1
|
Chan JS, Han E, Lim CHL, Kurz AC, Shuman J, Liu YC, Riau AK, Mehta JS. Incisional surface quality of electron-beam irradiated cornea-extracted lenticule for stromal keratophakia: high nJ-energy vs. low nJ-energy femtosecond laser. Front Med (Lausanne) 2023; 10:1289528. [PMID: 38162883 PMCID: PMC10754972 DOI: 10.3389/fmed.2023.1289528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Corneal lenticules can be utilized as an additive material for stromal keratophakia. However, following extraction, they must be reimplanted almost immediately or cryopreserved in lenticule banks. Electron-beam (E-beam) irradiated corneas permit room-temperature storage for up to 2 years, enabling keratophakia to be performed on demand. This study aims to compare the performance of high nano Joule (nJ)-energy (VisuMax) and low nJ-energy (FEMTO LDV) femtosecond laser systems on the thickness consistency and surface quality and collagen morphology of lenticules produced from fresh and E-beamed corneas. Methods A total of 24 lenticules with -6.00 dioptre power were cut in fresh human donor corneas and E-beamed corneas with VisuMax and FEMTO LDV. Before extraction, the thickness of the lenticules was measured with anterior segment-optical coherence tomography (AS-OCT). The incisional surface roughness of extracted lenticules was analyzed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Multiphoton microscopy was then used to assess the surface collagen morphometry. Results The E-beamed lenticules that were cut using FEMTO LDV were significantly thicker than the fresh specimens as opposed to those created with VisuMax, which had a similar thickness as the fresh lenticules. On the vertex, they were ∼11% thicker than the fresh lenticules. The surface roughness (Rq) of E-beamed lenticules incised with FEMTO LDV did not differ significantly from the fresh lenticules. This contrasted with the VisuMax-fashioned lenticules, which showed notably smoother surfaces (∼36 and ∼20% lower Rq on anterior and posterior surfaces, respectively) on the E-beamed than the fresh lenticules. The FEMTO LDV induced less cumulative changes to the collagen morphology on the surfaces of both fresh and E-beamed lenticules than the VisuMax. Conclusion It has been previously demonstrated that the low nJ-energy FEMTO LDV produced a smoother cutting surface compared to high nJ-energy VisuMax in fresh lenticules. Here, we showed that this effect was also seen in the E-beamed lenticules. In addition, lower laser energy conferred fewer changes to the lenticular surface collagen morphology. The smaller disparity in surface cutting quality and collagen disturbances on the E-beamed lenticules could be beneficial for the early visual recovery of patients who undergo stromal keratophakia.
Collapse
Affiliation(s)
- Jian S. Chan
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Ophthalmology, National University Health System, Singapore, Singapore
| | - Evelina Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Chris H. L. Lim
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Ophthalmology, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Jeremy Shuman
- Lions World Vision Institute, Tampa, FL, United States
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Andri K. Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
2
|
Li Q, Sun Y, Zhao H, Gao Z, Zhai D. Structure and properties of the acellular porcine cornea irradiated with electron beam and its in-situ implantation. J Biomed Mater Res B Appl Biomater 2023; 111:2013-2024. [PMID: 37477184 DOI: 10.1002/jbm.b.35301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Different sterilization doses of the electron beam (E-beam) will change the properties of biomaterials and affect their clinical application. Acellular porcine cornea (APC) is a promising corneal substitute to alleviate the shortage of corneal resources. The residual DNA was significantly reduced to 18.50 ± 3.19 ng/mg, and the clearance rate of α-Gal was close to 100% after the treatment with freezing-thawing combined enzyme, indicating that the decellularization was effective. The effects of different E-beam doses at 0, 2, 8, 15, and 25 kGy on the APC were studied. With the increase in irradiation dose, the transmittance, tensile strength, and swelling ratio of APC gradually decreased, but the resistance to enzymatic degradation was stronger than that of non-irradiated APC, especially at 8 kGy. The structure of APC was denser after irradiation, but the dose of 25 kGy could cause partial collagen fiber fracture and increase the pore size. The cell viability of the APC irradiated by 15 and 25 kGy were greater than 80%. After the implantation in rabbit corneas, there was no obvious neovascularization and inflammation, but the dose of 25 kGy had a more destructive effect on the chemical bonds of collagen, which made the APC easier to be degraded. The thickness of APC in the 25 kGy group was thinner than that in the 15 kGy group 1 year after surgery, and the epithelium grew more slowly, so the E-beam dose of 15 kGy might be more suitable for the sterilization of APC.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Yajun Sun
- Research and Development Center, Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, Shandong, China
| | - Haibin Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zhiyong Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Dongjie Zhai
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Thirunavukarasu AJ, Han E, Nedumaran AM, Kurz AC, Shuman J, Yusoff NZBM, Liu YC, Foo V, Czarny B, Riau AK, Mehta JS. Electron beam-irradiated donor cornea for on-demand lenticule implantation to treat corneal diseases and refractive error. Acta Biomater 2023; 169:334-347. [PMID: 37532130 DOI: 10.1016/j.actbio.2023.07.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
The cornea is the major contributor to the refractive power of the eye, and corneal diseases are a leading cause of reversible blindness. The main treatment for advanced corneal disease is keratoplasty: allograft transplantation of the cornea. Examples include lenticule implantation to treat corneal disorders (e.g. keratoconus) or correct refractive errors. These procedures are limited by the shelf-life of the corneal tissue, which must be discarded within 2-4 weeks. Electron-beam irradiation is an emerging sterilisation technique, which extends this shelf life to 2 years. Here, we produced lenticules from fresh and electron-beam (E-beam) irradiated corneas to establish a new source of tissue for lenticule implantation. In vitro, in vivo, and ex vivo experiments were conducted to compare fresh and E-beam-irradiated lenticules. Results were similar in terms of cutting accuracy, ultrastructure, optical transparency, ease of extraction and transplantation, resilience to mechanical handling, biocompatibility, and post-transplant wound healing process. Two main differences were noted. First, ∼59% reduction of glycosaminoglycans resulted in greater compression of E-beam-irradiated lenticules post-transplant, likely due to reduced corneal hydration-this appeared to affect keratometry after implantation. Cutting a thicker lenticule would be required to ameliorate the difference in refraction. Second, E-beam-sterilised lenticules exhibited lower Young's modulus which may indicate greater care with handling, although no damage or perforation was caused in our procedures. In summary, E-beam-irradiated corneas are a viable source of tissue for stromal lenticules, and may facilitate on-demand lenticule implantation to treat a wide range of corneal diseases. Our study suggested that its applications in human patients are warranted. STATEMENT OF SIGNIFICANCE: Corneal blindness affects over six million patients worldwide. For patients requiring corneal transplantation, current cadaver-based procedures are limited by the short shelf-life of donor tissue. Electron-beam (E-beam) sterilisation extends this shelf-life from weeks to years but there are few published studies of its use. We demonstrated that E-beam-irradiated corneas are a viable source of lenticules for implantation. We conducted in vitro, in vivo, and ex vivo comparisons of E-beam and fresh corneal lenticules. The only differences exhibited by E-beam-treated lenticules were reduced expression of glycosaminoglycans, resulting in greater tissue compression and lower refraction suggesting that a thicker cut is required to achieve the same optical and refractive outcome; and lower Young's modulus indicating extra care with handling.
Collapse
Affiliation(s)
- Arun J Thirunavukarasu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Evelina Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | | | | | | | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Valencia Foo
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore
| | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Andri K Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore.
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; School of Materials Science and Engineering, Nanyang Technological University, Singapore; Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore.
| |
Collapse
|
4
|
Liu C, Saeed HN. Disparities in Access to Corneal Tissue in the Developing World. Semin Ophthalmol 2023; 38:183-189. [PMID: 36537764 DOI: 10.1080/08820538.2022.2152714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Corneal disease is a leading cause of blindness worldwide. For most blinding corneal conditions, keratoplasty is the only way of restoring sight. Unfortunately, access to corneal transplantation is widely variable, most notably due to the lack of suitable donor material. There exists significant disparity between the developed and developing world when it comes to access to cornea tissue, with supply often inversely proportional to burden of disease. The purpose of this review is to identify the current disparities in supply and demand of corneal donor tissue, understand how to access corneal tissue, and propose solutions that promote equitable care for patients with severe corneal disease.
Collapse
Affiliation(s)
- Catherine Liu
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, United States
| | - Hajirah N Saeed
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, United States
| |
Collapse
|
5
|
Fasolo A, Franch A, Monterosso C, Camposampiero D, Frigo AC, Amoureux MC, Fortier D, Ponzin D. Results of ultrathin Descemet stripping automated endothelial keratoplasty with donor corneas preserved in synthetic organ culture media. Eur J Ophthalmol 2022; 33:11206721221133141. [PMID: 36330616 DOI: 10.1177/11206721221133141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE To evaluate outcomes of ultrathin Descemet stripping automated endothelial keratoplasty (UT-DSAEK) with donor corneas preserved at 31°C in Cornea Syn®, a medium formulated with recombinant human serum albumin (rHSA) to replace foetal calf serum, and deswelled-transported in the xeno-free medium Cornea Trans®. METHODS Prospective, multicentre, open-label study. We evaluated the endothelial cell loss (ECL) as the percentage variation of the endothelial cell density (ECD, cells/mm2) between 6 and 12 months after surgery, corneal transparency and thickness at 12 months, and adverse events within 12 months. Endothelial lenticules of mean 89 μm, ECD ≥ 2300 cells/mm2, minimum signs of cell mortality or morphology alterations, were dissected by microkeratome in the eye bank, and grafted in patients ≥ 18 years without corneal neovascularisation, conjunctivalization, or blinking impairment. RESULTS Thirty-five patients underwent UT-DSAEK, 3 showed primary failure, 1 late failure, and 2 skipped the 6-month visit. We analysed data from 29 patients, 27 with Fuchs endothelial corneal dystrophy (FECD) and 2 with pseudophakic bullous keratopathy (PBK). The median ECL between 6 and 12 months was 2.6% (p = .054, CI 0 to 12.5) and the absolute mean (SD) was 158.4 (364.1) cells/mm2. After 12 months, 96.5% of corneas were clear, with mean pachymetry of 585.9 (50.4) µm. CONCLUSIONS The ECL rate after UT-DSAEK match overall that observed in DSAEK or UT-DSAEK models of endothelial survival and the overall safety compared that reported for similar follow-up. Corneas maintained in Cornea Syn® and Cornea Trans® did not affect the ECD and functional outcomes of UT-DSAEK up to 12 months.
Collapse
Affiliation(s)
- Adriano Fasolo
- Research Unit, The 18262Veneto Eye Bank Foundation, Venice, Italy
| | | | | | | | - Anna Chiara Frigo
- Department of Cardiological, Thoracic, Vascular and Public Health Sciences, Epidemiology and Public Health Section, 9308University of Padova, Padova, Italy
| | | | | | - Diego Ponzin
- Research Unit, The 18262Veneto Eye Bank Foundation, Venice, Italy
| |
Collapse
|
6
|
Sharifi S, Sharifi H, Akbari A, Lei F, Dohlman CH, Gonzalez-Andrades M, Guild C, Paschalis EI, Chodosh J. Critical media attributes in E-beam sterilization of corneal tissue. Acta Biomater 2022; 138:218-227. [PMID: 34755604 PMCID: PMC8738149 DOI: 10.1016/j.actbio.2021.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/17/2023]
Abstract
When ionizing irradiation interacts with a media, it can form reactive species that can react with the constituents of the system, leading to eradication of bioburden and sterilization of the tissue. Understanding the media's properties such as polarity is important to control and direct those reactive species to perform desired reactions. Using ethanol as a polarity modifier of water, we herein generated a series of media with varying relative polarities for electron beam (E-beam) irradiation of cornea at 25 kGy and studied how the irradiation media's polarity impacts properties of the cornea. After irradiation of corneal tissues, mechanical (tensile strength and modulus, elongation at break, and compression modulus), chemical, optical, structural, degradation, and biological properties of the corneal tissues were evaluated. Our study showed that irradiation in lower relative polarity media improved structural properties of the tissues yet reduced optical transmission; higher relative polarity reduced structural and optical properties of the cornea; and intermediate relative polarity (ethanol concentrations = 20-30% (v/v)) improved the structural properties, without compromising optical characteristics. Regardless of media polarity, irradiation did not negatively impact the biocompatibility of the corneal tissue. Our data shows that the absorbed ethanol can be flushed from the irradiated cornea to levels that are nontoxic to corneal and retinal cells. These findings suggest that the relative polarity of the irradiation media can be tuned to generate sterilized tissues, including corneal grafts, with engineered properties that are required for specific biomedical applications. STATEMENT OF SIGNIFICANCE: Extending the shelf-life of corneal tissue can improve general accessibility of cornea grafts for transplantation. Irradiation of donor corneas with E-beam is an emerging technology to sterilize the corneal tissues and enable their long-term storage at room temperature. Despite recent applications in clinical medicine, little is known about the effect of irradiation and preservation media's characteristics, such as polarity on the properties of irradiated corneas. Here, we have showed that the polarity of the media can be a valuable tool to change and control the properties of the irradiated tissue for transplantation.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA,Corresponding authors: James Chodosh, MD MPH, Massachusetts Eye and Ear, Boston, MA, 02114, USA. , Sina Sharifi, PhD, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fengyang Lei
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Claes H. Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | | | - Eleftherios I. Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA,Corresponding authors: James Chodosh, MD MPH, Massachusetts Eye and Ear, Boston, MA, 02114, USA. , Sina Sharifi, PhD, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Sharifi S, Sharifi H, Guild C, Islam MM, Tran KD, Patzer C, Dohlman CH, Paschalis EI, Gonzalez-Andrades M, Chodosh J. Toward electron-beam sterilization of a pre-assembled Boston keratoprosthesis. Ocul Surf 2021; 20:176-184. [PMID: 33667673 DOI: 10.1016/j.jtos.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To evaluate the effects of electron-beam (E-beam) irradiation on the human cornea and the potential for E-beam sterilization of Boston keratoprosthesis (BK) devices when pre-assembled with a donor cornea prior to sterilization. METHODS Human donor corneas and corneas pre-assembled in BK devices were immersed in recombinant human serum albumin (rHSA) media and E-beam irradiated at 25 kGy. Mechanical (tensile strength and modulus, and compression modulus), chemical, optical, structural, and degradation properties of the corneal tissue after irradiation and after 6 months of preservation were evaluated. RESULTS The mechanical evaluation showed that E-beam irradiation enhanced the tensile and compression moduli of human donor corneas, with no impact on their tensile strength. By chemical and mechanical analysis, E-beam irradiation caused a minor degree of crosslinking between collagen fibrils. No ultrastructural changes due to E-beam irradiation were observed. E-beam irradiation slightly increased the stability of the cornea against collagenase-induced degradation and had no impact on glucose diffusion. The optical evaluation showed transparency of the cornea was maintained. E-beam irradiated corneal tissues and BK-cornea pre-assembled devices were stable for 6 months after room-temperature preservation. CONCLUSIONS E-beam irradiation generated no detrimental effects on the corneal tissues or BK-cornea pre-assembled devices and improved native properties of the corneal tissue, enabling prolonged preservation at room temperature. The pre-assembly of BK in a donor cornea, followed by E-beam irradiation, offers the potential for an off-the-shelf, ready to implant keratoprosthesis device.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Mohammad Mirazul Islam
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Khoa D Tran
- Vision Research Laboratory, Lions VisionGift, Portland, OR, USA
| | - Corrina Patzer
- Vision Research Laboratory, Lions VisionGift, Portland, OR, USA
| | - Claes H Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eleftherios I Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain.
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Ophthalmic manifestations and management of common and rare autoimmune syndromes. Curr Opin Allergy Clin Immunol 2020; 20:493-500. [DOI: 10.1097/aci.0000000000000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Passo RM, Hoskins ZB, Tran KD, Patzer C, Edmunds B, Morrison JC, Parikh M, Takusagawa HL, Tehrani S. Electron Beam Irradiated Corneal Versus Gamma-Irradiated Scleral Patch Graft Erosion Rates in Glaucoma Drainage Device Surgery. Ophthalmol Ther 2019; 8:421-426. [PMID: 31172462 PMCID: PMC6692416 DOI: 10.1007/s40123-019-0190-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Patch graft erosion and implant exposure is a known complication of glaucoma drainage device (GDD) surgery. Recently, electron beam (e-beam) irradiated corneal tissue ha s become available; however, limited data exist on the rates of erosion for e-beam irradiated corneal grafts compared to traditional scleral grafts after GDD surgery. METHODS This retrospective study examines the records of 253 eyes from 225 adult subjects who underwent GDD surgery with either e-beam irradiated corneal or scleral grafts at the Casey Eye Institute by five surgeons between April 22, 2014 and October 11, 2017. Surgical procedures and the occurrence of graft erosion were determined using billing codes and verified by manual review of electronic health records. RESULTS The average age at the time of surgery was 61.3 ± 17.5 years (n = 200) and 60.8 ± 16.8 years (n = 53) for the e-beam irradiated cornea and sclera groups, respectively. The average follow-up time post-surgery was 416 ± 345 days and 495 ± 343 days for the e-beam irradiated cornea and sclera groups, respectively. There were no statistically significant differences in sex, age, follow-up time, and glaucoma diagnosis between the groups; however, the e-beam irradiated cornea group was statistically more likely to have an Ahmed implant as compared to the sclera group. No erosion events were noted in either group. CONCLUSION e-Beam irradiated corneal grafts were used 3.8 times more frequently relative to scleral grafts, yet there were no cases of graft erosion in either group during the follow-up period.
Collapse
Affiliation(s)
- Ross M Passo
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Zachary B Hoskins
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | | | | | - Beth Edmunds
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - John C Morrison
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Mansi Parikh
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Hana L Takusagawa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Shandiz Tehrani
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|