1
|
Lee JL, Gentry NE, Peper JL, Hetzel S, Quist C, Menges FS, Mayer JM. Oxygen Atom Transfer Reactions of Colloidal Metal Oxide Nanoparticles. ACS NANO 2025; 19:10289-10300. [PMID: 40040243 DOI: 10.1021/acsnano.4c17955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Redox transformations at metal oxide (MOx)/solution interfaces are broadly important, and oxygen atom transfer (OAT) is one of the simplest and most fundamental examples of such reactivity. OAT is a two-electron transfer process, well-known in gas/solid reactions and catalysis. However, OAT is rarely directly observed at oxide/water interfaces, whose redox reactions are typically proposed to occur in one-electron steps. Reported here are stoichiometric OAT reactions of organic molecules with aqueous colloidal titanium dioxide and iridium oxide nanoparticles (TiO2 and IrOx NPs). Me2SO (DMSO) oxidizes reduced TiO2 NPs with the formation of Me2S, and IrOx NPs transfer O atoms to a water-soluble phosphine and a thioether. The reaction stoichiometries were established and the chemical mechanisms were probed using typical solution spectroscopic techniques, exploiting the high surface areas and transparency of the colloids. These OAT reactions, including a catalytic example, utilize the ability of the individual NPs to accumulate many electrons and/or holes. Observing OAT reactions of two different materials, in opposite directions, is a step toward harnessing oxide nanoparticles for valuable multi-electron and multi-hole transformations.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | | | - Jennifer L Peper
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Staci Hetzel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Christine Quist
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Fabian S Menges
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
2
|
Stewart J, Zayka P, Courter C, Cuk T. Formation of the oxyl's potential energy surface by the spectral kinetics of a vibrational mode. J Chem Phys 2024; 160:164202. [PMID: 38682740 DOI: 10.1063/5.0202441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
One of the most reactive intermediates for oxidative reactions is the oxyl radical, an electron-deficient oxygen atom. The discovery of a new vibration upon photoexcitation of the oxygen evolution catalysis detected the oxyl radical at the SrTiO3 surface. The vibration was assigned to a motion of the sub-surface oxygen underneath the titanium oxyl (Ti-O●-) created upon hole transfer to (or electron extraction from) a hydroxylated surface site. Evidence for such an interfacial mode is derived from its spectral shape, which exhibited a Fano resonance-a coupling of a sharp normal mode to continuum excitations. Here, this Fano resonance is utilized to derive precise formation kinetics of the oxyl radical and its associated potential energy surface (PES). From the Fano lineshape, the formation kinetics are obtained from the anti-resonance (the kinetics of the coupling factor), the resonance (the kinetics of the coupled continuum excitations), and the frequency integrated spectrum (the kinetics of the normal mode's cross-section). All three perspectives yield logistic function growth with a half-rise of 2.3 ± 0.3 ps and a time constant of 0.48 ± 0.09 ps. A non-equilibrium transient associated with photoexcitation is separated from the rise of the equilibrated PES. The logistic function characterizes the oxyl coverage at the very initial stages (t ∼ 0) to have an exponential growth rate that quickly decreases toward zero as a limiting coverage is reached. Such time-dependent reaction kinetics identify a dynamic activation barrier associated with the formation of a PES and quantify it for oxyl radical coverage.
Collapse
Affiliation(s)
- James Stewart
- Department of Chemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Paul Zayka
- Department of Chemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Christen Courter
- Department of Chemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Tanja Cuk
- Department of Chemistry, University of Colorado, Boulder, Colorado 80303, USA
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Colorado 80303, USA
- Materials Science and Engineering Program (MSE), University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
3
|
Shiau AA, Lee HB, Oyala PH, Agapie T. Coordination Number in High-Spin-Low-Spin Equilibrium in Cluster Models of the S 2 State of the Oxygen Evolving Complex. J Am Chem Soc 2023; 145:14592-14598. [PMID: 37366634 PMCID: PMC10575483 DOI: 10.1021/jacs.3c04464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The S2 state of the Oxygen Evolving Complex (OEC) of Photosystem II (PSII) shows high-spin (HS) and low-spin (LS) EPR signals attributed to distinct structures based on computation. Five-coordinate MnIII centers are proposed in these species but are absent in available spectroscopic model complexes. Herein, we report the synthesis, crystal structure, electrochemistry, SQUID magnetometry, and EPR spectroscopy of a MnIIIMnIV3O4 cuboidal complex featuring five-coordinate MnIII. This cluster displays a spin ground state of S = 5/2, while conversion to a six-coordinate Mn upon treatment with water results in a spin state change to S = 1/2. These results demonstrate that coordination number, without dramatic changes within the Mn4O4 core, has a substantial effect on spectroscopy.
Collapse
Affiliation(s)
- Angela A Shiau
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| | - Heui Beom Lee
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| | - Paul H Oyala
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Vinogradov I, Singh S, Lyle H, Paolino M, Mandal A, Rossmeisl J, Cuk T. Free energy difference to create the M-OH * intermediate of the oxygen evolution reaction by time-resolved optical spectroscopy. NATURE MATERIALS 2022; 21:88-94. [PMID: 34725518 DOI: 10.1038/s41563-021-01118-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Theoretical descriptors differentiate the catalytic activity of materials for the oxygen evolution reaction by the strength of oxygen binding in the reactive intermediate created upon electron transfer. Recently, time-resolved spectroscopy of a photo-electrochemically driven oxygen evolution reaction followed the vibrational and optical spectra of this intermediate, denoted M-OH*. However, these inherently kinetic experiments have not been connected to the relevant thermodynamic quantities. Here we discover that picosecond optical spectra of the Ti-OH* population on lightly doped SrTiO3 are ordered by the surface hydroxylation. A Langmuir isotherm as a function of pH extracts an effective equilibrium constant relatable to the free energy difference of the first oxygen evolution reaction step. Thus, time-resolved spectroscopy of the catalytic surface reveals both kinetic and energetic information of elementary reaction steps, which provides a critical new connection between theory and experiment by which to tailor the pathway of water oxidation and other surface reactions.
Collapse
Affiliation(s)
- Ilya Vinogradov
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Boulder, CO, USA
| | - Suryansh Singh
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, Boulder, CO, USA
| | - Hanna Lyle
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, Boulder, CO, USA
| | - Michael Paolino
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, Boulder, CO, USA
| | - Aritra Mandal
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Boulder, CO, USA.
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Tanja Cuk
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Boulder, CO, USA.
- Materials Science and Engineering Program, University of Colorado, Boulder, Boulder, CO, USA.
- Department of Chemistry, University of Colorado, Boulder, Boulder, CO, USA.
| |
Collapse
|
5
|
Lyle H, Singh S, Paolino M, Vinogradov I, Cuk T. The electron-transfer intermediates of the oxygen evolution reaction (OER) as polarons by in situ spectroscopy. Phys Chem Chem Phys 2021; 23:24984-25002. [PMID: 34514488 DOI: 10.1039/d1cp01760h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of diffusive forms of energy (electrical and light) into short, compact chemical bonds by catalytic reactions regularly involves moving a carrier from an environment that favors delocalization to one that favors localization. While delocalization lowers the energy of the carrier through its kinetic energy, localization creates a polarization around the carrier that traps it in a potential energy minimum. The trapped carrier and its local distortion-termed a polaron in solids-can play a role as a highly reactive intermediate within energy-storing catalytic reactions but is rarely discussed as such. Here, we present this perspective of the polaron as a catalytic intermediate through recent in situ and time-resolved spectroscopic investigations of photo-triggered electrochemical reactions at material surfaces. The focus is on hole-trapping at metal-oxygen bonds, denoted M-OH*, in the context of the oxygen evolution reaction (OER) from water. The potential energy surface for the hole-polaron defines the structural distortions from the periodic lattice and the resulting "active" site of catalysis. This perspective will highlight how current and future time-resolved, multi-modal probes can use spectroscopic signatures of M-OH* polarons to obtain kinetic and structural information on the individual reaction steps of OER. A particular motivation is to provide the background needed for eventually relating this information to relevant catalytic descriptors by free energies. Finally, the formation of the O-O chemical bond from the consumption of M-OH*, required to release O2 and store energy in H2, will be discussed as the next target for experimental investigations.
Collapse
Affiliation(s)
- Hanna Lyle
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, 80303, USA. .,Materials Science and Engineering Program, University of Colorado, Boulder, 80303, USA
| | - Suryansh Singh
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, 80303, USA. .,Materials Science and Engineering Program, University of Colorado, Boulder, 80303, USA
| | - Michael Paolino
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, 80303, USA. .,Department of Physics, University of Colorado, Boulder, 80303, USA
| | - Ilya Vinogradov
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, 80303, USA.
| | - Tanja Cuk
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, 80303, USA. .,Department of Chemistry, University of Colorado, Boulder, 80303, USA
| |
Collapse
|
6
|
Singh S, Lyle H, D'Amario L, Magnano E, Vinogradov I, Cuk T. Coherent Acoustic Interferometry during the Photodriven Oxygen Evolution Reaction Associates Strain Fields with the Reactive Oxygen Intermediate (Ti-OH*). J Am Chem Soc 2021; 143:15984-15997. [PMID: 34554748 DOI: 10.1021/jacs.1c04976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxygen evolution reaction (OER) from water requires the formation of metastable, reactive oxygen intermediates to enable oxygen-oxygen bond formation. Conversely, such reactive intermediates could also structurally modify the catalyst. A descriptor for the overall catalytic activity, the first electron and proton transfer OER intermediate from water, (M-OH*), has been associated with significant distortions of the metal-oxygen bonds upon charge-trapping. Time-resolved spectroscopy of in situ, photodriven OER on transition metal oxide surfaces has characterized M-OH* for the charge trapping and the symmetry of the lattice distortions by optical and vibrational transitions, respectively, but had yet to detect an interfacial strain field arising from a surface coverage M-OH*. Here, we utilize picosecond, coherent acoustic interferometry to detect the uniaxial strain normal to the SrTiO3/aqueous interface directly caused by Ti-OH*. The spectral analysis applies a fairly general methodology for detecting a combination of the spatial extent, magnitude, and generation time of the interfacial strain through the coherent oscillations' phase. For lightly n-doped SrTiO3, we identify the strain generation time (1.31 ps), which occurs simultaneously with Ti-OH* formation, and a tensile strain of 0.06% (upper limit 0.6%). In addition to fully characterizing this intermediate across visible, mid-infrared, and now GHz-THz probes on SrTiO3, we show that strain fields occur with the creation of some M-OH*, which modifies design strategies for tuning catalytic activity and provides insight into photo-induced degradation so prevalent for OER. To that end, the work put forth here provides a unique methodology to characterize intermediate-induced interfacial strain across OER catalysts.
Collapse
Affiliation(s)
- Suryansh Singh
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Boulder, Colorado 80303, United States.,Materials Science and Engineering Program, University of Colorado, Boulder, Boulder, Colorado 80303, United States
| | - Hanna Lyle
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Boulder, Colorado 80303, United States.,Materials Science and Engineering Program, University of Colorado, Boulder, Boulder, Colorado 80303, United States
| | - Luca D'Amario
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.,Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Elena Magnano
- IOM CNR Laboratorio TASC, 34149 Basovizza (TS), Italy.,Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Ilya Vinogradov
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Boulder, Colorado 80303, United States
| | - Tanja Cuk
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Boulder, Colorado 80303, United States.,Materials Science and Engineering Program, University of Colorado, Boulder, Boulder, Colorado 80303, United States.,Department of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
7
|
Li J, Triana CA, Wan W, Adiyeri Saseendran DP, Zhao Y, Balaghi SE, Heidari S, Patzke GR. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chem Soc Rev 2021; 50:2444-2485. [DOI: 10.1039/d0cs00978d] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The recent synthetic and mechanistic progress in molecular and heterogeneous water oxidation catalysts highlights the new, overarching strategies for knowledge transfer and unifying design concepts.
Collapse
Affiliation(s)
- J. Li
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - C. A. Triana
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | | | - Y. Zhao
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. E. Balaghi
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. Heidari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
8
|
Kunkel M, Bitter S, Sailer F, Winter RF, Polarz S. Aggregation‐Induced Improvement of Catalytic Activity by Inner‐Aggregate Electronic Communication of Metal‐Fullerene‐Based Surfactants. ChemCatChem 2020. [DOI: 10.1002/cctc.202000412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marius Kunkel
- Department of Chemistry University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Stefan Bitter
- Department of Chemistry University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Frank Sailer
- Department of Chemistry University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Rainer F. Winter
- Department of Chemistry University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Sebastian Polarz
- Department of Chemistry University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
- Institute of Inorganic Chemistry Leibniz-University Hannover Callinstrasse 9 30167 Hannover Germany
| |
Collapse
|
9
|
Selecting between two transition states by which water oxidation intermediates decay on an oxide surface. Nat Catal 2019. [DOI: 10.1038/s41929-019-0332-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Reikowski F, Maroun F, Pacheco I, Wiegmann T, Allongue P, Stettner J, Magnussen OM. Operando Surface X-ray Diffraction Studies of Structurally Defined Co3O4 and CoOOH Thin Films during Oxygen Evolution. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04823] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Finn Reikowski
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Fouad Maroun
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
| | - Ivan Pacheco
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
| | - Tim Wiegmann
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Philippe Allongue
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
| | - Jochim Stettner
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| | - Olaf M. Magnussen
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
| |
Collapse
|
11
|
Strasser P, Gliech M, Kuehl S, Moeller T. Electrochemical processes on solid shaped nanoparticles with defined facets. Chem Soc Rev 2018; 47:715-735. [PMID: 29354840 DOI: 10.1039/c7cs00759k] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This 2007 Chemistry Nobel prize update covers scientific advances of the past decade in our understanding of electrocatalytic processes on surfaces of nanoscale shape-controlled polyhedral solids. It is argued that the field of chemical reaction processes on solid surfaces has recently been paying increasing attention to the fundamental understanding of electrified solid-liquid interfaces and toward the operando study of the minute fraction of catalytically active, structurally dynamic non-equilibrium Taylor-type surface sites. Meanwhile, despite mounting evidence of acting as structural proxies in some cases, the concept of catalytic structure sensitivity of well-defined nanoscale solid surfaces continues to be a key organizing principle for the science of shape-controlled nanocrystals and, hence, constitutes a central recurring theme in this review. After addressing key aspects and recent progress in the wet-chemical synthesis of shaped nanocatalysts, three areas of electrocatalytic processes on solid shape-controlled nanocrystals of current scientific priority are discussed in more detail: the oxygen electroreduction on shape-controlled Pt-Ni polyhedra with its technological relevance for low temperature fuel cells, the CO2 electroreduction to hydrocarbons on Cu polyhedra and the puzzling interplay between chemical and structural effects, and the electrocatalytic oxygen evolution reaction from water on shaped transition metal oxides. The review closes with the conclusion that Surface Science and thermal catalysis, honored by Ertl's Nobel prize a decade ago, continue to show major repercussions on the emerging field of Interface Science.
Collapse
Affiliation(s)
- Peter Strasser
- The Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623 Berlin, Germany.
| | | | | | | |
Collapse
|
12
|
van Oversteeg CHM, Doan HQ, de Groot FMF, Cuk T. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem Soc Rev 2018; 46:102-125. [PMID: 27834973 DOI: 10.1039/c6cs00230g] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
X-ray absorption studies of the geometric and electronic structure of primarily heterogeneous Co, Ni, and Mn based water oxidation catalysts are reviewed. The X-ray absorption near edge and extended X-ray absorption fine structure studies of the metal K-edge, characterize the metal oxidation state, metal-oxygen bond distance, metal-metal distance, and degree of disorder of the catalysts. These properties guide the coordination environment of the transition metal oxide radical that localizes surface holes and is required to oxidize water. The catalysts are investigated both as-prepared, in their native state, and under reaction conditions, while transition metal oxide radicals are generated. The findings of many experiments are summarized in tables. The advantages of future X-ray experiments on water oxidation catalysts, which include the limited data available of the oxygen K-edge, metal L-edge, and resonant inelastic X-ray scattering, are discussed.
Collapse
Affiliation(s)
| | - Hoang Q Doan
- Department of Chemistry, University of California - Berkeley, 419 Latimer Hall, Berkeley, CA 94720, USA.
| | - Frank M F de Groot
- Department of Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Tanja Cuk
- Department of Chemistry, University of California - Berkeley, 419 Latimer Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Song F, Moré R, Schilling M, Smolentsev G, Azzaroli N, Fox T, Luber S, Patzke GR. {Co4O4} and {CoxNi4–xO4} Cubane Water Oxidation Catalysts as Surface Cut-Outs of Cobalt Oxides. J Am Chem Soc 2017; 139:14198-14208. [DOI: 10.1021/jacs.7b07361] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fangyuan Song
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - René Moré
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mauro Schilling
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | - Thomas Fox
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R. Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
14
|
In situ characterization of cofacial Co(IV) centers in Co 4O 4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts. Proc Natl Acad Sci U S A 2017; 114:3855-3860. [PMID: 28348217 DOI: 10.1073/pnas.1701816114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Co4O4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV)2 state may be captured in a Co(III)2(IV)2 cubane. We demonstrate that the Co(III)2(IV)2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III)2(IV)2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV)2 dimer. The exchange coupling in the cofacial Co(IV)2 site allows for parallels to be drawn between the electronic structure of the Co4O4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV)2 center on O-O bond formation.
Collapse
|
15
|
Zhang M, Frei H. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates. Annu Rev Phys Chem 2017; 68:209-231. [PMID: 28226220 DOI: 10.1146/annurev-physchem-052516-050655] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. Combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis.
Collapse
Affiliation(s)
- Miao Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720;
| | - Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720;
| |
Collapse
|
16
|
Shaffer DW, Xie Y, Concepcion JJ. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling. Chem Soc Rev 2017; 46:6170-6193. [DOI: 10.1039/c7cs00542c] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A review of water oxidation by ruthenium-based molecular catalysts, with emphasis on the mechanism of O–O bond formation.
Collapse
Affiliation(s)
| | - Yan Xie
- Chemistry Division
- Brookhaven National Laboratory
- Upton
- USA
| | | |
Collapse
|
17
|
Yamada Y, Oyama K, Suenobu T, Fukuzumi S. Photocatalytic water oxidation by persulphate with a Ca2+ ion-incorporated polymeric cobalt cyanide complex affording O2 with 200% quantum efficiency. Chem Commun (Camb) 2017; 53:3418-3421. [DOI: 10.1039/c7cc00199a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporation of a small amount of Ca2+ ions into a polymeric cobalt cyanide complex enhanced the activity for photocatalytic water oxidation by persulphate with [Ru(bpy)3]2+ at pH 7.0 to achieve a maximum quantum efficiency of 200%.
Collapse
Affiliation(s)
- Yusuke Yamada
- Department of Applied Chemistry and Bioengineering
- Graduate School of Engineering
- Osaka City University
- Osaka 558-8585
- Japan
| | - Kohei Oyama
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- SENTAN
- Japan Science and Technology Agency (JST)
| | - Tomoyoshi Suenobu
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- SENTAN
- Japan Science and Technology Agency (JST)
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
- Faculty of Science and Engineering
| |
Collapse
|
18
|
Shaffer DW, Xie Y, Szalda DJ, Concepcion JJ. Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes. Inorg Chem 2016; 55:12024-12035. [DOI: 10.1021/acs.inorgchem.6b02193] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | - David J. Szalda
- Department
of Natural Sciences, Baruch College, The City University of New York, New
York, New York 10010, United States
| | | |
Collapse
|
19
|
|
20
|
Costentin C, Porter TR, Savéant JM. Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films. J Am Chem Soc 2016; 138:5615-22. [DOI: 10.1021/jacs.6b00737] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cyrille Costentin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie
Moléculaire, Unité Mixte de Recherche Université−CNRS
No. 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Thomas R. Porter
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie
Moléculaire, Unité Mixte de Recherche Université−CNRS
No. 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Michel Savéant
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie
Moléculaire, Unité Mixte de Recherche Université−CNRS
No. 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
21
|
Ullman AM, Brodsky CN, Li N, Zheng SL, Nocera DG. Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts. J Am Chem Soc 2016; 138:4229-36. [DOI: 10.1021/jacs.6b00762] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andrew M. Ullman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Casey N. Brodsky
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Nancy Li
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
22
|
Perathoner S, Centi G, Su D. Turning Perspective in Photoelectrocatalytic Cells for Solar Fuels. CHEMSUSCHEM 2016; 9:345-357. [PMID: 26663767 DOI: 10.1002/cssc.201501059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/12/2015] [Indexed: 06/05/2023]
Abstract
The development of new devices for the use and storage of solar energy is a key step to enable a new sustainable energy scenario. The route for direct solar-to-chemical energy transformation, especially to produce liquid fuels, represents a necessary element to realize transition from the actual energy infrastructure. Photoelectrocatalytic (PECa) devices for the production of solar fuels are a key element to enable this sustainable scenario. The development of PECa devices and related materials is of increasing scientific and applied interest. This concept paper introduces the need to turn the viewpoint of research in terms of PECa cell design and related materials with respect to mainstream activities in the field of artificial photosynthesis and leaves. As an example of a new possible direction, the concept of electrolyte-less cell design for PECa cells to produce solar fuels by reduction of CO2 is presented. The fundamental and applied development of new materials and electrodes for these cells should proceed fully integrated with PECa cell design and systematic analysis. A new possible approach to develop semiconductors with improved performances by using visible light is also shortly presented.
Collapse
Affiliation(s)
- Siglinda Perathoner
- Department of Electrical Engineering, Industrial Chemistry and Engineering (DIECII), Section Industrial Chemistry, University of Messina, ERIC aisbl and CASPE/INSTM, V.le F. Stagno D'Alcontras 31, 98166, Messina, Italy.
| | - Gabriele Centi
- Department of Electrical Engineering, Industrial Chemistry and Engineering (DIECII), Section Industrial Chemistry, University of Messina, ERIC aisbl and CASPE/INSTM, V.le F. Stagno D'Alcontras 31, 98166, Messina, Italy.
| | - Dangsheng Su
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang, 110006, P.R. China
| |
Collapse
|
23
|
Plaisance CP, Reuter K, van Santen RA. Quantum chemistry of the oxygen evolution reaction on cobalt(ii,iii) oxide – implications for designing the optimal catalyst. Faraday Discuss 2016; 188:199-226. [DOI: 10.1039/c5fd00213c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory is used to examine the changes in electronic structure that occur during the oxygen evolution reaction (OER) catalyzed by active sites on three different surface terminations of Co3O4. These three active sites have reactive oxo species with differing degrees of coordination by Co cations – a μ3-oxo on the (311) surface, a μ2-oxo on the (110)-A surface, and an η-oxo on the (110)-B surface. The kinetically relevant step on all surfaces over a wide range of applied potentials is the nucleophilic addition of water to the oxo, which is responsible for formation of the O–O bond. The intrinsic reactivity of a site for this step is found to increase as the coordination of the oxo decreases with the μ3-oxo on the (311) surface being the least reactive and the η-oxo on the (110)-B surface being the most reactive. A detailed analysis of the electronic changes occurring during water addition on the three sites reveals that this trend is due to both a decrease in the attractive local Madelung potential on the oxo and a decrease in electron withdrawal from the oxo by Co neighbors. Applying a similar electronic structure analysis to the oxidation steps preceding water addition in the catalytic cycle shows that analogous electronic changes occur during this process, explaining a correlation observed between the oxidation potential of a site and its intrinsic reactivity for water addition. This concept is then used to specify criteria for the design of an optimal OER catalyst at a given applied potential.
Collapse
Affiliation(s)
- Craig P. Plaisance
- Chair of Theoretical Chemistry and Catalysis Research Center
- Technical University of Munich
- Garching
- Germany
| | - Karsten Reuter
- Chair of Theoretical Chemistry and Catalysis Research Center
- Technical University of Munich
- Garching
- Germany
| | - Rutger A. van Santen
- Institute for Complex Molecular Systems
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
- Laboratory of Inorganic Materials Chemistry
| |
Collapse
|
24
|
Wang VCC. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems. Phys Chem Chem Phys 2016; 18:22364-72. [DOI: 10.1039/c6cp03500k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Unifying the kinetic and thermodynamic properties of electrocatalysts for the oxygen evolution reaction.
Collapse
Affiliation(s)
- Vincent C.-C. Wang
- Yancheng, Kaohsiung 803
- Republic of China
- Institute of Chemistry
- Academia Sinica
- Taipei 115
| |
Collapse
|
25
|
Kim W, McClure BA, Edri E, Frei H. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chem Soc Rev 2016; 45:3221-43. [DOI: 10.1039/c6cs00062b] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Closing the photosynthetic cycle on the nanometer scale under membrane separation of the half reactions for developing scalable artificial photosystems.
Collapse
Affiliation(s)
- Wooyul Kim
- Molecular Biophysics and Integrated Bioimaging Division
- Lawrence Berkeley National Laboratory
- University of California
- Berkeley
- USA
| | - Beth Anne McClure
- Molecular Biophysics and Integrated Bioimaging Division
- Lawrence Berkeley National Laboratory
- University of California
- Berkeley
- USA
| | - Eran Edri
- Molecular Biophysics and Integrated Bioimaging Division
- Lawrence Berkeley National Laboratory
- University of California
- Berkeley
- USA
| | - Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division
- Lawrence Berkeley National Laboratory
- University of California
- Berkeley
- USA
| |
Collapse
|
26
|
Plaisance CP, van Santen RA. Structure Sensitivity of the Oxygen Evolution Reaction Catalyzed by Cobalt(II,III) Oxide. J Am Chem Soc 2015; 137:14660-72. [PMID: 26479891 DOI: 10.1021/jacs.5b07779] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantum chemical calculations and simulated kinetics were used to examine the structure sensitivity of the oxygen evolution reaction on several surface terminations of Co3O4. Active sites consisting of two adjacent Co(IV) cations connected by bridging oxos were identified on both the (001) and (311) surfaces. Formation of the O-O bond proceeds on these sites by nucleophilic attack of water on a bridging oxo. It was found that the relative turnover frequencies for the different sites are highly dependent on the overpotential, with the dual-Co site on the (311) surface being most active at medium overpotentials (0.46-0.77 V), where O-O bond formation by water addition is rate limiting. A similar dual-Co site on the (001) surface is most active at low overpotentials (<0.46 V), where O2 release is rate limiting, and a single-Co site on the (110) surface is most active at overpotentials that are high enough (>0.77 V) to form a significant concentration of highly reactive terminal Co(V)═O species. Two overpotential-dependent Sabatier relationships were identified based on the Brønsted basicity and redox potential of the active site, explaining the change in the active site with overpotential. The (311) dual-Co site that is most active in the medium overpotential range is consistent with recent experimental observations suggesting that a defect site is responsible for the observed oxygen evolution activity and that a modest concentration of superoxo intermediates is present on the surface. Importantly, we find that it is essential to consider the kinetics of the water addition and O2 release steps rather than only the thermodynamics.
Collapse
Affiliation(s)
- Craig P Plaisance
- Institute for Complex Molecular Systems and Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Eindhoven University of Technology , 5612 AZ, Eindhoven, The Netherlands
| | - Rutger A van Santen
- Institute for Complex Molecular Systems and Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Eindhoven University of Technology , 5612 AZ, Eindhoven, The Netherlands
| |
Collapse
|
27
|
Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chem Soc Rev 2015; 44:7262-341. [PMID: 26435467 DOI: 10.1039/c5cs00396b] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review addresses the most relevant aspects of vibrational spectroscopies (IR, Raman and INS) applied to zeolites and zeotype materials. Surface Brønsted and Lewis acidity and surface basicity are treated in detail. The role of probe molecules and the relevance of tuning both the proton affinity and the steric hindrance of the probe to fully understand and map the complex site population present inside microporous materials are critically discussed. A detailed description of the methods needed to precisely determine the IR absorption coefficients is given, making IR a quantitative technique. The thermodynamic parameters of the adsorption process that can be extracted from a variable-temperature IR study are described. Finally, cutting-edge space- and time-resolved experiments are reviewed. All aspects are discussed by reporting relevant examples. When available, the theoretical literature related to the reviewed experimental results is reported to support the interpretation of the vibrational spectra on an atomic level.
Collapse
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry, NIS and INSTM Reference Centers, University of Torino, Via Quarello 15, I-10135 Torino, Italy
| | | | | | | | | |
Collapse
|
28
|
Yamada Y, Oyama K, Gates R, Fukuzumi S. High Catalytic Activity of Heteropolynuclear Cyanide Complexes Containing Cobalt and Platinum Ions: Visible-Light Driven Water Oxidation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Yamada Y, Oyama K, Gates R, Fukuzumi S. High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation. Angew Chem Int Ed Engl 2015; 54:5613-7. [PMID: 25866203 DOI: 10.1002/anie.201501116] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/09/2015] [Indexed: 11/06/2022]
Abstract
A near-stoichiometric amount of O2 was evolved as observed in the visible-light irradiation of an aqueous buffer (pH 8) containing [Ru(II) (2,2'-bipyridine)3 ] as a photosensitizer, Na2 S2 O8 as a sacrificial electron acceptor, and a heteropolynuclear cyanide complex as a water-oxidation catalyst. The heteropolynuclear cyanide complexes exhibited higher catalytic activity than a polynuclear cyanide complex containing only Co(III) or Pt(IV) ions as C-bound metal ions. The origin of the synergistic effect between Co and Pt ions is discussed in relation to electronic and local atomic structures of the complexes.
Collapse
Affiliation(s)
- Yusuke Yamada
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan) http://www-etchem.mls.eng.osaka-u.ac.jp/.
| | | | | | | |
Collapse
|
30
|
Abstract
The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnOx. This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnOx. The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed Mn (III/IV)-oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials. In the outlook, the challenges of catalyst screenings (and hence the identification of a "best MnOx catalyst") are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnOx materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future.
Collapse
Affiliation(s)
- Philipp Kurz
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany.
| |
Collapse
|