainly because of the results that showed regeneration potential and plasticity that were much stronger than expected in prior decades. Recent findings in this field have contributed to progress in the establishment of cell differentiation methods, which have made stem cell therapy more clinically attractive. In addition, MSCs are easy to isolate and have anti-inflammatory and angiogenic capabilities. The use of stem cell therapy is currently supported by scientific literature in the treatment of several animal health conditions. MSC may be administered for autologous or allogenic therapy following either a fresh isolation or a thawing of a previously frozen culture. Despite the fact that MSCs have been widely used for the treatment of companion and sport animals, little is known about their clinical and biotechnological potential in the economically relevant livestock industry. This review focuses on describing the key characteristics of potential applications of MSC therapy in livestock production and explores the themes such as the concept, culture, and characterization of mesenchymal stem cells; bovine mesenchymal stem cell isolation; applications and perspectives on commercial interests and farm relevance of MSC in bovine species; and applications in translational research.
Collapse
Affiliation(s)
- Amanda Baracho Trindade Hill
- Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University, Via de Acesso Professor Paulo Donato Castelane - Vila Industrial, s/n, Jaboticabal, SP, 14884-900, Brazil. .,Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint Hyacinthe, QC, J2S 7C6, Canada.
| | - Fabiana Fernandes Bressan
- Campus Fernando Costa, University of São Paulo, Av. Duque de Caxias Norte, 225 - Zona Rural, Pirassununga, SP, 13635-900, Brazil
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint Hyacinthe, QC, J2S 7C6, Canada
| | - Joaquim Mansano Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University, Via de Acesso Professor Paulo Donato Castelane - Vila Industrial, s/n, Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
8
|
Gugjoo MB, Amarpal, Fazili MR, Shah RA, Sharma GT. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J Cell Physiol 2018; 234:8618-8635. [PMID: 30515790 DOI: 10.1002/jcp.27846] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Characteristic features like self-renewal, multilineage differentiation potential, and immune-modulatory/anti-inflammatory properties, besides the ability to mobilize and home distant tissues make stem cells (SCs) a lifeline for an individual. Stem cells (SCs) if could be harvested and expanded without any abnormal change may be utilized as an all-in-one solution to numerous clinical ailments. However, slender understanding of their basic physiological properties, including expression potential, behavioral alternations during culture, and the effect of niche/microenvironment has currently restricted the clinical application of SCs. Among various types of SCs, mesenchymal stem cells (MSCs) are extensively studied due to their easy availability, straightforward harvesting, and culturing procedures, besides, their less likelihood to produce teratogens. Large ruminant MSCs have been harvested from various adult tissues and fetal membranes and are well characterized under in vitro conditions but unlike human or other domestic animals in vivo studies on cattle/buffalo MSCs have mostly been aimed at improving the animals' production potential. In this document, we focused on the status and potential application of MSCs in cattle and buffalo.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India.,Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Mujeeb R Fazili
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Riaz A Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
9
|
Wang JJ, Zhang WX, Wang KF, Zhang S, Han X, Guan WJ, Ma YH. Isolation and biological characteristics of multipotent mesenchymal stromal cells derived from chick embryo intestine. Br Poult Sci 2018; 59:521-530. [PMID: 29914266 DOI: 10.1080/00071668.2018.1490495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
1. Over the past decade, rapid advancement in isolation methods for identifying markers of the once elusive intestinal stem cell (ISC) populations has laid the foundation for unravelling their complex interrelationships during homeostasis. Study on ISC in avian intestinal tissue might play a pivotal foundation for further studies on the epithelial-to-mesenchymal transition (EMT) in gastrointestinal disease and cell-based therapy as well as intestinal tissue engineering. 2. The following experiment isolated a population of fibroblast-like, plastic adhering cells derived from chick embryo intestine, showing a strong self-renewing and proliferative ability, which was maintained in vitro up to passage 25. The findings included growth characteristics, detected expression of cell surface markers and characterised the capability of these cells to differentiate towards the osteogenic, adipogenic, and chondrogenic cell lineages. 3. RT-PCR analysis showed that these cells from chick embryos expressed mesenchymal stromal cell markers CD44, CD90 and VIMENTIN as well as ISC-specific genes LGR5, MI1, SMOC2, BMI1, and HOPX. Immunofluorescence and flow cytometry confirmed this biology characterisation further. 4. In conclusion, cells were isolated from the intestine of 18-day-old chicken embryos that exhibited the biological characteristics of mesenchymal stromal cells as well as markers of intestinal stem cells. Our findings may provide a novel insight for in vitro cell culture and characteristics of ISCs in avian species, which may also indicate a benefit for obtaining cell source for intestinal tissue engineering as well as cell-based investigation for gastrointestinal disease and treatment.
Collapse
Affiliation(s)
- J J Wang
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China.,b Department of Kinesiology and Health , Harbin Sport University , Harbin , Heilongjiang , China
| | - W X Zhang
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China
| | - K F Wang
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China
| | - S Zhang
- c Research Center for Sports Scientific Experiment , Harbin Sport University , Harbin , Heilongjiang , China
| | - X Han
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China
| | - W J Guan
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China
| | - Y H Ma
- a Institute of Animal Science , Chinese Academy of Agricultural Sciences , Beijing , China
| |
Collapse
|
10
|
Uder C, Brückner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: Features and applications. Cytometry A 2017; 93:32-49. [PMID: 28906582 DOI: 10.1002/cyto.a.23239] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal/stem cells (MSC) are promising candidates for cellular therapy of different diseases in humans and in animals. Following the guidelines of the International Society for Cell Therapy, human MSC may be identified by expression of a specific panel of cell surface markers (CD105+, CD73+, CD90+, CD34-, CD14-, or CD11b-, CD79- or CD19-, HLA-DR-). In addition, multiple differentiation potential into at least the osteogenic, adipogenic, and chondrogenic lineage is a main criterion for MSC definition. Human MSC and MSC of a variety of mammals isolated from different tissues meet these criteria. In addition to the abovementioned, they express many more cell surface markers. Yet, these are not uniquely expressed by MSC. The gross phenotypic appearance like marker expression and differentiation potential is similar albeit not identical for MSC from different tissues and species. Similarly, MSC may feature different biological characteristics depending on the tissue source and the isolation and culture procedures. Their versatile biological qualities comprising immunomodulatory, anti-inflammatory, and proregenerative capacities rely largely on the migratory and secretory capabilities of MSC. They are attracted to sites of tissue lesion and secrete factors to promote self-repair of the injured tissue. This is a big perspective for clinical MSC applications in both veterinary and human medicine. Phase I/II clinical trials have been initiated to assess safety and feasibility of MSC therapies in acute and chronic disease settings. Yet, since the mode of MSC action in a specific disease environment is still unknown at large, it is mandatory to unravel the response of MSC from a given source onto a specific disease environment in suitable animal models prior to clinical applications. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Christiane Uder
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Brückner
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Winkler
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | | |
Collapse
|
11
|
Wang K, Liu H, Yang J, Ma C, Zhang Z, Zheng D, Guan W. Liver epithelioid progenitor cells derived from fetal Luxi bovine alleviate liver fibrosis. Cytotechnology 2017. [PMID: 28625011 DOI: 10.1007/s10616-017-0113-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver epithelioid progenitor cells (LEPCs) have important roles in liver therapy because of their hepatic differentiation potency in vitro and in vivo. Despite many researches on humans, mice, and rats, equivalent progenitor cells derived from bovine are relatively rare. The purpose of our current study is to characterize bovine LEPCs, and research on the cure potency of this heteroplastic progenitor cells on mice liver fibrosis. We have used collagenase IV digesting and differential adhesion method to isolate slabstone shape, EpCAM, LGR5, NCAM1 and SOX9 positive progenitor cells from fetal Luxi bovine liver. When cultured in hepatic differentiation media containing 20 ng/ml Oncostatin M, LEPCs can differentiate into hepatocytes in vitro. After 4 weeks of intravenous tail vein injection into CCl4-injured mouse liver, LEPCs engrafted into liver parenchyma, differentiated into ALB positive hepatocytes, and could alleviate liver fibrosis through down regulating fibrosis genes-Tgfb1 and α-SMA as well as decreasing expression of collagen gene Col1a1, Col3a1, and Col4a1, and regain liver function by recovering ALT and AST. Our findings provided a useful tool for studying liver development in vitro, new cell resource for heterograft on mouse liver diseases, and a new platform for researches on immune rejection of heterogeneous cell transplantation.
Collapse
Affiliation(s)
- Kunfu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hao Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Jinjuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Caiyun Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zebiao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dong Zheng
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China.
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
12
|
Wu J, Qu Z, Fei ZW, Wu JH, Jiang CP. Role of stem cell-derived exosomes in cancer. Oncol Lett 2017; 13:2855-2866. [PMID: 28521391 PMCID: PMC5431232 DOI: 10.3892/ol.2017.5824] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
Exosomes are small, extracellular membrane- enclosed vesicles that contain a variety of molecules, including proteins, DNA, mRNA and non-coding RNA; these vesicles have been defined as new tools for intercellular communication between cells. Numerous types of cells, including stem cells, secrete exosomes into the extracellular environment, and are significant communicators in the tumor microenvironment. Stem cells are a unique cell population defined by their ability to indefinitely self-renew, differentiate into a variety of cell lines, and form clonal cell populations. Stem cells also secrete large amounts of exosomes, which have demonstrated great potential in a variety of diseases. Increasing evidence has revealed that the mechanism of interaction between stem cells and human tumor cells involves the exchange of biological material through exosomes. In this review, the latest developments in the role of stem cell-derived exosomes in cancer are highlighted.
Collapse
Affiliation(s)
- Junyi Wu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Zhen Qu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Zi-Wei Fei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Jun-Hua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Chun-Ping Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China.,Jiangsu Province's Key Medical Center for Hepatobiliary Surgery, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
13
|
Li M, Cai H, Yang Y, Zhang J, Sun K, Yan Y, Qu H, Wang W, Wang J, Duan X. Perichondrium mesenchymal stem cells inhibit the growth of breast cancer cells via the DKK-1/Wnt/β-catenin signaling pathway. Oncol Rep 2016; 36:936-44. [PMID: 27277008 DOI: 10.3892/or.2016.4853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/24/2016] [Indexed: 11/06/2022] Open
Abstract
In recent years, mesenchymal stem cells (MSCs), which possess the ability to specifically home to tumor sites, with the potential of multi-directional differentiation and low immunogenicity, have been reported to inhibit the growth of various types of tumors. In the present study, we isolated MSCs from the rib perichondrium (PMSCs). By comparing PMSCs with bone marrow‑derived mesenchymal stem cells (BMSCs), we demonstrated that PMSCs present biological characteristics similar to those of BMSCs. Furthermore, we explored the effect and antitumor mechanism of PMSCs in rat SHZ-88 breast cancer cells. The growth, migration and invasion of the SHZ-88 cells were significantly inhibited, and the Wnt/β-catenin pathway and its target genes were downregulated in the SHZ-88 cells by PMSC-conditioned medium. The expression level of dickkopf-1 (DKK-1) was higher in the PMSCs than that noted in the SHZ-88 cells. Neutralization of DKK-1 in the PMSC‑conditioned medium attenuated the inhibitory effects of PMSCs on SHZ-88 cells. Therefore, PMSC-secreted DKK-1 is involved in the inhibition of SHZ-88 cell growth, migration and invasion, via the Wnt/β‑catenin signaling pathway. In addition, we demonstrated that PMSCs inhibited the growth of breast cancer in vivo and prolonged the survival time of tumor‑bearing rats. PMSCs inhibited the growth of transplanted breast tumors through the Wnt/β-catenin signaling pathway. In conclusion, our data confirmed that MSCs derived from the perichondrium present biological characteristics similar to those of BMSCs and inhibit the growth of breast cancer cells through the Wnt/β-catenin signaling pathway in vitro and in vivo. DKK-1 secreted by PMSCs played a vital role in controlling the Wnt/β-catenin signaling pathway in breast cancer.
Collapse
Affiliation(s)
- Min Li
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ya Yang
- The Third Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jia Zhang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kai Sun
- Department of Medical Oncology, The Second Hospital of Lanzhou, Lanzhou, Gansu 730000, P.R. China
| | - Yan Yan
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hangying Qu
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Weiwei Wang
- Department of Histology and Embryology, Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiansheng Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoyi Duan
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
14
|
Park JS, Suryaprakash S, Lao YH, Leong KW. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 2015; 84:3-16. [PMID: 25770356 PMCID: PMC4526354 DOI: 10.1016/j.ymeth.2015.03.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/19/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022] Open
Abstract
Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Smruthi Suryaprakash
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
15
|
Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:470983. [PMID: 25197647 PMCID: PMC4147203 DOI: 10.1155/2014/470983] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/23/2014] [Indexed: 02/08/2023]
Abstract
Neuropathic pain (NP) is a highly invalidating disease resulting as consequence of a lesion or disease affecting the somatosensory system. All the pharmacological treatments today in use give a long lasting pain relief only in a limited percentage of patients before pain reappears making NP an incurable disease. New approaches are therefore needed and research is testing stem cell usage. Several papers have been written on experimental neuropathic pain treatment using stem cells of different origin and species to treat experimental NP. The original idea was based on the capacity of stem cell to offer a totipotent cellular source for replacing injured neural cells and for delivering trophic factors to lesion site; soon the researchers agreed that the capacity of stem cells to contrast NP was not dependent upon their regenerative effect but was mostly linked to a bidirectional interaction between the stem cell and damaged microenvironment resident cells. In this paper we review the preclinical studies produced in the last years assessing the effects induced by several stem cells in different models of neuropathic pain. The overall positive results obtained on pain remission by using stem cells that are safe, of easy isolation, and which may allow an autologous transplant in patients may be encouraging for moving from bench to bedside, although there are several issues that still need to be solved.
Collapse
|