1
|
Al-Amin, Prasad GV, Jang SJ, Oh JW, Kim TH. A MOF-Templated Double-Shelled Co 3O 4/NiCo 2O 4 Nanocomposite for Electrochemical Detection of Alfuzosin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:757. [PMID: 38727351 PMCID: PMC11085321 DOI: 10.3390/nano14090757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
We developed a novel electrochemical sensor for the detection of alfuzosin (AFZ), a drug used to treat benign prostatic hyperplasia, using a double-shelled Co3O4/NiCo2O4 nanocomposite-modified electrode. The nanocomposites were synthesized using a template-assisted approach, with zeolitic imidazole framework-67 (ZIF-67) as the sacrificial template, involving the formation of uniform ZIF-67/Ni-Co layered double hydroxide (LDH) hollow structures followed by calcination to achieve the final nanocomposite. The nanocomposite was characterized by various techniques and showed high porosity, large surface area, and good conductivity. The nanocomposite-modified electrode exhibited excellent electrocatalytic activity towards AFZ oxidation, with a wide linear range of 5-180 µM and a low limit of detection of 1.37 µM. The sensor also demonstrated good repeatability, reproducibility, and stability selectivity in the presence of common interfering substances. The sensor was successfully applied to determine the AFZ in pharmaceutical tablets and human serum samples, with satisfactory recoveries. Our results suggest that the double-shelled Co3O4/NiCo2O4 nanocomposite is a promising material for the fabrication of electrochemical sensors for AFZ detection.
Collapse
Affiliation(s)
- Al-Amin
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea; (A.-A.); (S.J.J.)
| | | | - Seung Joo Jang
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea; (A.-A.); (S.J.J.)
| | - Jeong-Wook Oh
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea;
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea; (A.-A.); (S.J.J.)
| |
Collapse
|
2
|
Li YX, Chen X, Jiang ZY, Luan J, Guo F. Rational Design and Synthesis of Fe-Doped Co-Based Coordination Polymer Composite Photocatalysts for the Degradation of Norfloxacin and Ciprofloxacin. Inorg Chem 2024; 63:6514-6525. [PMID: 38547361 DOI: 10.1021/acs.inorgchem.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The solar light-responsive Fe-doped Co-based coordination polymer (Fe@Co-CP) photocatalyst was synthesized under mild conditions. [Co(4-padpe)(1,3-BDC)]n (Co-CP) was first constructed using mixed ligands through the hydrothermal method. Then, Fe was introduced into the Co-CP framework to achieve the enhanced photocatalytic activity. The optimal Fe@Co-CP-2 exhibited excellent catalytic degradation performance for norfloxacin and ciprofloxacin under sunlight irradiation without auxiliary oxidants, and the degradation rates were 91.25 and 92.66% in 120 min. These excellent photocatalytic properties were ascribed to the generation of the Fe-O bond, which not only enhanced the light absorption intensity but also accelerated the separation efficiency of electrons and holes, and hence significantly improved the photocatalytic property of the composites. Meanwhile, Fe@Co-CP-2 displayed excellent stability and reusability. In addition, the degradation pathways and intermediates of antibiotic molecules were effectively analyzed. The free radical scavenging experiment and ESR results confirmed that •OH, •O2-, and h+ active species were involved in the catalytic degradation reaction; the corresponding mechanisms were deeply investigated. This study provides a fresh approach for constructing Fe-doped Co-CP-based composite materials as photocatalysts for degradation of antibiotic contaminants.
Collapse
Affiliation(s)
- Ye-Xia Li
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Xin Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - Zhi-Yang Jiang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Fang Guo
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
3
|
Dai L, Cui C, Yang M, Jiang S, Lan J, Guo R. Bamboo charcoal fiber bundles loaded MOF-derived magnetic Co/CoO porous polyhedron for efficiently catalytic degradation of tetracyclines hydrochloride. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2033-2053. [PMID: 37906457 PMCID: wst_2023_323 DOI: 10.2166/wst.2023.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The health of living things and the ecosystem of the planet have both been negatively impacted by antibiotic residue in the water environment. There has been a lot of interest in the catalyst made of metal-carbon compounds from MOFs as a potential solution for activating peroxymonosulfate (PMS) to produce reactive oxygen species to catalyze the degradation of residual antibiotics. In this study, zeolitic imidazolate frameworks (ZIF-67) on bamboo fiber bundles (BFB) were pyrolyzed to produce magnetic Co/CoO nanoparticles with porous polyhedrons mounted on bamboo charcoal fiber bundles (BCFB)(BCFB@PCo/CoO). Specific surface area of obtained BCFB@PCo/CoO with abundant active sites arrives at 302.41 m2/g. The catalytic degradation efficiency of Tetracycline hydrochloride (TCH), a target contaminant, could reach up to 99.94% within 15 minutes (PMS = 0.4g/L, Cat. = 0.2g/L). The effects of potential factors, including PMS dosage, interference ions, and temperature, on catalytic degradation efficiencies were investigated. Magnetic recovery and antimicrobial properties of the BCFB@PCo/CoO were also evaluated and the possible degradation pathways were explored. Catalytic mechanism explorations of BCFB@PCo/CoO/PMS system reveal MOF-derived magnetic Co/CoO nanoparticles embedded in BCFB promote the synergistic interaction of both radicals and non-radical pathways for catalytic degradation of TCH. The novel BCFB@PCo/CoO provides an alternative to deal with wastewater containing antibiotics.
Collapse
Affiliation(s)
- Lanling Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China E-mail:
| | - Ce Cui
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Mengyuan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Shan Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Jianwu Lan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Jiangxi, China
| |
Collapse
|
4
|
Lu Y, Xu H, Wei S, Jiang F, Zhang J, Ge Y, Li Z. In situ doping lignin-derived carbon quantum dots on magnetic hydrotalcite for enhanced degradation of Congo Red over a wide pH range and simultaneous removal of heavy metal ions. Int J Biol Macromol 2023; 239:124303. [PMID: 37019204 DOI: 10.1016/j.ijbiomac.2023.124303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
A new N, S-CQDs@Fe3O4@HTC composite was prepared by loading N, S carbon quantum dots (N, S-CQDs) derived from lignin on magnetic hydrotalcite (HTC) via an in-situ growth method. The characterization results showed that the catalyst had a mesoporous structure. These pores facilitate the diffusion and mass transfer of pollutant molecules inside the catalyst, allowing them to approach the active site smoothly. The catalyst performed well in the UV degradation of Congo red (CR) over a wide pH range (3-11), with efficiencies over 95.43 % in all cases. Even at a high NaCl content (100 g/L), the catalyst showed extraordinary CR degradation (99.30 %). ESR analysis and free radical quenching experiments demonstrated that OH and O2- were the main active species governing CR degradation. Besides, the composite had outstanding removal efficiency for Cu2+ (99.90 %) and Cd2+ (85.08 %) simultaneously due to the electrostatic attraction between the HTC and metal ions. Moreover, the N, S-CQDs@Fe3O4@HTC had excellent stability and recyclability during five cycles, making it free of secondary contamination. This work provides a new environment-friendly catalyst for the simultaneous removal of multiple pollutants and a waste-to-waste strategy for the value-added utilization of lignin.
Collapse
|
5
|
Li Y, Cao H, Liu W, Liu P. Effective degradation of tetracycline via recyclable cellulose nanofibrils/polyvinyl alcohol/Fe 3O 4 hybrid hydrogel as a photo-Fenton catalyst. CHEMOSPHERE 2022; 307:135665. [PMID: 35835244 DOI: 10.1016/j.chemosphere.2022.135665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, the method of in-situ co-precipitation was used to prepare PVA/CNF/Fe3O4 hybrid hydrogel, and the relationship between its structure and performance was explored. The Fe3O4NPs prepared by this method were dispersed on the carrier PVA/CNF hydrogel and were easy to recover. The catalytic degradation of tetracycline was investigated using PVA/CNF/Fe3O4 hybrid hydrogel as photo-Fenton catalysts. The results showed that light and hydrogel carriers were pivotal factors in promoting Fe2+ and Fe3+ cycling and that the PVA/CNF/Fe3O4 hybrid hydrogel as catalysts were able to activate H2O2 to generate a large amount of oxygen radical •OH, resulting in efficient removal of tetracycline. The tetracycline degradation followed a proposed first-order kinetic model and achieved a removal rate of about 98% in 120 min at an optimum pH of 3, H2O2 100 mM, catalyst 0.3 g/L, and a temperature of 25 °C.
Collapse
Affiliation(s)
- Yuhang Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hui Cao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenli Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Pengtao Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
6
|
Xu C, Wu H, Zhang Z, Zheng B, Zhai J, Zhang K, Wu W, Mei X, He M, Han B. Highly Effective and Chemoselective Hydrodeoxygenation of Aromatic Alcohols. Chem Sci 2022; 13:1629-1635. [PMID: 35282624 PMCID: PMC8827088 DOI: 10.1039/d1sc06430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Effective hydrodeoxygenation (HDO) of aromatic alcohols is very attractive in both conventional organic synthesis and upgrading of biomass-derived molecules, but the selectivity of this reaction is usually low because of...
Collapse
Affiliation(s)
- Caiyun Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Bingxiao Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Kaili Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Wei Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xuelei Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
7
|
Ma Z, Li J, Ma R, He J, Song X, Yu Y, Quan Y, Wang G. The methodologically obtained derivative of ZIF-67 metal–organic frameworks present impressive supercapacitor performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj00646d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidation, vulcanization, and phosphorization methods were used to improve the energy storage performance of ZIF-67 in the supercapacitor.
Collapse
Affiliation(s)
- Zhengfei Ma
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Jintao Li
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Rui Ma
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Jie He
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Xintong Song
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Yane Yu
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Yongkang Quan
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Guorong Wang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| |
Collapse
|
8
|
Xie J, Chen L, Luo X, Huang L, Li S, Gong X. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B, N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119887] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Li H, Xu X, Wang J, Han X, Xu Z. A Robust PVDF-Assisted Composite Membrane for Tetracycline Degradation in Emulsion and Oil-Water Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3201. [PMID: 34947550 PMCID: PMC8703638 DOI: 10.3390/nano11123201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Tetracycline (TC) contamination in water has progressively exacerbated the environmental crisis. It is urgent to develop a feasible method to solve this pollution in water. However, polluted water often contains oil. This paper reported a glass fiber (FG)-assisted polyvinylidene fluoride (PVDF) hybrid membrane with dual functions: high TC degradation efficiency in emulsion and oil-water separation. It can meet the catalytic degradation of tetracycline in complex water. This membrane was decorated by coating the glass fiber with PVDF solution containing hydrophilic graphene oxide hybridized NH2-MIL-101(Fe) particles. Moreover, due to its strong mechanical strength enhanced by the glass fiber, it can be reused as TC degradation catalysts for dozens of times without cracking. Thanks to the hydrophobicity of PVDF and the surface pore size of MOFs, the prepared membrane showed a good oil-water separation performance. Besides, the hydrophilic graphene oxide (GO) and NH2-MIL-101(Fe) improved the membrane's anti-fouling performance, allowing it to be reused as the separation membrane. Therefore, the outstanding stability and recoverability of the membrane make it as a fantastic candidate material for large-scale removal of TC as well as oil-water separation application.
Collapse
Affiliation(s)
- Huijun Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (H.L.); (X.X.); (J.W.)
| | - Xin Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (H.L.); (X.X.); (J.W.)
| | - Jiwei Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (H.L.); (X.X.); (J.W.)
| | - Xuefeng Han
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhouqing Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (H.L.); (X.X.); (J.W.)
| |
Collapse
|
10
|
|
11
|
Compared catalytic properties of OMS-2-based nanocomposites for the degradation of organic pollutants. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Co0.45W0.55 Nanocomposite from ZIF-67: An Efficient and Heterogeneous Catalyst for H2 Generation Upon NaBH4 Hydrolysis. Catal Letters 2021. [DOI: 10.1007/s10562-021-03661-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Pd Nanoparticles Supported on Hierarchically Porous Carbon Nanofibers as Efficient Catalysts for Phenol Hydrogenation. Catal Letters 2021. [DOI: 10.1007/s10562-021-03640-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Highly efficient and heterogeneous OMS-2 for the directly oxidative degradation of organic dyes under acidic condition. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|