1
|
Jia L, Li B, Wang X, Zhao J, Qu J, Zhou Y. Construction of axially chiral 2-arylpyrroles using catalytic asymmetric Suzuki-Miyaura cross-coupling: an efficient approach to esaxerenone. Org Biomol Chem 2024; 22:8749-8754. [PMID: 39177493 DOI: 10.1039/d4ob01174k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A general and efficient method has been developed to access axially chiral 2-arylpyrroles using catalytic asymmetric Suzuki-Miyaura cross-coupling. A wide range of axially chiral arylpyrroles were obtained in high yields with good to excellent enantioselectivities. The key to success is the use of a combined catalytic system involving a palladium catalyst and chiral ferrocene diphosphine ligand for achieving effective enantiocontrol. More importantly, this axially chiral CF3-substituted 2-arylpyrrole serves as a key intermediate in the preparation of the anti-hypertensive and diabetic nephropathy drug esaxerenone. It was directly asymmetrically synthesized with high enantioselectivity (92% ee). Thus, a new strategy is provided for the catalytic asymmetric synthesis of esaxerenone.
Collapse
Affiliation(s)
- Ling Jia
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Bing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Xi Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
2
|
Patel MA, Kapdi AR. Ubiquitous Role of Phosphine-Based Water-Soluble Ligand in Promoting Catalytic Reactions in Water. CHEM REC 2024; 24:e202400057. [PMID: 39162777 DOI: 10.1002/tcr.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Indexed: 08/21/2024]
Abstract
Catalysis has been at the forefront of the developments that has revolutionised synthesis and provided the impetus in the discovery of platform technologies for efficient C-C or C-X bond formation. Current environmental situation however, demands a change in strategy with catalysis being promoted more in solvents that are benign (Water) and for that the development of hydrophilic ligands (especially phosphines) is a necessity which could promote catalytic reactions in water, allow recyclability of the catalytic solutions and make it possible to isolate products using column-free techniques that involve lesser usage of hazardous organic solvents. In this review, we therefore critically analyse such catalytic processes providing examples that do follow the above-mentioned parameter.
Collapse
Affiliation(s)
- Manisha A Patel
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| |
Collapse
|
3
|
Shada ADR, Mangunuru HPR, Terrab L, Tenneti S, Kalikinidi NR, Naini SR, Gajula P, Crull EB, Janganati V, Kovvuri R, Natarajan V, Lee D, Yin J, Samankumara L, Mahar R, Zhang X, Chen A, Hewa-Rahinduwage CC, Wang Z, Mamunooru M, Rana J, Wannere CS, Armstrong JD, Williamson RT, Sirasani G, Qu B, Senanayake CH. Design and Discovery of Water-Soluble Benzooxaphosphole-Based Ligands for Hindered Suzuki-Miyaura Coupling Reactions with Low Catalyst Load. Org Lett 2024; 26:2751-2757. [PMID: 37486800 DOI: 10.1021/acs.orglett.3c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
We report a new class of highly effective, benzooxaphosphole-based, water-soluble ligands in the application of Suzuki-Miyaura cross-coupling reactions for sterically hindered substrates in aqueous media. The catalytic activities of the coupling reactions were greatly enhanced by the addition of catalytic amounts of organic phase transfer reagents, such as tetraglyme and tetrabutylammonium bromide. The optimized general protocol can be conducted with a low catalyst load, thereby providing a practical solution for these reactions. The viability of this new Suzuki-Miyaura protocol was demonstrated with various substrates to generate important building blocks, including heterocycles, for the synthesis of biologically active compounds.
Collapse
Affiliation(s)
- Arun D R Shada
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Hari P R Mangunuru
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Leila Terrab
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Srinivasarao Tenneti
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | | | - Santhosh Reddy Naini
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Praveen Gajula
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Emily B Crull
- University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, North Carolina 28409, United States
| | - Venumadhav Janganati
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Raghavendra Kovvuri
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Vasudevan Natarajan
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Daniel Lee
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Jinya Yin
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Lalith Samankumara
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Rohit Mahar
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Xueyi Zhang
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Anji Chen
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | | | - Zhirui Wang
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Manasa Mamunooru
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Jagruti Rana
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Chaitanya S Wannere
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Joseph D Armstrong
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - R Thomas Williamson
- University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, North Carolina 28409, United States
| | - Gopal Sirasani
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Bo Qu
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Chris H Senanayake
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| |
Collapse
|
4
|
Chaudhari KR, Wadawale AP, Pathak AK, Dey S. Linkage Isomers of Triangular Pd Metallacycles and Catalysis in Aqueous Suzuki Coupling Reaction. Inorg Chem 2024; 63:1427-1438. [PMID: 38166362 DOI: 10.1021/acs.inorgchem.3c03963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The water-soluble trinuclear Pd metallacycles [Pd(tmeda)(4-Spy)]3(X)3 (tmeda = tetramethylethylenediamine, X = OTf, 2; NO3, 3) were synthesized from the ambidentate ligand 4-pyridylthiolate (Spy-) and [Pd(tmeda)X2] in 80 and 70% yield, respectively. Two possible linkage isomers are found in solution (slow interconversion found in the NMR) and in the solid state. Density functional calculations showed that the energy of the isomer with a D3-symmetric arrangement of the SPy ligand and all Pd atoms having N∧NPdSN coordination is only 7 kcal/mol lower. When reacting [Pd(tmeda)(NO3)2] with 4,4'-biphenyldithiolate (S2bph2-), the tetranuclear [{Pd(tmeda)}4(μ-S2bph)2](NO3)4 (1) was formed. A new type of undecanuclear Pd cluster was separated as a minor product from an acetone solution of 2 in air. The new complexes represent the first examples of water-soluble Pd metallacycles constructed from a pyridine-thiolate ligand. They show catalytic activity with turnover numbers ranging from 9 to 420 in aqueous Suzuki cross-coupling reactions using phenyl boronic acid and a number of aryl halides. An optimized system gave a TON of 6,900,000 and a TOF of 492,857 h-1. The catalyst could be reused eight times, and the activity has been attributed to the formation of PdNPs.
Collapse
Affiliation(s)
- Kamal R Chaudhari
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Amey P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Arup Kumar Pathak
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| | - Sandip Dey
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| |
Collapse
|
5
|
Hobsteter AW, Lo Fiego MJ, Silbestri GF. Rational design of galactopyranoside-substituted N-heterocyclic carbene palladium(ii) complexes. Stable and efficient catalyst for C-C coupling in aqueous media. RSC Adv 2024; 14:1626-1633. [PMID: 38179092 PMCID: PMC10765771 DOI: 10.1039/d3ra08031e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Following a rational design, three novel palladium(ii) complexes bearing galactopyranoside-based N-heterocyclic carbene ligands have been synthesized via transmetalation of the corresponding Ag(i) complexes. Palladium(ii) complexes have been characterized by NMR, FT-IR and elemental analysis. Catalytic studies, using the Stille and Suzuki-Miyaura cross-coupling reactions as model C-C coupling, reveal that the complexes are active and reusable. The best results in terms of TON values were achieved in aqueous medium using either the in situ deacetylation of the catalyst or the previously deacetylated catalyst. The catalytic condition using in situ deacetylation was more efficient because it avoids an additional deprotection step.
Collapse
Affiliation(s)
- Ariana W Hobsteter
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET Av. Alem 1253 B8000CPB Bahía Blanca Argentina
| | - Marcos J Lo Fiego
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET Av. Alem 1253 B8000CPB Bahía Blanca Argentina
| | - Gustavo F Silbestri
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET Av. Alem 1253 B8000CPB Bahía Blanca Argentina
| |
Collapse
|
6
|
Kato M, Huynh M, Chan N, Elliott J, Trinh A, Lucero K, Vu J, Parker D, Cheruzel LE. A one-pot Pd- and P450-catalyzed chemoenzymatic synthesis of a library of oxyfunctionalized biaryl alkanoic acids leveraging a substrate anchoring approach. J Inorg Biochem 2023; 245:112240. [PMID: 37245283 DOI: 10.1016/j.jinorgbio.2023.112240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/30/2023]
Abstract
A one-pot chemoenzymatic approach was developed by combining Palladium-catalysis with selective cytochrome P450 enzyme oxyfunctionalization. Various iodophenyl alkanoic acids could be coupled with alkylphenyl boronic acids to generate a series of alkyl substituted biarylalkanoic acids in overall high yield. The identity of the products could be confirmed by various analytical and chromatographic techniques. Addition of an engineered cytochrome P450 heme domain mutant with peroxygenase activity upon completion of the chemical reaction resulted in the selective oxyfunctionalization of those compounds, primarily at the benzylic position. Moreover, in order to increase the biocatalytic product conversion, a reversible substrate engineering approach was developed. This involves the coupling of a bulky amino acid such as L- phenylalanine or tryptophan, to the carboxylic acid moiety. The approach resulted in a 14 to 49% overall biocatalytic product conversion increase associated with a change in regioselectivity of hydroxylation towards less favored positions.
Collapse
Affiliation(s)
- Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Michael Huynh
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Nicholas Chan
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Julien Elliott
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Amie Trinh
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Kathreena Lucero
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Julia Vu
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Daniel Parker
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA
| | - Lionel E Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|
7
|
Mohammadi L, Vaezi MR. Palladium Nanoparticle-Decorated Porous Metal-Organic-Framework (Zr)@Guanidine: Novel Efficient Catalyst in Cross-Coupling (Suzuki, Heck, and Sonogashira) Reactions and Carbonylative Sonogashira under Mild Conditions. ACS OMEGA 2023; 8:16395-16410. [PMID: 37179614 PMCID: PMC10173326 DOI: 10.1021/acsomega.3c01179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
A novel heterogeneous Zr-based metal-organic framework containing an amino group functionalized with nitrogen-rich organic ligand (guanidine), through a step-by-step post synthesis modification approach, was successfully modified by the stabilization of palladium metal nanoparticles on the prepared UiO-66-NH2 support in order to synthesize the Suzuki-Murray, Mizoroki-Heck, and copper-free Sonogashira reactions and also the carbonylative Sonogashira reaction incorporating H2O as a green solvent under mild conditions. This newly synthesized highly efficient and reusable UiO-66-NH2@cyanuric chloride@guanidine/Pd-NPs reported catalyst has been utilized to increase anchoring palladium onto the substrate with the aim of altering the construction of the intended synthesis catalyst to form the C-C coupling derivatives. Several strategies, including X-ray diffraction, Fourier transform infrared, scanning electron microscopy, Brunauer-Emmett-Teller, transmission microscopy electron, thermogravimetric analysis, inductively coupled plasma, energy-dispersive X-ray, and elemental mapping analyzes, were used to indicate the successful preparation of the UiO-66-NH2@cyanuric chloride@guanidine/Pd-NPs. In these reactions, the UiO-66-NH2-supported Pd-NPs illustrated superior performances compared to their catalyst, revealing the benefits of providing nanocatalysts. As a result, the proposed catalyst is favorable in a green solvent, and also, the outputs are accomplished with good to excellent outputs. Furthermore, the suggested catalyst represented very good reusability with no remarkable loss in activity up nine sequential runs.
Collapse
|
8
|
Hosseini-Sarvari M, Dehghani A. Nickel/TiO2-catalyzed Suzuki–Miyaura cross-coupling of arylboronic acids with aryl halides in MeOH/H2O. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Henry JM, Milne D, Perkins D, Hicks W, Hose DRJ, Campbell AD, Mullen AK, Inglesby PA, Raw SA, Jones MF. Exploiting the Physical Properties of Diethanolamine Boronic Esters for Process Improvements in AZD5718. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Jean-Marc Henry
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - David Milne
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Dave Perkins
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - William Hicks
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - David R. J. Hose
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Andrew D. Campbell
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Alexander K. Mullen
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Phillip A. Inglesby
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Steven A. Raw
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Martin F. Jones
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| |
Collapse
|
10
|
Mohammadi L, Hosseinifard M, Vaezi MR. Stabilization of Palladium-Nanoparticle-Decorated Postsynthesis-Modified Zr-UiO-66 MOF as a Reusable Heterogeneous Catalyst in C-C Coupling Reaction. ACS OMEGA 2023; 8:8505-8518. [PMID: 36910943 PMCID: PMC9996586 DOI: 10.1021/acsomega.2c07661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Here we prepared a highly efficient and reusable catalyst by a step-by-step postsynthesis modification of UiO-66-NH2 metal-organic frameworks (MOFs) with nitrogen-rich organic ligands and used it as support for the preparation of UiO-66-NH2@cyanuric chloride@2-aminopyrimidine/PdNPs. The catalytic performance's results of UiO-66-NH2@cyanuric chloride@2-aminopyrimidine/PdNPs, UiO-66-NH2/PdNPs, and UiO-66-NH2@cyanuric chloride/PdNPs indicate high efficiency of the modulation of the microenvironment of the palladium NPs. The addition of N-rich organic ligands through postsynthesis modification caused a unique structure of the final composite in favor of the progress of the C-C coupling reaction. Various techniques, including FT-IR, XRD, SEM, TEM, EDS, and elemental mapping, were used to characterize UiO-66-NH2@cyanuric chloride@2-aminopyrimidine/PdNPs, indicating its successful preparation. Three C-C coupling reactions, including the Suzuki, Heck, and Sonogashira coupling reactions, were promoted using the produced catalyst. As a result of the postsynthesis modification (PSM), the proposed catalyst displays improved catalytic performance. In addition, the suggested catalyst was highly recyclable up to ten times without leaching of PdNPs.
Collapse
Affiliation(s)
- Leila Mohammadi
- Department
of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | | | - Mohammad Reza Vaezi
- Department
of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
11
|
Akkarasereenon K, Batsomboon P, Ruchirawat S, Ploypradith P. Functionalized Chromans from ortho-Quinone Methides and Arylallenes. J Org Chem 2022; 87:15863-15887. [PMID: 36373006 DOI: 10.1021/acs.joc.2c01962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
ortho-Quinone methides (o-QMs) underwent formal [4 + 2]-cycloaddition reactions with arylallenes regioselectively at the styrenyl olefin to furnish the corresponding 3-methylene-2-arylchromans in moderate to good yields (up to 88%). When R ≠ H, the reactions also proceeded with moderate stereoselectivity (up to 5:1) which was governed by the nature of the R group. The 3-methylene-2-arylchromans could serve as common intermediates for further functionalization including epoxidation, oxidative cleavage/Baeyer-Villiger oxidation, Riley oxidation, acid-catalyzed rearrangement, and Pd-catalyzed cross-coupling reactions to furnish the corresponding derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Kornkamon Akkarasereenon
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Paratchata Batsomboon
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| | - Poonsakdi Ploypradith
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| |
Collapse
|
12
|
Hosseini R, Ranjbar‐Karimi R, Mohammadiannejad K. Practical Synthesis of Novel Symmetrical and Unsymmetrical
Tetrakis
(aryl/heteroaryl) Adducts Containing Polyconjugated Linkages. ChemistrySelect 2022. [DOI: 10.1002/slct.202203760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Raziyeh Hosseini
- Department of Chemistry Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| | - Reza Ranjbar‐Karimi
- Department of Chemistry Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| | - Kazem Mohammadiannejad
- NMR Laboratory Faculty of Science Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| |
Collapse
|
13
|
Burilov V, Radaev D, Sultanova E, Mironova D, Duglav D, Evtugyn V, Solovieva S, Antipin I. Novel PEPPSI-Type NHC Pd(II) Metallosurfactants on the Base of 1H-Imidazole-4,5-dicarboxylic Acid: Synthesis and Catalysis in Water-Organic Media. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4100. [PMID: 36432382 PMCID: PMC9694788 DOI: 10.3390/nano12224100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Carrying out organic reactions in water has attracted much attention. Catalytic reactions in water with metallosurfactants, which have both a metallocenter and the surface activity necessary for solubilizing hydrophobic reagents, are of great demand. Herein we proposed new approach to the synthesis of NHC PEPPSI metallosurfactants based on the sequential functionalization of imidazole 4,5-dicarboxylic acid with hydrophilic oligoethylene glycol and lipophilic alkyl fragments. Complexes of different lipophilicity were obtained, and their catalytic activity was studied in model reduction and Suzuki-Miyaura reactions. A comparison was made with the commercial PEPPSI-type catalytic systems designed by Organ. It was found that the reduction reaction in an aqueous solution of the metallosurfactant with the tetradecyl lipophilic fragment was three times more active than the commercially available PEPPSI complexes, which was associated with the formation of stable monodisperse aggregates detected by DLS and TEM.
Collapse
Affiliation(s)
- Vladimir Burilov
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Dmitriy Radaev
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Elza Sultanova
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Diana Mironova
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Daria Duglav
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Vladimir Evtugyn
- Interdisciplinary Center for Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Svetlana Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420008 Kazan, Russia
| | - Igor Antipin
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| |
Collapse
|
14
|
Zhang L, Xiong W, Yao B, Liu H, Li M, Qin Y, Yu Y, Li X, Chen M, Wu W, Li J, Wang J, Jiang H. Facile synthesis of isoquinolines and isoquinoline N-oxides via a copper-catalyzed intramolecular cyclization in water. RSC Adv 2022; 12:30248-30252. [PMID: 36349148 PMCID: PMC9607880 DOI: 10.1039/d2ra06097c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023] Open
Abstract
A highly efficient method for the facile access of isoquinolines and isoquinoline N-oxides via a Cu(i)-catalyzed intramolecular cyclization of (E)-2-alkynylaryl oxime derivatives in water has been developed. This protocol was performed under simple and mild conditions without organic solvent, additives or ligands. By switching on/off a hydroxyl protecting group of oximes, the selective N-O/O-H cleavage could be triggered, delivering a series of isoquinolines and isoquinoline N-oxides, respectively, in moderate to high yields with good functional group tolerance and high atom economy. Moreover, the practicality of this method was further demonstrated by the total synthesis of moxaverine in five steps.
Collapse
Affiliation(s)
- Lujun Zhang
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Wenfang Xiong
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
| | - Biao Yao
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Haitao Liu
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Meng Li
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Yu Qin
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Yujian Yu
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Xu Li
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Meng Chen
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Jianxiao Li
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Jinliang Wang
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
15
|
Pd and Ni NPs@Eu-MOF, an economically advantageous nanocatalyst for C(sp2)-C(sp2) cross-coupling reactions. Key role of Ni and of the metal nanoparticles. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Godarzbod F, Mirjafary Z, Saeidian H, Rouhani M. Palladium@silica-coated magnetic nanoparticles as efficient and recyclable catalysts for ligand-free Suzuki–Miyaura coupling reaction under mild conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Chopra J, Dayma V, Mandal A, Baroliya PK, Maiti D. An Unprecedented Valorisation of Marble Slurry Waste Material as Solid Support for Palladium‐Catalysed Heck and Suzuki Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jaishri Chopra
- Department of Chemistry Mohanlal Sukhadia University Udaipur 313001 India
| | - Varsha Dayma
- Department of Chemistry Mohanlal Sukhadia University Udaipur 313001 India
| | - Astam Mandal
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Prabhat K. Baroliya
- Department of Chemistry Mohanlal Sukhadia University Udaipur 313001 India
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| |
Collapse
|
18
|
Cortés-Mendoza S, Adamczyk D, Badillo-Gómez JI, Urrutigoity M, Ortega-Alfaro MC, López-Cortés JG. Carbonylative Suzuki Coupling Catalyzed by Pd Complexes Based on [N,P]‐Pyrrole Ligands: Direct Access to 2‐Hydroxybenzophenones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Complexes of metals with organotellurium compounds and nanosized metal tellurides for catalysis, electrocatalysis and photocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Abstract
Eucalyptus plants have attracted the attention of researchers and environmentalists worldwide because they are a rapidly growing source of wood and a source of oil used for multiple purposes. The main and the most important oil component is 1,8-cineole (eucalyptol: 60–85%). This review summarizes the literature reported to date involving the use of 1,8-cineole for the treatment of disorders. Additionally, we describe our efforts in the use of eucalyptol as a solvent for the synthesis of O,S,N-heterocycles. Solvents used in chemistry are a fundamental element of the environmental performance of processes in corporate and academic laboratories. Their influence on costs, safety and health cannot be neglected. Green solvents such as bio-based systems hold considerable additional promise to reduce the environmental impact of organic chemistry. The first section outlines the process leading to our discovery of an unprecedented solvent and its validation in the first coupling reactions. This section continues with the description of its properties and characteristics and its reuse as reported in the various studies conducted. The second section highlights the use of eucalyptol in a series of coupling reactions (i.e., Suzuki–Miyaura, Sonogashira–Hagihara, Buchwald–Hartwig, Migita–Kosugi–Stille, Hiyama and cyanation) that form O,S,N-heterocycles. We describe the optimization process applied to reach the ideal conditions. We also show that eucalyptol can be a good alternative to build heterocycles that contain oxygen, sulfur and nitrogen. These studies allowed us to demonstrate the viability and potential that bio solvents can have in synthesis laboratories.
Collapse
|
21
|
Ma WT, Huang MG, Fuyue L, Wang ZH, Tao JY, Li JW, Liu YJ, Zeng MH. Ru(II)-catalyzed P(III)-assisted C8-alkylation of naphthphosphines. Chem Commun (Camb) 2022; 58:7152-7155. [DOI: 10.1039/d2cc02161g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a phosphine-directed ruthenium-catalyzed C8-selective alkylation of naphthalenes with alkenes. This protocol provides a straightforward access to a large library of electron-rich C8-alkyl substituent 1-naphthphosphines, which outperformed commonly commercial...
Collapse
|
22
|
Li Q, Guo J, Guo Z. Direct access to various C3-substituted sialyl glycal derivatives from 3-iodo-sialyl glycals. Org Biomol Chem 2021; 19:10169-10173. [PMID: 34779807 PMCID: PMC8857703 DOI: 10.1039/d1ob01977e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new and efficient method was developed for the synthesis of C3-substituted sialyl glycals that are useful for novel sialidase inhibitor discovery. This method was based on the cross-coupling reactions of 3-iodo-sialyl glycal methyl ester with boronic acids, alkenes and alkynes to directly introduce various functional groups to the sialyl glycal C3-position. A series of C3-aryl, alkyl, alkenyl, and alkynyl derivatives of sialyl glycal were efficiently and conveniently synthesized for the first time by this method, which has demonstrated its wide application scope.
Collapse
Affiliation(s)
- Qingjiang Li
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, USA.
| | - Jiatong Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, USA.
| |
Collapse
|
23
|
Payamifar S, Kazemi F, Kaboudin B. Nickel/β‐CD‐catalyzed Suzuki–Miyaura cross‐coupling of aryl boronic acids with aryl halides in water. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sara Payamifar
- Department of Chemsitry Institute for Advanced Studies in Basic Sciences Zanjan Iran
| | - Foad Kazemi
- Department of Chemsitry Institute for Advanced Studies in Basic Sciences Zanjan Iran
| | - Babak Kaboudin
- Department of Chemsitry Institute for Advanced Studies in Basic Sciences Zanjan Iran
| |
Collapse
|
24
|
A highly effective green catalyst Ni/Cu bimetallic nanoparticles supported by dendritic ligand for chemoselective oxidation and reduction reaction. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Akkoç S. Importance of some factors on the Suzuki‐Miyaura cross‐coupling reaction. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Senem Akkoç
- Department of Basic Pharmaceutical Sciences Suleyman Demirel University Isparta Turkey
| |
Collapse
|
26
|
Lan Y, Yuan J, Yang Q, Peng Y. Phosphorus ligand-free Suzuki–Miyaura reactions in the presence of ABTS at room temperature in water. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A catalytic system for a phosphorus ligand-free Suzuki–Miyaura reaction in water at room temperature was disclosed. Ammonium 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) was an efficient promoter and acted both as a ligand and as a surfactant for the synthesis of biaryl compounds via the Suzuki–Miyaura reaction in water. The targeted biaryl architectures were achieved under mild conditions with high efficiency and good functional group tolerance.
Collapse
Affiliation(s)
- Yingdong Lan
- College of Science, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Province’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jianjun Yuan
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Province’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qin Yang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Province’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Province’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
27
|
Hollow-Shell-Structured Mesoporous Silica-Supported Palladium Catalyst for an Efficient Suzuki-Miyaura Cross-Coupling Reaction. Catalysts 2021. [DOI: 10.3390/catal11050582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The construction of a high stability heterogeneous catalyst for privileged common catalysis is a benefit in regard to reuse and separation. Herein, a palladium diphenylphosphine-based hollow-shell-structured mesoporous catalyst (HS@PdPPh2@MSN) was prepared by immobilizing bis((diphenylphosphino)ethyltriethoxysilane)palladium acetate onto the inner wall of a mesoporous organicsilicane hollow shell, whose surface was protected by a –Si(Me)3 group. Electron microscopies confirmed its hollow-shell-structure, and structural analyses and characterizations revealed its well-defined single-site active species within the silicate network. As presented in this study, the newly constructed HS@PdPPh2@MSN enabled an efficient Suzuki-Miyaura cross-coupling reaction for varieties of substrates with up to 95% yield in mild conditions. Meanwhile, it could be reused at least five times with good activity, indicating its excellent stability and recyclability. Furthermore, the cost-effective and easily synthesized HS@PdPPh2@MSN made it a good candidate for employment in fine chemical engineering.
Collapse
|
28
|
Farhid H, Khodkari V, Nazeri MT, Javanbakht S, Shaabani A. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines. Org Biomol Chem 2021; 19:3318-3358. [PMID: 33899847 DOI: 10.1039/d0ob02600j] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzodiazepines (BZDs), a diverse class of benzofused seven-membered N-heterocycles, display essential pharmacological properties and play vital roles in some biochemical processes. They have mainly been prescribed as potential therapeutic agents, which interestingly represent various biological activities such as anticancer, anxiolytic, antipsychotic, anticonvulsant, antituberculosis, muscle relaxant, and antimicrobial activities. The extensive biological activities of BZDs in various fields have encouraged medicinal chemists to discover and design novel BZD-based scaffolds as potential therapeutic candidates with the favorite biological activity through an efficient protocol. Although certainly valuable and important, conventional synthetic routes to these bicyclic benzene compounds contain methodologies often requiring multistep procedures, which suffer from waste materials generation and lack of sustainability. By contrast, multicomponent reactions (MCRs) have recently advanced as a green synthetic strategy for synthesizing BZDs with the desired scope. In this regard, MCRs, especially Ugi and Ugi-type reactions, efficiently and conveniently supply various complex synthons, which can easily be converted to the BZDs via suitable post-transformations. Also, MCRs, especially Mannich-type reactions, provide speedy and economic approaches for the one-pot and one-step synthesis of BZDs. As a result, various functionalized-BZDs have been achieved by developing mild, efficient, and high-yielding MCR protocols. This review covers all aspects of the synthesis of BZDs with a particular focus on the MCRs as well as the mechanism chemistry of synthetic protocols. The present manuscript opens a new avenue for organic, medicinal, and industrial chemists to design safe, environmentally benign, and economical methods for the synthesis of new and known BZDs.
Collapse
Affiliation(s)
- Hassan Farhid
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Vida Khodkari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran. and Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
29
|
Destito P, Vidal C, López F, Mascareñas JL. Transition Metal‐Promoted Reactions in Aqueous Media and Biological Settings. Chemistry 2021; 27:4789-4816. [DOI: 10.1002/chem.202003927] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Cristian Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Instituto de Química Orgánica General (CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
30
|
Sustainable Synthesis of Biaryls Using Silica Supported Ferrocene Appended N-Heterocyclic Carbene-Palladium Complex. Catal Letters 2021. [DOI: 10.1007/s10562-020-03480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Balakrishnan MH, Kanagaraj M, Sankar V, Ravva MK, Mannathan S. Synthesis of ortho-arylated and alkenylated benzamides by palladium-catalyzed denitrogenative cross-coupling reactions of 1,2,3-benzotriazin-4(3 H)-ones with organoboronic acids. NEW J CHEM 2021. [DOI: 10.1039/d1nj03706d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient palladium-catalyzed denitrogenative cross-coupling reaction of 1,2,3-benzotriazin-4(3H)-ones with organoboronic acids is described. The reaction affords various ortho-aryl and alkenylated benzamides in good to high yields.
Collapse
Affiliation(s)
- Madasamy Hari Balakrishnan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Madasamy Kanagaraj
- Department of Chemistry SRM University, AP, Andhra Pradesh 522502, India
| | - Velayudham Sankar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Mahesh Kumar Ravva
- Department of Chemistry SRM University, AP, Andhra Pradesh 522502, India
| | | |
Collapse
|
32
|
Cicco L, Dilauro G, Perna FM, Vitale P, Capriati V. Advances in deep eutectic solvents and water: applications in metal- and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Org Biomol Chem 2021; 19:2558-2577. [DOI: 10.1039/d0ob02491k] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights recent advances in metal- and biocatalyzed transformations, in the synthesis of APIs and other biologically active compounds, when employing deep eutectic solvents and water as environmentally responsible solvents.
Collapse
Affiliation(s)
- Luciana Cicco
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Giuseppe Dilauro
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| |
Collapse
|
33
|
You LX, Zhao BB, Yao SX, Xiong G, Dragutan I, Dragutan V, Ding F, Sun YG. Engineering functional group decorated ZIFs to high-performance Pd@ZIF-92 nanocatalysts for C(sp2)-C(sp2) couplings in aqueous medium. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Brewster RC, Klemencic E, Jarvis AG. Palladium in biological media: Can the synthetic chemist's most versatile transition metal become a powerful biological tool? J Inorg Biochem 2020; 215:111317. [PMID: 33310459 DOI: 10.1016/j.jinorgbio.2020.111317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Palladium catalysed reactions are ubiquitous in synthetic organic chemistry in both organic solvents and aqueous buffers. The broad reactivity of palladium catalysis has drawn interest as a means to conduct orthogonal transformations in biological settings. Successful examples have been shown for protein modification, in vivo drug decaging and as palladium-protein biohybrid catalysts for selective catalysis. Biological media represents a challenging environment for palladium chemistry due to the presence of a multitude of chelators, catalyst poisons and a requirement for milder reaction conditions e.g. lower temperatures. This review looks to identify successful examples of palladium-catalysed reactions in the presence of proteins or cells and analyse solutions to help to overcome the challenges of working in biological systems.
Collapse
Affiliation(s)
- Richard C Brewster
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Eva Klemencic
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Amanda G Jarvis
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom.
| |
Collapse
|
35
|
Chen M, Lin Y, Jian K. (
N
‐Heterocyclic carbene) ion‐pair palladium complexes: Suzuki–Miyaura cross‐coupling studies in neat water under mild conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ming‐Tsz Chen
- Department of Applied Chemistry Providence University Taichung ROC 43301 Taiwan
| | - Yu‐Hsuan Lin
- Department of Applied Chemistry Providence University Taichung ROC 43301 Taiwan
| | - Kun‐Han Jian
- Department of Applied Chemistry Providence University Taichung ROC 43301 Taiwan
| |
Collapse
|
36
|
Andrade MA, Martins LMDRS. New Trends in C-C Cross-Coupling Reactions: The Use of Unconventional Conditions. Molecules 2020; 25:E5506. [PMID: 33255429 PMCID: PMC7727871 DOI: 10.3390/molecules25235506] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/24/2022] Open
Abstract
The ever-growing interest in the cross-coupling reaction and its applications has increased exponentially in the last decade, owing to its efficiency and effectiveness. Transition metal-mediated cross-couplings reactions, such as Suzuki-Miyaura, Sonogashira, Heck, and others, are powerful tools for carbon-carbon bond formations and have become truly fundamental routes in catalysis, among other fields. Various greener strategies have emerged in recent years, given the widespread popularity of these important reactions. The present review comprises literature from 2015 onward covering the implementation of unconventional methodologies in carbon-carbon (C-C) cross-coupling reactions that embodies a variety of strategies, from the use of alternative energy sources to solvent- free and green media protocols.
Collapse
Affiliation(s)
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| |
Collapse
|
37
|
Bunda S, Voronova K, Kathó Á, Udvardy A, Joó F. Palladium (II)-Salan Complexes as Catalysts for Suzuki-Miyaura C-C Cross-Coupling in Water and Air. Effect of the Various Bridging Units within the Diamine Moieties on the Catalytic Performance. Molecules 2020; 25:molecules25173993. [PMID: 32887249 PMCID: PMC7504744 DOI: 10.3390/molecules25173993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022] Open
Abstract
Water-soluble salan ligands were synthesized by hydrogenation and subsequent sulfonation of salens (N,N'-bis(slicylidene)ethylenediamine and analogues) with various bridging units (linkers) connecting the nitrogen atoms. Pd (II) complexes were obtained in reactions of sulfosalans and [PdCl4]2-. Characterization of the ligands and complexes included extensive X-ray diffraction studies, too. The Pd (II) complexes proved highly active catalysts of the Suzuki-Miyaura reaction of aryl halides and arylboronic acid derivatives at 80 °C in water and air. A comparative study of the Pd (II)-sulfosalan catalysts showed that the catalytic activity largely increased with increasing linker length and with increasing steric congestion around the N donor atoms of the ligands; the highest specific activity was 40,000 (mol substrate) (mol catalyst × h)-1. The substrate scope was explored with the use of the two most active catalysts, containing 1,4-butylene and 1,2-diphenylethylene linkers, respectively.
Collapse
Affiliation(s)
- Szilvia Bunda
- Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; (S.B.); (Á.K.)
- Doctoral School of Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Krisztina Voronova
- Department of Chemistry, University of Nevada, Reno, Reno, NV 89557, USA;
| | - Ágnes Kathó
- Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; (S.B.); (Á.K.)
| | - Antal Udvardy
- Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; (S.B.); (Á.K.)
- Correspondence: (A.U.); (F.J.)
| | - Ferenc Joó
- Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; (S.B.); (Á.K.)
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, P.O. Box 400, H-4002 Debrecen, Hungary
- Correspondence: (A.U.); (F.J.)
| |
Collapse
|
38
|
4-Amino-1,2,4-triazoles-3-thiones and 1,3,4-oxadiazoles-2-thiones·palladium(II) recoverable complexes as catalysts in the sustainable Suzuki-Miyaura cross-coupling reaction. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Fortun S, Beauclair P, Schmitzer AR. Structural features influencing the activity of bis-biguanide ligands in the Suzuki–Miyaura cross-coupling reaction in neat water. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Catalytic reactions play an integral role in the development of green chemistry. Herein, we report new bis-biguanide compounds containing alkyl and aryl spacers as ligands for the Suzuki–Miyaura cross-coupling reaction in water. These ligands show similar catalytic activity to metformin independently of the nature of the spacer between the two biguanide units.
Collapse
Affiliation(s)
- Solène Fortun
- Département de chimie, Faculté des arts et des sciences, Université de Montréal, Montréal, QC, Canada
- Département de chimie, Faculté des arts et des sciences, Université de Montréal, Montréal, QC, Canada
| | - Philippe Beauclair
- Département de chimie, Faculté des arts et des sciences, Université de Montréal, Montréal, QC, Canada
- Département de chimie, Faculté des arts et des sciences, Université de Montréal, Montréal, QC, Canada
| | - Andreea R. Schmitzer
- Département de chimie, Faculté des arts et des sciences, Université de Montréal, Montréal, QC, Canada
- Département de chimie, Faculté des arts et des sciences, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
40
|
Zhang B, Ye Z, Qin M, Wang Q, Du Y, Qi C, Shao L. Palladium complex embedded crosslinked polystyrene nanofibers as a green and efficient heterogeneous catalyst for coupling reactions. J Appl Polym Sci 2020. [DOI: 10.1002/app.49666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Benben Zhang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| | - Zeyu Ye
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| | - Min Qin
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| | - Qingqing Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| | - Yijun Du
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| | - Linjun Shao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| |
Collapse
|
41
|
Chopra J, Goswami AK, Baroliya PK. An Overview of Solid Supported Palladium and Nickel Catalysts for C-C Cross Coupling Reactions. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190617160339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Solid supported catalysts have been of considerable interest in organic synthesis for the
last few years. Solid support provides an efficient heterogeneous catalytic system owing to facile
recovery and extensive recycling by simple filtration because of possessing 3-R approach (Recoverable,
Robust and Recyclable) and makes solid supported catalyst more appealing nowadays. In view
of the high cost and shortage of furthermost used palladium catalyst, its recovery and recycling are
vital issues for any large-scale application which are being overcome by using solid supported
catalytic systems. Therefore, a variety of inorganic and organic solid-supported catalytic systems
have been developed so far in order to address these challenges. This review attempts highlight a
number of solid supported catalytic systems in the pro-active area of widely used C-C cross coupling
reactions.
Collapse
Affiliation(s)
- Jaishri Chopra
- Coordination Chemistry Lab, Department of Chemistry, Mohanlal Sukhadia University, Udaipur (Rajasthan) - 313001, India
| | - Ajay K. Goswami
- Coordination Chemistry Lab, Department of Chemistry, Mohanlal Sukhadia University, Udaipur (Rajasthan) - 313001, India
| | - Prabhat K. Baroliya
- Coordination Chemistry Lab, Department of Chemistry, Mohanlal Sukhadia University, Udaipur (Rajasthan) - 313001, India
| |
Collapse
|
42
|
Khan M, Shaik MR, Adil SF, Kuniyil M, Ashraf M, Frerichs H, Sarif MA, Siddiqui MRH, Al-Warthan A, Labis JP, Islam MS, Tremel W, Tahir MN. Facile synthesis of Pd@graphene nanocomposites with enhanced catalytic activity towards Suzuki coupling reaction. Sci Rep 2020; 10:11728. [PMID: 32678111 PMCID: PMC7366662 DOI: 10.1038/s41598-020-68124-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 05/07/2020] [Indexed: 12/02/2022] Open
Abstract
A facile and chemical specific method to synthesize highly reduced graphene oxide (HRG) and Pd (HRG@Pd) nanocomposite is presented. The HRG surfaces are tailored with amine groups using 1-aminopyrene (1-AP) as functionalizing molecules. The aromatic rings of 1-AP sit on the basal planes of HRG through π-π interactions, leaving amino groups outwards (similar like self-assembled monolayer on 2D substrates). The amino groups provide the chemically specific binding sites to the Pd nucleation which subsequently grow into nanoparticles. HRG@Pd nanocomposite demonstrated both uniform distribution of Pd nanoparticles on HRG surface as well as excellent physical stability and dispersibility. The surface functionalization was confirmed using, ultraviolet-visible (UV-Vis), Fourier transform infra-red and Raman spectroscopy. The size and distribution of Pd nanoparticles on the HRG and crystallinity were confirmed using high-resolution transmission electron microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The catalytic efficiency of highly reduced graphene oxide-pyrene-palladium nanocomposite (HRG-Py-Pd) is tested towards the Suzuki coupling reactions of various aryl halides. The kinetics of the catalytic reaction (Suzuki coupling) using HRG-Py-Pd nanocomposite was monitored using gas chromatography (GC).
Collapse
Affiliation(s)
- Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Muhammad Ashraf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, P.O. Box 5048, Dhahran, 31261, Kingdom of Saudi Arabia
| | - Hajo Frerichs
- Institut für Anorganische Chemie Und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Massih Ahmad Sarif
- Institut für Anorganische Chemie Und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Mohammed Rafiq H Siddiqui
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdulrahman Al-Warthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Joselito P Labis
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Wolfgang Tremel
- Institut für Anorganische Chemie Und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Muhammad Nawaz Tahir
- Department of Chemistry, King Fahd University of Petroleum and Minerals, P.O. Box 5048, Dhahran, 31261, Kingdom of Saudi Arabia.
| |
Collapse
|
43
|
Fan M, Wang WD, Wang X, Zhu Y, Dong Z. Ultrafine Pd Nanoparticles Modified on Azine-Linked Covalent Organic Polymers for Efficient Catalytic Suzuki–Miyaura Coupling Reaction. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mengying Fan
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education, State Key Laboratory of Applied Organic Chemistry, Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wei David Wang
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education, State Key Laboratory of Applied Organic Chemistry, Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaoyu Wang
- School of Earth Sciences & Key Laboratory of Mineral Resources in Western China (Gansu Province), Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yangyang Zhu
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education, State Key Laboratory of Applied Organic Chemistry, Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zhengping Dong
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education, State Key Laboratory of Applied Organic Chemistry, Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
44
|
Peramo A, Abdellah I, Pecnard S, Mougin J, Martini C, Couvreur P, Huc V, Desmaële D. A Self-Assembling NHC-Pd-Loaded Calixarene as a Potent Catalyst for the Suzuki-Miyaura Cross-Coupling Reaction in Water. Molecules 2020; 25:E1459. [PMID: 32213875 PMCID: PMC7146153 DOI: 10.3390/molecules25061459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023] Open
Abstract
Nanoformulated calix[8]arenes functionalized with N-heterocyclic carbene (NHC)-palladium complexes were found to be efficient nano-reactors for Suzuki-Miyaura cross-coupling reactions of water soluble iodo- and bromoaryl compounds with cyclic triol arylborates at low temperature in water without any organic co-solvent. Combined with an improved one-step synthesis of triol arylborates from boronic acid, this remarkably efficient new tool provided a variety of 4'-arylated phenylalanines and tyrosines in good yields at low catalyst loading with a wide functional group tolerance.
Collapse
Affiliation(s)
- Arnaud Peramo
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue JB Clément, 92296 Châtenay-Malabry, France; (A.P.); (S.P.); (J.M.); (P.C.)
| | - Ibrahim Abdellah
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris Saclay, Bâtiment 420, 91405 Orsay, France; (I.A.); (C.M.)
| | - Shannon Pecnard
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue JB Clément, 92296 Châtenay-Malabry, France; (A.P.); (S.P.); (J.M.); (P.C.)
| | - Julie Mougin
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue JB Clément, 92296 Châtenay-Malabry, France; (A.P.); (S.P.); (J.M.); (P.C.)
| | - Cyril Martini
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris Saclay, Bâtiment 420, 91405 Orsay, France; (I.A.); (C.M.)
- NOVECAL, 86 rue de Paris, 91400 Orsay, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue JB Clément, 92296 Châtenay-Malabry, France; (A.P.); (S.P.); (J.M.); (P.C.)
| | - Vincent Huc
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris Saclay, Bâtiment 420, 91405 Orsay, France; (I.A.); (C.M.)
| | - Didier Desmaële
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue JB Clément, 92296 Châtenay-Malabry, France; (A.P.); (S.P.); (J.M.); (P.C.)
| |
Collapse
|
45
|
Liu C, Xu W, Xiang D, Luo Q, Zeng S, Zheng L, Tan Y, Ouyang Y, Lin H. Palladium Immobilized on 2,2′-Dipyridyl-Based Hypercrosslinked Polymers as a Heterogeneous Catalyst for Suzuki–Miyaura Reaction and Heck Reaction. Catal Letters 2020. [DOI: 10.1007/s10562-020-03165-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
46
|
Recent Advances in Metal-Catalyzed Alkyl–Boron (C(sp3)–C(sp2)) Suzuki-Miyaura Cross-Couplings. Catalysts 2020. [DOI: 10.3390/catal10030296] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Boron chemistry has evolved to become one of the most diverse and applied fields in organic synthesis and catalysis. Various valuable reactions such as hydroborylations and Suzuki–Miyaura cross-couplings (SMCs) are now considered as indispensable methods in the synthetic toolbox of researchers in academia and industry. The development of novel sterically- and electronically-demanding C(sp3)–Boron reagents and their subsequent metal-catalyzed cross-couplings attracts strong attention and serves in turn to expedite the wheel of innovative applications of otherwise challenging organic adducts in different fields. This review describes the significant progress in the utilization of classical and novel C(sp3)–B reagents (9-BBN and 9-MeO-9-BBN, trifluoroboronates, alkylboranes, alkylboronic acids, MIDA, etc.) as coupling partners in challenging metal-catalyzed C(sp3)–C(sp2) cross-coupling reactions, such as B-alkyl SMCs after 2001.
Collapse
|
47
|
Thiyagamurthy P, Khan FRN. A Base‐Free Pd‐Precatalyst Mediated Suzuki‐Miyaura and Sonogashira Cross‐Coupling in Deep Eutectic Solvents. ChemistrySelect 2020. [DOI: 10.1002/slct.202000276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Pandurangan Thiyagamurthy
- Department of Chemistry School of Advanced Sciences (SAS),Vellore Institute of Technology (VIT), Vellore 632014 Tamil Nadu India
| | - Fazlur Rahman Nawaz Khan
- Department of Chemistry School of Advanced Sciences (SAS),Vellore Institute of Technology (VIT), Vellore 632014 Tamil Nadu India
| |
Collapse
|
48
|
Nanoporous phenanthroline polymer locked Pd as highly efficient catalyst for Suzuki‐Miyaura Coupling reaction at room temperature. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Recent Developments in the Immobilization of Palladium Complexes on Renewable Polysaccharides for Suzuki–Miyaura Cross-Coupling of Halobenzenes and Phenylboronic Acids. Catalysts 2020. [DOI: 10.3390/catal10010136] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Polysaccharides derived from natural sources exhibit unique structures and functional groups, which have recently garnered them increased attention for their potential applicability as supports for metal catalysts. Renewable polysaccharide matrices were employed as supports for palladium complexes, with or without previous modification of the support, and were used in Suzuki cross-coupling of halobenzenes and phenylboronic acid derivatives. In this review, recent developments in the immobilization of palladium-based complexes are reported, including descriptions of the preparation procedures and catalytic activity of each system. In addition, the effects of the nature of the polymeric support and of the reaction conditions on catalytic performance are discussed.
Collapse
|
50
|
Alimi OA, Akinnawo CA, Meijboom R. Monolith catalyst design via 3D printing: a reusable support for modern palladium-catalyzed cross-coupling reactions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03651j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of an additive manufacturing procedure for the modification of catalytic structures is currently gaining popularity in the field of catalysis.
Collapse
Affiliation(s)
- Oyekunle Azeez Alimi
- Research Centre for Synthesis and Catalysis
- Department of Chemical Sciences
- University of Johannesburg
- Johannesburg 2006
- South Africa
| | - Christianah Aarinola Akinnawo
- Research Centre for Synthesis and Catalysis
- Department of Chemical Sciences
- University of Johannesburg
- Johannesburg 2006
- South Africa
| | - Reinout Meijboom
- Research Centre for Synthesis and Catalysis
- Department of Chemical Sciences
- University of Johannesburg
- Johannesburg 2006
- South Africa
| |
Collapse
|