1
|
Contreras P, Fica-León V, Navarrete J, Oviedo C. De novo transcriptome assembly and functional annotation supports potential biotechnological applications for the non-model thraustochytrid Ulkenia visurgensis Lng2. Gene 2025; 958:149492. [PMID: 40228758 DOI: 10.1016/j.gene.2025.149492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/19/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Thraustochytrids are heterotrophic marine protists known for their ability to produce valuable lipids such as docosahexaenoic acid (DHA). However, like many non-model organisms, they present challenges for transcriptomic studies due to the limited reliable reference genomes and compatibility with curated protein databases, complicating the respective assembly and annotation. This study presents a de novo transcriptome assembly and functional annotation for the recently isolated thraustochytrid strain Ulkenia visurgensis Lng2 using solely free access software and code available in public domain repositories. The assembled transcriptome presented 45,867 unique gene models, with a total of 66,623 transcripts and a contig N50 of 3162. Functional annotations highlighted high amounts of transcripts related to the biosynthesis of relevant lipidic molecules, as well as stress-adaptive features including catalytic and xenobiotic degrading activity. Likewise, 2381 transcripts were linked to enzymes with potential biotechnological applications. Notably, several transcripts corresponding to uncommon enzymatic activities in thraustochytrids, including laccases, cellulases, and chitinases, were identified. Additionally, evidence for a potential lactamase activity was found, marking the first report of such activity in thraustochytrids. Overall, this study offers a simple free-access procedural strategy for a de novo transcriptome assembly and functional annotation in non-model organisms. These results provide valuable insights into the biotechnological potential of thraustochytrids, while also expanding the limited transcriptomic data available for these protists. Notably, it represents the first transcriptomic analysis of the Ulkenia genus.
Collapse
Affiliation(s)
- Pedro Contreras
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile.
| | - Víctor Fica-León
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción, Chile.
| | - José Navarrete
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile.
| | - Claudia Oviedo
- Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile.
| |
Collapse
|
2
|
Di J, Li Y, Zhang Y, Goh KL, Zheng M. Enzymatic synthesis of antioxidant peptides with controllable and adjustable molecular weights using magnetically recyclable immobilized Alcalase. Int J Biol Macromol 2025; 306:141473. [PMID: 40020844 DOI: 10.1016/j.ijbiomac.2025.141473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/24/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Enzymatic hydrolysis of proteins to obtain bioactive peptides is increasingly attractive, but the poor stability and low reusability of enzymes remain unsolved. Here, the magnetically recyclable immobilized Alcalase (Alcalase@SGO-PEGA) was constructed by immobilizing the free protease of Alcalase to the superparamagnetic graphene oxide (SGO) whose surface was modified with polyethylene glycol diamine (PEGA). The results indicate that Alcalase@SGO-PEGA significantly improved the thermostability and pH tolerance of Alcalase, withstanding temperatures up to 70 °C and pH levels up to 12. Additionally, Alcalase@SGO-PEGA with a saturation magnetizations (Ms) of 20.64 emu/g allowed for efficient recovery using external magnetic fields, and its catalytic stability was demonstrated by retaining 50 % of its initial activity after seven cycles of reuse. Using Alcalase@SGO-PEGA for the enzymatic hydrolysis of soy protein isolate, casein, bovine, serum protein, β-lactoglobulin, sesame protein and flaxseed, bioactive peptides with different molecular weights were obtained by adjusting the hydrolysis temperature and time. Additionally, the antioxidative capacity of the bioactive peptides was confirmed by their ABTS+ free radicals scavenging rate and Fe2+ chelating activity. This paper presents a novel, sustainable strategy for obtaining antioxidant peptides with adjustable molecular weights using magnetically recyclable immobilized Alcalase, advancing its application and promoting cleaner protein processing.
Collapse
Affiliation(s)
- Junhua Di
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yang Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Kheng-Lim Goh
- Newcastle University in Singapore, 567739, Republic of Singapore
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
3
|
Majithiya VR, Ghoghari AM, Gohel SD. Purification, characterization, structural elucidation, and industrial applications of thermostable alkaline protease produced by seaweed-associated Nocardiopsis dassonvillei strain VCs-4. Int J Biol Macromol 2025; 305:141147. [PMID: 39978515 DOI: 10.1016/j.ijbiomac.2025.141147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Alkaline proteases are crucial in the enzyme industry. The seaweed-associated strain Nocardiopsis dassonvillei strain VCs-4 produced a protease with the optimal activity of 362.97 U/mL under haloalkaliphilic conditions. Kinetic analysis revealed a Km of 0.17 mg/mL, Vmax of 1928 U/mL/min, and Kcat of 16.66 s-1. The VCs-4 protease showed remarkable stability against chemical stresses, including surfactants, detergents, and bleaching agents, making it suitable for industrial use. Its thermal stability was demonstrated with a ΔH* of 73.36 kJ/mol, ΔS* of -87.27 J/mol, and a half-life (t₁/₂) of 15 min at 80 °C, extended to 19 min in 2 M NaCl. Structural analysis using FTIR and CD spectroscopy revealed a predominance of α-helices (79.64 %) and minimal β-strands (0.55 %) at 60 °C. Additionally, 97.78 % of the residues were in the most preferred regions of the Ramachandran plot, reflecting high stereochemical quality. The enzyme composition includes 17 % cysteine and 8.5 % serine residues, with a charge profile of four negatively charged (Asp, Glu) and seven positively charged (Arg, Lys) residues. The VCs-4 protease demonstrated potential for industrial applications, successfully removing blood stains and hydrolyzing gelatin from used X-ray film.
Collapse
Affiliation(s)
| | - Avani M Ghoghari
- Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Sangeeta D Gohel
- Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India.
| |
Collapse
|
4
|
Silva ATD, Figueroa LBP, Souza DCD, Ferreira DP, Santos PHDD, Dias ES, Braga FR, Soares FEDF. Use of agricultural waste for optimization of protease production by Pleurotus djamor and evaluation of its anthelmintic activity. Braz J Microbiol 2025:10.1007/s42770-025-01667-0. [PMID: 40263234 DOI: 10.1007/s42770-025-01667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Pleurotus djamor is an edible mushroom that produces proteases. However, the production of these enzymes needs to be optimized and applied in experimental models. This study aimed to optimize the production of proteases by Pleurotus djamor using agricultural waste and to evaluate the anthelmintic activity of proteases in vitro. Solid-state fermentation optimized protease production, with wheat bran as the substrate. For this, the central composite design (CCD) was used. The proteolytic activity was determined after the preparation of the cell-free crude extract. In addition, eggs of the helminths Taenia solium and Moniezia sp. were used to evaluate the in vitro anthelmintic activity of the proteases. The results showed that moisture significantly influenced (p < 0.01) protease production. On the other hand, within the evaluated intervals, the incubation time was non-significant (p > 0.05). The enzymes led to a significant reduction (p < 0.01) in T. solium and Moniezia sp. eggs, with reductions of 33.44% and 45.43%, respectively, compared to the control with denatured enzymes. The results suggest the action of proteases in the degradation of helminth eggs, demonstrating their potential for biochemistry control.
Collapse
Affiliation(s)
- Adriane Toledo da Silva
- Department of Chemistry, Laboratory of Biotechnology and Applied Biochemistry, Federal University of Lavras, Lavras, Brazil.
| | | | - Debora Castro de Souza
- Department of Chemistry, Laboratory of Biotechnology and Applied Biochemistry, Federal University of Lavras, Lavras, Brazil
| | - Dyesse Pollyane Ferreira
- Department of Chemistry, Laboratory of Biotechnology and Applied Biochemistry, Federal University of Lavras, Lavras, Brazil
| | | | | | - Fabio Ribeiro Braga
- Experimental Parasitology and Biological Control Laboratory, Vila Velha University, Lavras, Brazil
| | | |
Collapse
|
5
|
Shettar SS, Bagewadi ZK, Alasmary M, Mannasaheb BA, Shaikh IA, Khan AA. Comprehensive biochemical, molecular and structural characterization of subtilisin with fibrinolytic potential in bioprocessing. BIORESOUR BIOPROCESS 2025; 12:21. [PMID: 40117024 PMCID: PMC11928348 DOI: 10.1186/s40643-025-00860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/28/2025] [Indexed: 03/23/2025] Open
Abstract
Enzyme deployment is proliferating extensively in industries owing to their environmentally friendly and easily degradable attributes. This article undertakes an exhaustive examination of wild subtilisin enzyme, covering purification, biochemical delineation, analytical techniques, and practical implementations. The purification methodology involved partial refinement, anionic exchange, and gel filtration chromatography, culminating in a purification factor of 3.406, corroborated by SDS-PAGE showcasing a molecular weight of ~ 42 kDa. Biochemical scrutiny unveiled the enzyme's response, with an optimal pH at 9 and temperature peak at 60 ℃. Various surfactants, metal ions, organic solvents and inhibitors exhibited notable efficacy. Substrate specificity and kinetics showcased the utmost specificity with N-Suc-F-A-A-F-pNA, registering Km and Vmax values of 0.731 ± 0.5 mM and 0.87 ± 9 × 103 U/mg, respectively. Different bioanalytical techniquesproffered insights into structural and biophysical facets. Practical applications encompassed goat skin depilation, feather disintegration, blood clot dissolution, exemplifying the enzyme's multifaceted utility. To embark upon the elucidation of structure-function relationships, a three-dimensional model was devised through homology modelling, leveraging existing subtilisin structures (PDB: 3WHI). Molecular docking score of - 8.8 kcal/mol and dynamic simulations augmented the comprehension of molecular interactions with N-Suc-F-A-A-F-pNA. This research significantly contributes to unravelling the biochemical intricacies of wild subtilisin and underscores potential industrial and biomedical prowess. Subtilisin can be explored for its thrombolytic potential in several cardiovascular diseases. It may aid in the management of thrombosis by dissolving blood clots in conditions like deep pulmonary embolism, myocardial infarction, ischemic strokes, and in atherosclerosis by breaking down fibrin in arterial plaques, thus preventing heart attacks and strokes.
Collapse
Affiliation(s)
- Shreya S Shettar
- Department of Biotechnology, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India.
| | - Mohammed Alasmary
- Department of Medicine, College of Medicine, Najran University, 66462, Najran, Saudi Arabia
| | | | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, 66462, Najran, Saudi Arabia
| | - Aejaz Abdullatif Khan
- Department of General Science, Ibn Sina National College for Medical Studies, 21418, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Benhadj M, Menasria T, Zaatout N, Ranque S. Genomic Insights and Antimicrobial Potential of Newly Streptomyces cavourensis Isolated from a Ramsar Wetland Ecosystem. Microorganisms 2025; 13:576. [PMID: 40142469 PMCID: PMC11945845 DOI: 10.3390/microorganisms13030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
The growing threat of antimicrobial resistance underscores the urgent need to identify new bioactive compounds. In this study, a Streptomyces strain, ACT158, was isolated from a Ramsar wetland ecosystem and found to exhibit broad-spectrum effects against Gram-positive and Gram-negative bacteria, as well as fungal pathogens. The active strain was characterized as S. cavourensis according to its morphology, phylogenetic analysis, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH). Whole-genome sequencing (WGS) and annotation revealed a genome size of 6.86 Mb with 5122 coding sequences linked to carbohydrate metabolism, secondary metabolite biosynthesis, and stress responses. Genome mining through antiSMASH revealed 32 biosynthetic gene clusters (BGCs), including those encoding polyketides, nonribosomal peptides, and terpenes, many of which showed low similarity to known clusters. Comparative genomic analysis, showing high genomic synteny with closely related strains. Unique genomic features of ACT158 included additional BGCs and distinct genes associated with biosynthesis pathways and stress adaptation. These findings highlight the strain's potential as a rich source of bioactive compounds and provide insights into its genomic basis for antimicrobial production and its ecological and biotechnological significance.
Collapse
Affiliation(s)
- Mabrouka Benhadj
- Biomolecules and Application Laboratory, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University, 12002 Tebessa, Algeria;
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University, 12002 Tebessa, Algeria
| | - Taha Menasria
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078 Batna, Algeria; (T.M.); (N.Z.)
| | - Nawel Zaatout
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078 Batna, Algeria; (T.M.); (N.Z.)
| | - Stéphane Ranque
- Aix Marseille University, SSA, RITMES, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
7
|
Ghinea C, Ungureanu-Comăniță ED, Țâbuleac RM, Oprea PS, Coșbuc ED, Gavrilescu M. Cost-Benefit Analysis of Enzymatic Hydrolysis Alternatives for Food Waste Management. Foods 2025; 14:488. [PMID: 39942081 PMCID: PMC11816673 DOI: 10.3390/foods14030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
In this study, we aimed to evaluate the economic, environmental, and social viability of the enzymatic hydrolysis process for food waste valorization by applying cost-benefit analysi (CBA). Our research was based on the investigation of three scenarios/alternatives for the final product of the enzymatic hydrolysis process and the production of bioethanol, bioactive peptides, and organic acids. Key economic indicators, such as cost/benefit ratios, net present value (NPV), and internal rate of return (IRR), were used to evaluate financial performance. At the end of the CBA, a sensitivity analysis was conducted to highlight the performance of each scenario under varying conditions, including fluctuating costs, benefits, and discount rates. These results indicate that enzymatic hydrolysis offers a significant opportunity for reducing food waste and its environmental impacts and promotes sustainability. Bioactive peptide production was found to be the most environmentally viable option, offering the highest cost-benefit efficiency. In both the optimistic and pessimistic scenarios of the sensitivity analysis, the results revealed that bioactive peptide production is economically viable, while the other alternatives, such as bioethanol and organic acid production, are more sensitive to economic and operational changes. This study revealed that enzymatic hydrolysis, as evaluated through CBA, offers a viable and impactful method for food waste management. It reduces environmental impacts, enhances sustainability, and aligns with the principles of a circular economy. The adoption of such innovative waste management strategies is considered essential for building a more sustainable and resource-efficient food system.
Collapse
Affiliation(s)
- Cristina Ghinea
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Elena-Diana Ungureanu-Comăniță
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (R.M.Ț.); (P.S.O.); (E.D.C.)
| | - Raluca Maria Țâbuleac
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (R.M.Ț.); (P.S.O.); (E.D.C.)
| | - Paula Sânziana Oprea
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (R.M.Ț.); (P.S.O.); (E.D.C.)
| | - Ersilia Daniela Coșbuc
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (R.M.Ț.); (P.S.O.); (E.D.C.)
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania; (R.M.Ț.); (P.S.O.); (E.D.C.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Academy of Technical Sciences of Romania, 26 Dacia Blvd., 030167 Bucharest, Romania
| |
Collapse
|
8
|
Hossain A, Shahjadee UF, Mohammad Abdullah AT, Islam Bhuiyan MN, Rupa AZ. Responses of α-amylase and protease activity to chemical agents and metallic salts in barley seeds ( Hordeum vulgare L.). Heliyon 2025; 11:e42056. [PMID: 39897853 PMCID: PMC11786869 DOI: 10.1016/j.heliyon.2025.e42056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
In modern agriculture, the enzymes inhibition by chemical agents and environmental pollutants accounts for a significant threat to crop health and productivity. Enzymes play a crucial role in maintaining homeostasis in the metabolic processes that sustain life. Understanding what regulates enzyme activity is crucial for many scientific and industrial endeavors. The purpose of this research work was to examine how different chemical agents, and metallic salts affected the activity of two important food enzymes like α-amylase and protease in barley. These studies compared the effects of several chemical treatments applied to barley seeds, including urea, ethylenediaminetetraacetic acid (EDTA), acetic acid, and a wide range of metallic salts. To determine the impact of each chemical on the stability of α-amylase and protease enzyme activity using standard assay procedures. The activities of α-amylase and protease were inhibited by increasing urea concentration, eventually eliminating them at 8 M urea. The enzymes lost their activities completely at 0.50 M EDTA. Treatment with higher acetic acid concentrations decreased their activities, but they retained 20.46 ± 1.06 % and 17.38 ± 1.09 % after treating with 20 % acetic acid. The application of CaCl2 led to a progressive increase for both the enzyme activities, but the maximum increases were observed 137.26 ± 1.42 % and 135.65 ± 1.17 % due to 0.50 M Ca2+. In the presence of Mn2+ and Mg2+ salts, enzyme activity increased notably. In contrast to K+ and Na+, which have negligible or no inhibitory effects but Zn2+, Cu2+, and Fe2+ considerably reduce the activity of both enzymes. According to the findings, the present research could be created with the scope of potentially identifying ways to maintain their activity for agricultural, industrial and also scientific applications.
Collapse
Affiliation(s)
- Amin Hossain
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Umma Fatema Shahjadee
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Abu Tareq Mohammad Abdullah
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Mohammad Nazrul Islam Bhuiyan
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Anjum Zerin Rupa
- Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| |
Collapse
|
9
|
Yaşar Yıldız S. Genomic insights into Thermomonas hydrothermalis: potential applications in industrial biotechnology. World J Microbiol Biotechnol 2025; 41:30. [PMID: 39794628 DOI: 10.1007/s11274-024-04240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Thermomonas hydrothermalis, a thermophilic bacterium isolated from hot springs, exhibits unique genomic features that underpin its adaptability to extreme environments and its potential in industrial biotechnology. In this study, we present a comparative genomic analysis of two strains, DSM 14834 and HOT.CON.106, revealing distinct metabolic pathways and stress response mechanisms. The genome annotation highlighted strain-specific variations, such as enhanced motility and chemotaxis capabilities in HOT.CON.106 and a stronger genomic stability emphasis in DSM 14834. Comparative analysis with other Thermomonas species demonstrated that T. hydrothermalis possesses a unique genomic architecture, including genes for thermostable enzymes (e.g., amylases and pullulanases) and secondary metabolite biosynthesis. These enzymes and metabolites have significant industrial potential in high-temperature processes such as bioenergy production, bioplastics synthesis, and bioremediation. The findings underscore the relative differentiation between the strains and their broader implications for sustainable biotechnology, offering a basis for further exploration of thermophilic microorganisms in industrial applications.
Collapse
Affiliation(s)
- Songül Yaşar Yıldız
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey.
| |
Collapse
|
10
|
Ariaeenejad S, Motamedi E. Carboxylated nanocellulose from quinoa husk for enhanced protease immobilization and stability of protease in biotechnological applications. Sci Rep 2025; 15:256. [PMID: 39747200 PMCID: PMC11696053 DOI: 10.1038/s41598-024-77292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/21/2024] [Indexed: 01/04/2025] Open
Abstract
Herein, an efficient and feasible approach was developed to oxidize low-cost agricultural waste (quinoa husk, QS) for the synthesis of carboxylated nanocellulose (CNC). The as-prepared rod-like CNCs (average diameter of 10 nm and length of 103 nm) with a high specific surface area (173 m2/g) were utilized for the immobilization of a model protease enzyme (PersiProtease1) either physically or via covalent attachment. For chemical immobilization, CNCs were firstly functionalized with N, N'-dicyclohexylcarbodiimide (DCC) to provide DCNCs nanocarrier which could covalently bond to enzyme trough nucleophilic substitution reaction and formation of the amide bond between DCNCs and enzyme. The immobilization efficiency, activity, stability, kinetic parameters, and reusability of covalently attached and physically immobilized PersiProtease1 were similar to those of the free enzyme. Enzyme immobilization resulted in higher thermal stability of the enzyme at elevated temperatures (> 80 °C), and the covalently immobilized enzyme displayed higher reusability than its physically immobilized form (56% vs. 37% activity, after 15 consecutive cycles), which would be rooted in a more tightly attached and less leached enzyme in the case of PersiProtease1/DCNCs. This study demonstrates the significance of using agricultural by-products and the enhanced performance and stability of immobilized proteases.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P. O. Box: 31535-1897, Karaj, Iran.
| |
Collapse
|
11
|
Majithiya VR, Gohel SD. Agro-industrial Waste Utilization, Medium Optimization, and Immobilization of Economically Feasible Halo-Alkaline Protease Produced by Nocardiopsis dassonvillei Strain VCS-4. Appl Biochem Biotechnol 2025; 197:545-569. [PMID: 39207678 DOI: 10.1007/s12010-024-05057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The oceanic actinobacteria have strong potential to secrete novel enzymes with unique properties useful for biotechnological applications. The Nocardiopsis dassonvillei strain VCS-4, associated with seaweed Caulerpa scalpeliformis, was a halo-alkaline protease producer. Further investigation focuses on medium optimization and the use of agro-industrial waste for economically feasible, high-yield protease production. A total of 12 experimental runs were designed using Minitab-20 software and Placket-Burman design. Among the 7 physicochemical parameters analyzed, incubation time and gelatin were detected as significant factors responsible for higher protease production. Incubation time and gelatin were further analyzed using OVATs. Optimal protease production was achieved with 2% gelatin, 0.1% yeast extract, 0.1% bacteriological peptone, 7% NaCl, pH 8, 5% inoculum, and a 7-day incubation period, resulting in a maximum protease activity (Pmax) of 363.97 U/mL, generation time of 11.9 h, specific growth rate of 0.161 g/mL/h, and protease productivity (Qp) of 61.65 U/mL/h. Moreover, utilizing groundnut cake as an agro-industrial waste led to enhanced production parameters: Pmax of 408.42 U/mL, generation time of 9.74 h, specific growth rate of 0.361 g/mL/h, and Qp of 68.07 U/mL/h. The immobilization of crude protease was achieved using Seralite SRC 120 as a support matrix resulting in 470.38 U/g immobilization, 88.20% immobilization yield, and 28.90% recovery activity. Characterization of both crude and immobilized proteases revealed optimal activity at pH 10 and 70 °C. Immobilization enhanced the shelf-life, reusability, and stability of VCS-4 protease under extreme conditions.
Collapse
Affiliation(s)
- Vaishali R Majithiya
- Department of Biosciences, Saurashtra University, Rajkot, 360005, Gujarat, India
| | - Sangeeta D Gohel
- Department of Biosciences, Saurashtra University, Rajkot, 360005, Gujarat, India.
| |
Collapse
|
12
|
Ramos Chevreuil L, Pessoa VA, da Silva GL, Dos Santos Gouvea PR, do Nascimento Soares LB, Sales-Campos C. Recovery of Proteases and Protease Inhibitors from Ganoderma spp. Cultivated in Amazonian Lignocellulose Wastes. Curr Protein Pept Sci 2025; 26:76-88. [PMID: 38919002 DOI: 10.2174/0113892037297181240605112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Ganoderma spp. are a great source of bioactive molecules. The production and recovery of bioactive molecules vary according to strain, growth substrate, and extraction solution. Variations in protease and their inhibitors in basidiomata from a commercial strain (G. lingzhi) and an Amazonian isolate (Ganoderma sp.) cultivated in Amazonian lignocellulosic wastes and extracted with different solutions are plausible and were investigated in our study. METHODS Basidiomata from cultivation in substrates based on açaí seed, guaruba-cedro sawdust and three lots of marupá sawdust were submitted to extraction in water, Tris-HCl, and sodium phosphate. Protein content, proteases, and protease inhibitors were estimated through different assays. The samples were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). RESULTS Tris-HCl provided higher protein extraction from Ganoderma sp. and higher caseinolytic, gelatinolytic, and fibrinolytic activity for G. lingzhi cultivated in açaí. Water extracts of Ganoderma sp., in general, exhibited higher trypsin and papain inhibitor activities compared to G. lingzhi. Extracts in Tris-HCl and sodium phosphate showed more intense protein bands in SDSPAGE, highlighting bands of molecular weights around 100, 50, and 30 kDa. FTIR spectra showed patterns for proteins in all extracts, with variation in transmittance according to substrate and extractor. CONCLUSION Water extract from Amazonian Ganoderma sp. cultivated in marupá wastes are promising as a source of protease inhibitors, while the Tris-HCL extract of G. lingzhi from açaí cultivation stands out as a source of proteases with fibrinolytic, caseinolytic, and gelatinolytic activities.
Collapse
Affiliation(s)
- Larissa Ramos Chevreuil
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
| | - Vitor Alves Pessoa
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
- Postgraduate Program in Biotechnology, Federal University of Amazonas, Av. General Rodrigo Octavio, 69067-005, Amazonas, Brazil
| | - Giovanna Lima da Silva
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
- Postgraduate Program in Biotechnology, Federal University of Amazonas, Av. General Rodrigo Octavio, 69067-005, Amazonas, Brazil
| | - Paula Romenya Dos Santos Gouvea
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
- Postgraduate Program in Biotechnology, Federal University of Amazonas, Av. General Rodrigo Octavio, 69067-005, Amazonas, Brazil
| | - Larissa Batista do Nascimento Soares
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the Bionorte Network, State University of Amazonas, Av. Carvalho Leal, 69065-001, Amazonas, Brazil
| | - Ceci Sales-Campos
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
- Postgraduate Program in Biotechnology, Federal University of Amazonas, Av. General Rodrigo Octavio, 69067-005, Amazonas, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the Bionorte Network, State University of Amazonas, Av. Carvalho Leal, 69065-001, Amazonas, Brazil
| |
Collapse
|
13
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2025; 55:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
14
|
Hashemi Shahraki F, Evazzadeh N, Aminzadeh S. Heterologous expression, purification, and biochemical characterization of protease 3075 from Cohnella sp. A01. PLoS One 2024; 19:e0310910. [PMID: 39680596 DOI: 10.1371/journal.pone.0310910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/09/2024] [Indexed: 12/18/2024] Open
Abstract
Proteases as one of the most significant categories of commercial enzymes, serve nowadays as the key ingredients in detergent formulations. Therefore, identifying detergent-compatible proteases with better properties is a continuous exercise. Accordingly, we were interested in the recombinant production and characterization of protease 3075 as a novel enzyme from thermophilic indigenous Cohnella sp. A01. The biochemical and structural features of the protease were probed by employing bioinformatic methods and in vitro studies. The bioinformatics analysis discovered that protease 3075 belongs to the C56-PfpI superfamily. The protease 3075 gene was cloned and heterologous expressed in Escherichia coli (E. coli) BL21. It was found that the enzyme contains 175 amino acids and 525 bp with a molecular weight of 19 kDa. Protease 3075 revealed acceptable activity in the range of 40-80°C and pH 5.5-8. The optimum activity of the enzyme was observed at 70°C and pH 6. The activity of protease 3075 increased about 4-fold in the presence of Tween 80 and acetone, while its activity attenuated in the presence of iodoacetic acid and iodoacetamide. Docking analyses revealed the dominant interaction between Tween 80 and protease 3075, mediated by hydrogen bonds and Van der Waals forces. Furthermore, molecular dynamics simulations (MDS) showed that Tween 80 increased the stability of the protease 3075 structure. Altogether, our data provided a novel enzyme by genetic manipulation process that could have significant industrial applications.
Collapse
Affiliation(s)
- Fatemeh Hashemi Shahraki
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Narges Evazzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
15
|
Fernandes LMG, Carvalho-Silva J, da Silva WEL, da Cunha MNC, Converti A, Porto TS. Scaling up the optimized production of Aspergillus heteromorphus URM0269 collagenase in soybean agroindustrial residue. Int J Biol Macromol 2024; 283:137734. [PMID: 39557276 DOI: 10.1016/j.ijbiomac.2024.137734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Collagenase and protease productions from Aspergillus heteromorphus URM0269 were optimized by submerged fermentation using soybean flour as substrate. Fermentations were performed according to composite design using the concentrations of substrate and yeast extract as the independent variables. The best condition was scaled up in a stirred tank bioreactor to assess the fermentation kinetics. The highest production of both enzymes occurred at concentrations of 2.0 % substrate and 0.1 % yeast extract. Contrariwise, after scale-up, collagenase activity increased from 33.5 to 148.5 U/mL, while the protease decreased from 16.3 to 11.7 U/mL. A. heteromorphus URM0269 showed a maximum growth rate of 0.09 h-1 and yields of protease and collagenase on biomass, after 65 h of 2.70 and 34.22 U/mgx, respectively. Collagenase acted optimally at 40 °C and pH 6.0 on collagen as a substrate and displayed an allosteric trend, achieving a maximum reaction rate of 132.47 U/mL. Thermodynamic parameters of collagen degradation such as Gibbs free energy (74.16 kJ/mol), enthalpy (11.64 kJ/mol), entropy (-199.63 J/K.mol), and activation energy (14.25 kJ/mol) were determined for optimal temperature. These results demonstrated that soybean flour is a potential agroindustrial residue for collagenase production. Furthermore, the collagenase displayed promising biochemical and thermodynamic features for other biotechnological applications.
Collapse
Affiliation(s)
- Lígia Maria Gonçalves Fernandes
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Jônatas Carvalho-Silva
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | | | - Márcia Nieves Carneiro da Cunha
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, via Opera Pia 15, 16145 Genoa, Italy
| | - Tatiana Souza Porto
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil.
| |
Collapse
|
16
|
Chowdhury MAH, Sarkar F, Reem CSA, Rahman SM, Mahamud AGMSU, Rahman MA, Md Ashrafudoulla. Enzyme applications in baking: From dough development to shelf-life extension. Int J Biol Macromol 2024; 282:137020. [PMID: 39489247 DOI: 10.1016/j.ijbiomac.2024.137020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Enzymes play a vital role in baking, providing significant benefits from dough development to extending shelf life, which enhances product quality and consistency. Acting as biological catalysts, enzymes such as proteases and amylases break down proteins and starches, modifying dough rheology and improving fermentation. Lipases and oxidases further refine dough texture through emulsification and oxidation, while lipases also produce fatty acid derivatives during fermentation, contributing to the flavor and aroma of baked goods. Xylanases and cellulases optimize dough handling by altering fiber structure, and amylases help maintain moisture and texture, extending the shelf life of baked products. Ensuring regulatory compliance is essential when incorporating enzymes into baking processes, as bakers must address enzyme stability and determine appropriate dosages for reliable outcomes. Ongoing research is exploring innovative enzyme applications, including customized enzyme blends that target specific product qualities, offering new possibilities for product differentiation and innovation. In summary, enzyme-driven advancements present bakers with opportunities to improve product quality, shelf life, and consistency, while meeting industry regulations. This review emphasizes the critical impact enzymes have on dough properties and finished product characteristics, highlighting their role in driving future innovations within the baking industry.
Collapse
Affiliation(s)
- Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Feroj Sarkar
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chowdhury Sanat Anjum Reem
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Sk Mustafizur Rahman
- Department of Nutrition and Food Engineering, Daffodil International University, Birulia 1216, Bangladesh
| | - A G M Sofi Uddin Mahamud
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | | |
Collapse
|
17
|
Jiang Y, Zhang L, Jin Y, Xu H, Liang Y, Xia Z, Zhang C, Guan C, Qu H, Wa Y, Wang W, Huang Y, Gu R, Chen D. Lactiplantibacillus plantarum for the Preparation of Fermented Low-Bitter Enzymatic Skim Milk with Antioxidant Ability. Foods 2024; 13:3828. [PMID: 39682900 DOI: 10.3390/foods13233828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
A high degree of hydrolysis can reduce the allergenicity of milk, while lactic acid bacteria (LAB) fermentation can further enhance the antioxidant ability of enzymatic milk. LAB with a strong antioxidant ability was screened, and the effects of LAB on the bitterness, taste and flavor of enzymatic skim milk (ESM) with a high degree of hydrolysis were investigated in this paper, in addition to the response surface methodology optimized the conditions of the LAB fermentation of ESM. The results indicate that the skim milk hydrolyzed by Protamex has a higher degree of hydrolysis and lower bitterness. The scavenging rate of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical, the inhibition rate of hydroxyl radical (·OH) and the superoxide dismutase (SOD) activity of Lactiplantibacillus plantarum 16 and Lactococcus lactis subsp. lactis m16 are significantly higher than those of other strains (p < 0.05), while the improvement effect of L. plantarum 16 on the bitterness and flavor of ESM is better than that of L. lactis subsp. lactis m16. The fermented ESM has a strong antioxidant ability and low bitterness when the inoculum quantity of L. plantarum 16 is 5%, fermentation at 37 °C for 18 h and the pH of the ESM is 6.5, for which the DPPH free radical scavenging rate is 61.32%, the ·OH inhibition rate is 83.35%, the SOD activity rate is 14.58 and the sensory evaluation is 4.25. The contents of amino acids related to bitterness and antioxidants were reduced and increased, respectively. The ESM fermented by L. plantarum 16 has a good flavor, antioxidant ability and low bitterness.
Collapse
Affiliation(s)
- Yi Jiang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Longfei Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Yushi Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Haiyan Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Yating Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Zihan Xia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Chengran Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Hengxian Qu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Wenqiong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Yujun Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| | - Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Provincial Key Laboratory for Probotics and Dairy Deep Processing, Yangzhou 225127, China
| |
Collapse
|
18
|
Nunes A, Dutra FDS, Brito SDNS, Pereira-Vasques MS, Azevedo GZ, Schneider AR, Oliveira ER, dos Santos AA, Maraschin M, Vianello F, Lima GPP. Effect of Biomass Drying Protocols on Bioactive Compounds and Antioxidant and Enzymatic Activities of Red Macroalga Kappaphycus alvarezii. Methods Protoc 2024; 7:88. [PMID: 39584982 PMCID: PMC11586950 DOI: 10.3390/mps7060088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
Kappaphycus alvarezii is a red seaweed used globally in various biotechnological processes. To ensure the content and stability of its bioactive compounds postharvest, suitable drying protocols must be adopted to provide high-quality raw materials for industrial use. This study aimed to analyze the influence of freeze-drying and oven-drying on the total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (FRAP and DPPH assays), total carotenoid content (TC), and lipase (LA) and protease activity (PA) of K. alvarezii samples collected over the seasons in sea farms in southern Brazil. The freeze-drying technique was found to be more effective regarding superior contents of TPC (39.23 to 127.74 mg GAE/100 g) and TC (10.27 to 75.33 μg/g), as well as DPPH (6.12 to 8.91 mg/100 g). In turn, oven-drying proved to be the best method regarding the TFC (4.99 to 12.29 mg QE/100 g) and PA (119.50 to 1485.09 U/g), with better performance in the FRAP (0.28 to 0.70 mmol/100 g). In this way, it appears that the drying process of the algal biomass can be selected depending on the required traits of the biomass for the intended industrial application. In terms of cost-effectiveness, drying the biomass using oven-drying can be considered appropriate.
Collapse
Affiliation(s)
- Aline Nunes
- Plant Biotechnology and Postharvest Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil; (S.d.N.S.B.); (M.S.P.-V.); (G.P.P.L.)
| | - Felipe de Souza Dutra
- Laboratory of Biotechnology of Natural and Synthetics Products, Institute of Biotecnology, University of Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil; (F.d.S.D.); (A.R.S.)
- Laboratory of Plant Morphogenesis and Biochemistry, Department of Plant Science, Federal University of Santa Catarina, Florianópolis 88034-000, SC, Brazil; (G.Z.A.); (E.R.O.); (M.M.)
| | - Sinara de Nazaré Santana Brito
- Plant Biotechnology and Postharvest Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil; (S.d.N.S.B.); (M.S.P.-V.); (G.P.P.L.)
| | - Milene Stefani Pereira-Vasques
- Plant Biotechnology and Postharvest Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil; (S.d.N.S.B.); (M.S.P.-V.); (G.P.P.L.)
| | - Gadiel Zilto Azevedo
- Laboratory of Plant Morphogenesis and Biochemistry, Department of Plant Science, Federal University of Santa Catarina, Florianópolis 88034-000, SC, Brazil; (G.Z.A.); (E.R.O.); (M.M.)
| | - Alex Ricardo Schneider
- Laboratory of Biotechnology of Natural and Synthetics Products, Institute of Biotecnology, University of Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil; (F.d.S.D.); (A.R.S.)
- Laboratory of Plant Morphogenesis and Biochemistry, Department of Plant Science, Federal University of Santa Catarina, Florianópolis 88034-000, SC, Brazil; (G.Z.A.); (E.R.O.); (M.M.)
| | - Eva Regina Oliveira
- Laboratory of Plant Morphogenesis and Biochemistry, Department of Plant Science, Federal University of Santa Catarina, Florianópolis 88034-000, SC, Brazil; (G.Z.A.); (E.R.O.); (M.M.)
| | - Alex Alves dos Santos
- Aquaculture and Fisheries Development Center, Company of Agricultural Research and Rural Extension of Santa Catarina, Florianópolis 88010-970, SC, Brazil;
| | - Marcelo Maraschin
- Laboratory of Plant Morphogenesis and Biochemistry, Department of Plant Science, Federal University of Santa Catarina, Florianópolis 88034-000, SC, Brazil; (G.Z.A.); (E.R.O.); (M.M.)
| | - Fábio Vianello
- Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, 35020 Legnaro, Italy;
| | - Giuseppina Pace Pereira Lima
- Plant Biotechnology and Postharvest Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil; (S.d.N.S.B.); (M.S.P.-V.); (G.P.P.L.)
| |
Collapse
|
19
|
Reddy N, Parthiban B, Seshagiri S. Production and characterization of protease enzyme from Acinetobacter pittii using peanut meal as substrate. ENVIRONMENTAL TECHNOLOGY 2024; 45:5808-5817. [PMID: 38312074 DOI: 10.1080/09593330.2024.2309471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024]
Abstract
A significantly high protease enzyme yield of 617 U/ml was achieved with Acinetobacter pittii as the microorganism and peanut oil meal as the substrate. Peanut oil meal, which consists of proteins (40-60%) and carbohydrates (22-30%), serves as a sufficient source of nitrogen and carbon necessary for microbial growth and production of enzymes. Moreover, peanut meal offers the advantages of being affordable and available in large quantities, making the meal suitable for cost-effective enzyme production. In the present study, two bacterial strains and one fungal strain were selected to produce proteases utilizing peanut oil meal as the substrate. The experimental conditions during the enzyme production, including pH and temperature, were optimized. In addition, the substrate was enriched with various carbon and nitrogen sources. The microbial strains were streaked on nutritional agar (for bacteria) and potato dextrose agar (for fungus). Following an incubation period, the plates were stored at 4°C for further studies. The molecular weight of partially purified proteases of Acinetobacter pittii was found to be ≅ 95.5 kDa. Potassium nitrate was the most ideal nitrogen source (up to 411% increase in activity) and fructose was the best carbon source (425% increase). These enzymes exhibited excellent temperature tolerance and were capable of functioning over a wide pH range. Furthermore, the obtained proteases demonstrated ability to coagulate milk effectively, indicating their potential for various food-related applications.
Collapse
Affiliation(s)
- Narendra Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Bengaluru, India
| | - Bharath Parthiban
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Bengaluru, India
| | - Swetha Seshagiri
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Bengaluru, India
| |
Collapse
|
20
|
Boonkong S, Luasiri P, Pongsetkul J, Suwanandgul S, Chaipayang S, Molee W, Sangsawad P. Exploring the Utilization of Bovine Blood as a Source of Antioxidant Peptide: Production, Concentration, Identification, and In Silico Gastrointestinal Digestion. Food Sci Anim Resour 2024; 44:1283-1304. [PMID: 39554827 PMCID: PMC11564139 DOI: 10.5851/kosfa.2024.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 11/19/2024] Open
Abstract
This study delves into the pivotal industrial process of efficiently managing livestock waste. Specifically, the study concentrates on harnessing the potential of bovine blood through enzymatic hydrolysis to produce antioxidant peptides. The whole bovine blood sample, subjected to a 90°C heat treatment for 30 min, underwent hydrolysis utilizing various commercial enzymes, alcalase, neutrase, and papain. Through neutrase hydrolysis (BB-N), we identified optimized conditions crucial for achieving heightened antioxidant activities and 40% protein recovery. Ultrafiltration with a molecular weight cutoff of 3 kDa was employed to concentrate the BB-N peptide, demonstrating the highest antioxidant and protein yield. The gel electrophoresis profile confirmed the denaturation of key proteins like albumin, globulin, and fibrinogen before digestion, while the BB-N derived after digestion contained peptides below 16 kDa. Post-concentration, the permeation of UF-3 kDa underwent purification, and the peptide sequence was discerned using liquid chromatography with tandem mass spectrometry. The exploration identified nine novel peptides- IWAGK, VDLL, MTTPNK, MPLVR, KIII, LPQL, TVIL, DFPGLQ, and VEDVK. Notably, the IWAGK sequence emerged as the most potent antioxidant activity peptide. Subsequent in-silico gastrointestinal digestion predicted structural changes in these peptides. While IWAGK, VDLL, MPLVR, LPQL, TVIL, and DFPGLQ could be fragmented into bioactive dipeptides and tripeptides, MTTPNK, KIII, and VEDVK exhibited resistance, suggesting potential circulation through the bloodstream to reach the target organ. Consequently, our study explores the potential use of BB-N as a novel dietary ingredient with health benefits. In vivo studies are needed to validate and extend our findings.
Collapse
Affiliation(s)
- Saruttiwong Boonkong
- School of Animal Technology and
Innovation, Institute of Agricultural Technology, Suranaree University of
Technology, Nakhon Ratchasima 30000, Thailand
| | - Pichitpon Luasiri
- School of Animal Technology and
Innovation, Institute of Agricultural Technology, Suranaree University of
Technology, Nakhon Ratchasima 30000, Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and
Innovation, Institute of Agricultural Technology, Suranaree University of
Technology, Nakhon Ratchasima 30000, Thailand
| | - Saranya Suwanandgul
- Program in Food Science and Technology,
Faculty of Engineering and Agro-Industry, Maejo University,
Chiang Mai 50290, Thailand
| | | | - Wittawat Molee
- School of Animal Technology and
Innovation, Institute of Agricultural Technology, Suranaree University of
Technology, Nakhon Ratchasima 30000, Thailand
| | - Papungkorn Sangsawad
- School of Animal Technology and
Innovation, Institute of Agricultural Technology, Suranaree University of
Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
21
|
Sasidharan A, Rustad T, Cusimano GM. Tuna sidestream valorization: a circular blue bioeconomy approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62230-62248. [PMID: 37434051 PMCID: PMC11606988 DOI: 10.1007/s11356-023-28610-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Tuna is an economically significant seafood, harvested throughout the world, and is heavily traded due to its high nutritional quality and consumer acceptance. Tuna meat is rich in essential nutrients such as amino acids, polyunsaturated fatty acids (PUFA), and trace minerals. The huge volume of solid and liquid sidestreams generated during the processing stages of tuna is creating environmental and socioeconomic challenges in coastal areas. Different products such as fish meal, protein hydrolysates, collagen, enzymes, oil, and bone powder can be produced from tuna sidestreams. Using different nutrient recovery technologies like enzymatic hydrolysis, chemical processing, and green technologies, various categories of product value chains can be created in line with the conventional processing industry. This review attempts to provide a route map for the tuna industry for achieving the circular blue-bioeconomic objectives and reorient the irregular utilization pattern into a sustainable and inclusive path.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Department of Fish Processing Technology, KUFOS, Kerala, India
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| | | |
Collapse
|
22
|
Chinnadurai V, Govindasamy C. L-Asparaginase producing ability of Aspergillus species isolated from tapioca root soil and optimized ideal growth parameters for L-Asparaginase production. ENVIRONMENTAL RESEARCH 2024; 259:119543. [PMID: 38964574 DOI: 10.1016/j.envres.2024.119543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
This research was designed to isolate the predominant L-asparaginase-producing fungus from rhizosphere soil of tapioca field and assess the suitable growth conditions required to produce maximum L-asparaginase activity. The Aspergillus tubingensis was identified as a predominant L-asparaginase producing fungal isolate from 15 isolates, and it was characterized by 18S rRNA sequencing. The L-asparaginase-producing activity was confirmed by pink color zone formation around the colonies in modified Czapek Dox agar plate supplemented with 1% L-Asparagine. The optimal growth conditions required for the L-asparaginase production by A. tubingensis were optimized as pH 6.0, temperature 30 °C, glucose as carbon source, 1.5% of L-Asparagine, ammonium sulphate as nitrogen source, rice husk as natural L-Asparagine enriched source, and 8 days of the incubation period. The L-Asparaginase activity from A. tubingensis was excellent under these optimal growth conditions. It significantly used rice husk as an alternative to synthetic L-Asparagine. As a result, this may be considered a sustainable method of converting organic waste into valuable raw material for microbial enzyme production.
Collapse
Affiliation(s)
- Vajjiram Chinnadurai
- Department of Botany, Sri Vidya Mandir Arts and Science (Autonomous), Katteri, Uthangarai, 636902, Krishnagiri, Tamil Nadu, India.
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh - 11433, Saudi Arabia
| |
Collapse
|
23
|
Zhang P, Zhang Y, Pang W, Alonazi MA, Alwathnani H, Rensing C, Xie R, Zhang T. Cenococcum geophilum impedes cadmium toxicity in Pinus massoniana by modulating nitrogen metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174296. [PMID: 38944303 DOI: 10.1016/j.scitotenv.2024.174296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Nitrogen (N) is of great significance to the absorption, distribution and detoxification of cadmium (Cd). Ectomycorrhizal fungi (EMF) are able to affect the key processes of plant N uptake to resist Cd stress, while the mechanism is still unclear. Therefore, we explored potential strategies of Cenococcum geophilum (C. geophilum) symbiosis to alleviate Cd stress in Pinus massoniana (P. massoniana) from the perspective of plant N metabolism and soil N transformation. The results showed that inoculation of C. geophilum significantly increased the activities of NR, NiR and GS in the shoots and roots of P. massoniana, thereby promoting the assimilation of NO3- and NH4+ into amino acids. Moreover, C. geophilum promoted soil urease and protease activities, but decreased soil NH4+ content, indicating that C. geophilum might increase plant uptake of soil inorganic N. qRT-PCR results showed that C3 symbiosis significantly up-regulated the expression of genes encoding functions involved in NH4+ uptake (AMT3;1), NO3- uptake (NRT2.1, NRT2.4, NRT2.9), as well as Cd resistance (ABCC1 and ABCC2), meanwhile down-regulated the expression of NRT7.3, Cd transporter genes (HMA2 and NRAMP3) in the roots of P. massoniana seedlings. These results demonstrated that C. geophilum was able to alleviate Cd stress by increasing the absorption and assimilation of inorganic N in plants and inhibiting the transport of Cd from roots to shoots, which provided new insights into how EMF improved host resistance to abiotic stress.
Collapse
Affiliation(s)
- Panpan Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhu Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Pang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Madeha A Alonazi
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongzhang Xie
- Forestry Bureau, Sanyuan District, Sanming 365000, China
| | - Taoxiang Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
24
|
Potenza L, Kozon L, Drewniak L, Kaminski TS. Passive Droplet Microfluidic Platform for High-Throughput Screening of Microbial Proteolytic Activity. Anal Chem 2024; 96:15931-15940. [PMID: 39320273 PMCID: PMC11465220 DOI: 10.1021/acs.analchem.4c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Traditional bacterial isolation methods are often costly, have limited throughput, and may not accurately reflect the true microbial community composition. Consequently, identifying rare or slow-growing taxa becomes challenging. Over the past decade, a new approach has been proposed to replace traditional flasks or multiwell plates with ultrahigh-throughput droplet microfluidic screening assays. In this study, we present a novel passive droplet-based method designed for isolating proteolytic microorganisms, which are crucial in various biotechnology industries. Following the encapsulation of single cells in gelatin microgel compartments and their subsequent clonal cultivation, microcultures are passively sorted at high throughput based on the deformability of droplets. Our novel chip design offers a 50-fold improvement in throughput compared to a previously developed deformability-based droplet sorter. This method expands an array of droplet-based microbial enrichment assays and significantly reduces the time and resources required to isolate proteolytic bacteria strains.
Collapse
Affiliation(s)
- Luca Potenza
- Department
of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Lukasz Kozon
- Department
of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
- Institute
of Physical Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Lukasz Drewniak
- Department
of Environmental Microbiology and Biotechnology, Institute of Microbiology,
Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Tomasz S. Kaminski
- Department
of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| |
Collapse
|
25
|
Hao Y, Jin Y, Zhang A, Jiang X, Gong M, Lu C, Pan R, Chen S. Identification and biochemical characterization of a novel halolysin from Halorubellus sp. PRR65 with a relatively high temperature activity. World J Microbiol Biotechnol 2024; 40:340. [PMID: 39358625 DOI: 10.1007/s11274-024-04149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Extracellular proteases from haloarchaea, also referred to as halolysins, are in increasing demand and are studied for their various applications in condiments and leather industries. In this study, an extracellular protease encoding gene from the haloarchaeon Halorubellus sp. PRR65, hly65, was cloned and heterologously expressed in E. coli. The novel halolysin Hly65 from the genus Halorubellus was characterized by complete inhibition of phenylmethanesulfonyl fluoride (PMSF) on its enzyme activity. Experimental determination revealed a triad catalytic active center consisting of Asp154-His193-Ser348. Deletion of the C-terminal extension (CTE) resulted in loss of enzyme activity, while dithiothreitol (DTT) did not inhibit the enzyme activity, suggesting that Hly65 may function as a monomer. The Km, Vmax and Kcat for the Hly65 were determined to be 2.91 mM, 1230.47 U·mg-1 and 1538.09 S-1, respectively, under 60 °C, pH 8.0 and 4.0 M NaCl using azocasecin as a substrate. Furthermore, a three-dimensional structure prediction based on functional domains was obtained in this study which will facilitate modification and reorganization of halolysins to generate mutants with new physiological activities.
Collapse
Affiliation(s)
- Yuling Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Yu Jin
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Aodi Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Xinran Jiang
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Ming Gong
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Cunlong Lu
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Ruru Pan
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
| |
Collapse
|
26
|
Ekpenyong MG, Antai SP. Statistical versus neural network-embedded swarm intelligence optimization of a metallo-neutral-protease production: activity kinetics and food industry applications. Prep Biochem Biotechnol 2024; 54:1132-1146. [PMID: 38491924 DOI: 10.1080/10826068.2024.2328681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
An integrated approach involving response surface methodology (RSM) and artificial neural network-ant-colony hybrid optimization (ANN-ACO) was adopted to develop a bioprocess medium to increase the yield of Bacillus cereus neutral protease under submerged fermentation conditions. The ANN-ACO model was comparatively superior (predicted r2 = 98.5%, mean squared error [MSE] = 0.0353) to RSM model (predicted r2 = 86.4%, MSE = 23.85) in predictive capability arising from its low performance error. The hybrid model recommended a medium containing (gL-1) molasses 45.00, urea 9.81, casein 25.45, Ca2+ 1.23, Zn2+ 0.021, Mn2+ 0.020, and 4.45% (vv-1) inoculum, for a 6.75-fold increase in protease activity from a baseline of 76.63 UmL-1. Yield was further increased in a 5-L bioreactor to a final volumetric productivity of 3.472 mg(Lh)-1. The 10.0-fold purified 46.6-kDa-enzyme had maximum activity at pH 6.5, 45-55 °C, with Km of 6.92 mM, Vmax of 769.23 µmolmL-1 min-1, kcat of 28.49 s-1, and kcat/Km of 4.117 × 103 M-1 s-1, at 45 °C, pH 6.5. The enzyme was stabilized by Ca2+, activated by Zn2+ but inhibited by EDTA suggesting that it was a metallo-protease. The biomolecule significantly clarified orange and pineapple juices indicating its food industry application.
Collapse
Affiliation(s)
- Maurice George Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Sylvester Peter Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| |
Collapse
|
27
|
Yoon J, Yasumoto-Hirose M, Kasai H. Flagellimonas algarum sp. nov., isolated from dense mats of filamentous algae. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01200-0. [PMID: 39331279 DOI: 10.1007/s12223-024-01200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
A novel Gram-stain-negative, strictly aerobic, rod-shaped, light-yellow-pigmented, and chemo-organoheterotrophic bacterium, designated DF-77T, was isolated from dense mats of filamentous algae collected in March 2004 at Okinawa in Japan. The microorganism grew at 0-2.0% NaCl concentrations (w/v), pH 6.0-9.0, and 20-30 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain DF-77T is a novel member of the family Flavobacteriaceae and was greatly related to Flagellimonas nanhaiensis SM1704T with sequence similarity of 95.5%. The main fatty acids were iso-C15:1 G, iso-C15:0, and iso-C17:0 3-OH, and the only isoprenoid quinone was menaquinone-6. The dominant polar lipids were phosphatidylethanolamine, two unidentified aminolipids, an unidentified phosphoaminolipid, and four unidentified lipids. The genome size of strain DF-77T was 3.60 Mbp with a DNA G + C content of 47.5%. The average nucleotide identity (ANI) value between the genomes of strain DF-77T and its closely related species was 69.8-70.7%. The digital DNA - DNA hybridization (dDDH) value of strain DF-77T with the strain of F. nanhaiensis SM1704T was 16.8%. The genome of the strain DF-77T revealed that it encoded several genes involved in bio-macromolecule degradation, indicating a high potential for producing industrially useful enzymes. Consequently, the strain is described as a new species in the genus Flagellimonas, for which the name Flagellimonas algarum sp. nov., is proposed with the type strain DF-77T (= KCTC 72791T = NBRC 114251T).
Collapse
Affiliation(s)
- Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, Republic of Korea.
| | - Mina Yasumoto-Hirose
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate, 026-0001, Japan
- Tropical Technology Plus, 12-75 Suzaki, Uruma, Okinawa, 904-2234, Japan
| | - Hiroaki Kasai
- Sanriku Education and Research Center for Marine Biosciences, Kitasato University School of Marine Biosciences, 160-4 Utou, Okirai, Sanriku-Cho, Ofunato, Iwate, 022-0101, Japan
| |
Collapse
|
28
|
Miranda SM, Belo I, Lopes M. Yarrowia lipolytica growth, lipids, and protease production in medium with higher alkanes and alkenes. World J Microbiol Biotechnol 2024; 40:318. [PMID: 39261393 PMCID: PMC11390925 DOI: 10.1007/s11274-024-04123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Two strains of Yarrowia lipolytica (CBS 2075 and DSM 8218) were first studied in bioreactor batch cultures, under different controlled dissolved oxygen concentrations (DOC), to assess their ability to assimilate aliphatic hydrocarbons (HC) as a carbon source in a mixture containing 2 g·L-1 of each alkane (dodecane and hexadecane), and 2 g·L-1 hexadecene. Both strains grew in the HC mixture without a lag phase, and for both strains, 30 % DOC was sufficient to reach the maximum values of biomass and lipids. To enhance lipid-rich biomass and enzyme production, a pulse fed-batch strategy was tested, for the first time, with the addition of one or three pulses of concentrated HC medium. The addition of three pulses of the HC mixture (total of 24 g·L-1 HC) did not hinder cell proliferation, and high protease (> 3000 U·L-1) and lipids concentrations of 3.4 g·L-1 and 4.3 g·L-1 were achieved in Y. lipolytica CBS 2075 and DSM 8218 cultures, respectively. Lipids from the CBS 2075 strain are rich in C16:0 and C18:1, resembling the composition of palm oil, considered suitable for the biodiesel industry. Lipids from the DSM 8218 strain were predominantly composed of C16:0 and C16:1, the latter being a valuable monounsaturated fatty acid used in the pharmaceutical industry. Y. lipolytica cells exhibited high intrinsic surface hydrophobicity (> 69 %), which increased in the presence of HC. A reduction in surface tension was observed in both Y. lipolytica cultures, suggesting the production of extracellular biosurfactants, even at low amounts. This study marks a significant advancement in the valorization of HC for producing high-value products by exploring the hydrophobic compounds metabolism of Y. lipolytica.
Collapse
Affiliation(s)
- Sílvia M Miranda
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Marlene Lopes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
29
|
Costa Silva MD, Costa RB, do Nascimento JS, Gomes MMODS, Ferreira AN, Grillo LAM, Luz JMRD, Gomes FS, Pereira HJV. Production of milk-coagulating protease by fungus Pleurotus djamor through solid state fermentation using wheat bran as the low-cost substrate. Prep Biochem Biotechnol 2024; 55:278-284. [PMID: 39222362 DOI: 10.1080/10826068.2024.2399040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Proteases are enzymes that hydrolyze peptide bonds present in proteins and peptides. They are widely used for various industrial applications, such as in the detergent, food, and dairy industries. Cheese is one of the most important products of the dairy industry, and the coagulation stage is crucial during the cheese-making process. Enzymatic coagulation is the most common technique utilized for this purpose. Microbial enzymes are frequently used for coagulation due to their advantages in terms of availability, sustainability, quality control, product variety, and compliance with dietary and cultural/religious requirements. In the present study, we identified and subsequently characterized milk coagulant activity from the fungus Pleurotus djamor PLO13, obtained during a solid-state fermentation process, using the agro-industrial residue, wheat bran, as the fermentation medium. Maximum enzyme production and caseinolytic activity occurred 120 h after cultivation. When the enzyme activity against various protease-specific synthetic substrates and inhibitors was analyzed, the enzyme was found to be a serine protease, similar to elastase 2. This elastase-2-like serine protease was able to coagulate pasteurized whole and reconstituted skim milk highly efficiently in the presence and absence of calcium, even at room temperature. The coagulation process was influenced by factors such as temperature, time, and calcium concentration. We demonstrate here, for the first time, an elastase-2-like enzyme in a microorganism and its potential application in the food industry for cheese production.
Collapse
Affiliation(s)
- Monizy da Costa Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Ricardo Bezerra Costa
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Josiel Santos do Nascimento
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | | | - Alexsandra Nascimento Ferreira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Luciano Aparecido Meireles Grillo
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - José Maria Rodrigues da Luz
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Francis Soares Gomes
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Hugo Juarez Vieira Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| |
Collapse
|
30
|
Zerizer H, Boughachiche F, Mebarki A, Sinacer O, Rachedi K, Ait Kaki A. Partitioning purification, biochemical characterization, and milk coagulation efficiency of protease from a newly Streptomyces sp. isolate. Braz J Microbiol 2024; 55:2179-2187. [PMID: 38874743 PMCID: PMC11405652 DOI: 10.1007/s42770-024-01386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
An actinobacteria strain was isolated from an olive waste mill and tested for protease production on skimmed milk media. The strain identification was achieved through both 16 S rDNA sequencing and phenotypic characterization. The enzyme was purified using the ammonium sulfate/t-butanol three-phase partitioning (TPP) method, followed by characterization to investigate the effect of pH, temperature, and various chemical agents. Subsequently, the enzyme was assessed for its milk coagulation activity. The strain belonging to the Streptomyces genera, exhibits significant phylogenetic and phenotypic differences from the aligned species, suggesting its novelty as a new strain. The enzyme was best separated in the TPP aqueous phase with a 5.35 fold and 56.25% yield. Optimal activity was observed at pH 9.0 and 60 °C, with more than half of the activity retained within the pH range of 7-10 over one hour. The protease demonstrated complete stability between 30 and 60 °C. While metallic ions enhanced enzyme activity, EDTA acted as an inhibitor. The enzyme displayed resistance to H2O2, SDS, Tween 80, and Triton X-100. Notably, it was activated in organic solvents (ethyl acetate, petroleum ether, and xylene), maintaining > 75% of its original activity in butanol, ethanol, and methanol. Additionally, the enzyme yielded high milk coagulant activity of 11,478 SU/mL. The new Streptomyces sp. protease revealed high activity and stability under a wide range of biochemical conditions. Its use in the dairy industry appears particularly promising. Further industrial process investigations will be valuable in determining potential uses for this enzyme.
Collapse
Affiliation(s)
- Habiba Zerizer
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), Mentouri Brothers University, Constantine 1, Constantine, Algeria.
| | - Faiza Boughachiche
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), Mentouri Brothers University, Constantine 1, Constantine, Algeria
| | - Abdelouahab Mebarki
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), Mentouri Brothers University, Constantine 1, Constantine, Algeria
| | - Oussama Sinacer
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), Mentouri Brothers University, Constantine 1, Constantine, Algeria
| | - Kounouz Rachedi
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), Mentouri Brothers University, Constantine 1, Constantine, Algeria
| | - Amel Ait Kaki
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), Mentouri Brothers University, Constantine 1, Constantine, Algeria
| |
Collapse
|
31
|
Kolesnichenko AV, Pleshakova TO. Fundamentals of protein chemistry at the Institute of Biomedical Chemistry. BIOMEDITSINSKAIA KHIMIIA 2024; 70:263-272. [PMID: 39324192 DOI: 10.18097/pbmc20247005263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Eighty years ago, the Institute of Biomedical Chemistry (IBMC) initially known as the Institute of Biological and Medical Chemistry of the Academy of Sciences of the USSR was founded. During the first decades significant studies were performed; they not only contributed to a deeper understanding of biochemical processes in the living organisms, but also laid the foundation for further development of these fields. The main directions of IBMC were focused on studies of structures of enzymes (primarily various proteases), their substrates and inhibitors, the role of enzymes of carbohydrate metabolism in the development of pathologies, study of the mechanisms of hydrolytic and oxidative-hydrolytic transformation of organic compounds, studies of connective tissue proteins, including collagens, study of amino acid metabolism. It is difficult to find papers from that period in current online literature databases, so this review will help to understand the value of studies performed at IBMC during the first 40 years after its organization, as well as their impact on modern research.
Collapse
|
32
|
Jeon SH, Seong HJ, Kim H, Kim D, Yang KY, Nam SH. Improvement of branched-chain amino acid production by isolated high-producing protease from Bacillus amyloliquefaciens NY130 on isolated soy/whey proteins and their muscle cell protection. Food Chem 2024; 450:139327. [PMID: 38636380 DOI: 10.1016/j.foodchem.2024.139327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Branched-chain amino acids (BCAAs) are vital components of human and animal nutrition that contribute to the building blocks of proteins. In this study, 170 protease-producing strains were isolated and screened from soy-fermented foods. Bacillus amyloliquefaciens NY130 was obtained from Cheonggukjang with high production of BCAAs. Optimal production of protease from B. amyloliquefaciens NY130 (protease NY130) was achieved at 42 °C and pH 6.0 for 21 h. It was purified and determined as 27- and 40 kDa. Protease NY130 showed maximum activity at pH 9.0 and 45 °C with Km value of 10.95 mg for ISP and 1.69 mg for WPI. Protease-treated ISP and WPI showed increased sweetness and saltiness via electronic tongue analysis and enhanced the protective effect against oxidative stress in C2C12 myocytes by increasing p-mTOR/mTOR protein expression to 160%. This work possesses potential in producing BCAAs by using protease for utilization in food.
Collapse
Affiliation(s)
- Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeon-Jun Seong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Graduate School of International Agricultural Technology, Seoul National University, Gangwon-do, 25354, Republic of Korea
| | - Hayeong Kim
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergece, Seoul National University, Gangwon-do, 25354, Republic of Korea
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Gangwon-do, 25354, Republic of Korea; Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergece, Seoul National University, Gangwon-do, 25354, Republic of Korea
| | - Kwang-Yeol Yang
- Department of Applied Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung-Hee Nam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Institute of Agricultural and Life Science Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
33
|
Neog PR, Saini S, Konwar BK. Purification, and characterization of detergent-compatible serine protease from Bacillussafensis strain PRN1: A sustainable alternative to hazardous chemicals in detergent industry. Protein Expr Purif 2024; 219:106479. [PMID: 38574878 DOI: 10.1016/j.pep.2024.106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Owing to vast therapeutic, commercial, and industrial applications of microbial proteases microorganisms from different sources are being explored. In this regard, the gut microbiota of Monopteruscuchia were isolated and examined for the production of protease. All the isolates were primarily and secondarily screened on skim milk and gelatin agar plates. The protease-positive isolates were characterized morphologically, biochemically, and molecularly. Out of the 20 isolated strains,6 belonging to five different genera viz.Bacillus,Priestia,Aeromonas,Staphylococcus, and Serratia demonstrated proteolytic activity. Bacillussafensis strain PRN1 demonstrated the highest protease production and, thus, the largest hydrolytic clear zones in both skim milk agar (15 ± 1 mm) and gelatin (16 ± 1 mm) plates. The optimized parameters (time, pH, temperature, carbon, nitrogen) for highest protease activity and microbial growth of B.safensis strain PRN1 includes 72 h (OD600 = 0.56,1303 U/mL), pH 8 (OD600 = 0.83, 403.29 U/mL), 40 °C (OD600 = 1.75, 1849.11 U/mL), fructose (OD600 = 1.22, 1502 U/mL), and gelatin (OD600 = 1.88, 1015.33 U/mL). The enzyme was purified to homogeneity using salt-precipitation and gel filtration chromatography. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the purified enzyme was a monomer of a molecular weight of ∼33 kDa. The protease demonstrated optimal activity at pH 8 and 60 °C. It was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), demonstrating that it belongs to the serine-proteases family. The compatibility of the enzyme with surfactants and commercial detergents demonstrates its potential use in the detergent industry. Furthermore, the purified enzyme showed antibacterial and blood-stain removal properties.
Collapse
Affiliation(s)
- Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Shubhangi Saini
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Bolin Kumar Konwar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
34
|
Yoon J. Polyphasic Investigation of Aliiroseovarius salicola sp. nov., Isolated from Seawater. Curr Microbiol 2024; 81:178. [PMID: 38758299 DOI: 10.1007/s00284-024-03715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
A novel Gram-stain-negative, strictly aerobic, short-rod-shaped, and chemo-organoheterotrophic bacterium, designated KMU-50T, was isolated from seawater gathered from Dadaepo Harbor in South Korea. The microorganism grew at 0-4.0% NaCl concentrations (w/v), pH 6.0-8.0, and 4-37 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain KMU-50T is a novel member of the family Roseobacteraceae and were greatly related to Aliiroseovarius crassostreae CV919-312T with sequence similarity of 98.3%. C18:1 ω7c was the main fatty acid and ubiquinone-10 was the only isoprenoid quinone. The dominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified phospholipids, an unidentified aminolipid, and an unidentified lipid. The genome size of strain KMU-50T was 3.60 Mbp with a DNA G+C content of 56.0%. The average nucleotide identity (ANI) and average amino acid identity (AAI) values between the genomes of strain KMU-50T and its closely related species were 76.0-81.2% and 62.2-81.5%, respectively. The digital DNA-DNA hybridization (dDDH) value of strain KMU-50T with the strain of A. crassostreae CV919-312T was 25.1%. The genome of the strain KMU-50T showed that it encoded many genes involved in the breakdown of bio-macromolecules, thus showing a high potential as a producer of industrially useful enzymes. Consequently, the strain is described as a new species in the genus Aliiroseovarius, for which the name Aliiroseovarius salicola sp. nov., is proposed with the type strain KMU-50T (= KCCM 90480T = NBRC 115482T).
Collapse
Affiliation(s)
- Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, South Korea.
| |
Collapse
|
35
|
Ainousah BE, Ibrahim SRM, Alzain AA, Mohamed SGA, Hussein HGA, Ashour A, Abdallah HM, Mohamed GA. Exploring the potential of Aspergillus wentii: secondary metabolites and biological properties. Arch Microbiol 2024; 206:216. [PMID: 38619638 DOI: 10.1007/s00203-024-03934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Fungi are of considerable importance due to their capacity to biosynthesize various secondary metabolites with bioactive properties that draw high attention in new drug discovery with beneficial uses for improving human well-being and life quality. Aspergillus genus members are widespread and cosmopolitan species with varying economic significance in the fields of industry, medicine, and agriculture. Its species are renowned for their biosynthesis of secondary metabolites, characterized by both potent biological activity and structural novelty, making them a substantial reservoir for the development of new pharmaceuticals. The current work aimed at focusing on one species of this genus, Aspergillus wentii Wehmer, including its reported secondary metabolites in the period from 1951 to November 2023. A total of 97 compounds, including nitro-compounds, terpenoids, anthraquinones, xanthones, benzamides, and glucans. A summary of their bioactivities, as well as their biosynthesis was highlighted. Additionally, the reported applications of this fungus and its enzymes have been discussed. This review offers a useful reference that can direct future research into this fungus and its active metabolites, as well as their possible pharmacological and biotechnological applications.
Collapse
Affiliation(s)
- Bayan E Ainousah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, 21442, Jeddah, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Medani, Gezira, Sudan
| | - Shaimaa G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Hazem G A Hussein
- Preparatory Year Program, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Liu X, Lian M, Zhao M, Huang M. Advances in recombinant protease production: current state and perspectives. World J Microbiol Biotechnol 2024; 40:144. [PMID: 38532149 DOI: 10.1007/s11274-024-03957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mulin Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
37
|
Pérez-Aguilar H, Lacruz-Asaro MA, Arán-Aís F. Bioprocess to valorise fleshing produced in the tanning industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17718-17731. [PMID: 37440139 DOI: 10.1007/s11356-023-28652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
This study focuses on circular bioeconomy and how to reduce the management of solid by-products in tannery facilities. To achieve this, double enzymatic hydrolysis has been developed, which allows the integrated management of both limed and fresh fleshing that are classified as category 3 animal by-products (ABPs). Fleshing has an average content of 15% fat, 20% protein and 65% water. To process these components independently, the fat fraction is separated from the protein and liquid protein fractions. This bioprocess has been developed from fleshing, yielding up to 78% mass recovery as biostimulants that are suitable for formulation and use in the fertiliser market. The efficacy of the protein fraction as a biostimulant was validated through laboratory tests, specifically by cabbage germination, which exhibited a notable improvement by 25%.
Collapse
Affiliation(s)
- Henoc Pérez-Aguilar
- INESCOP, Footwear Technology Centre, Pol. Ind. Campo Alto. C/ Alemania, 102, 03600, Elda Alicante, Spain.
| | | | - Francisca Arán-Aís
- INESCOP, Footwear Technology Centre, Pol. Ind. Campo Alto. C/ Alemania, 102, 03600, Elda Alicante, Spain
| |
Collapse
|
38
|
Jagadeesan Y, Meenakshisundaram S, Pichaimuthu S, Balaiah A. A scientific version of understanding "Why did the chickens cross the road"? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. ENVIRONMENTAL RESEARCH 2024; 244:117907. [PMID: 38109965 DOI: 10.1016/j.envres.2023.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.
Collapse
Affiliation(s)
- Yogeswaran Jagadeesan
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Shanmugapriya Meenakshisundaram
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Suthakaran Pichaimuthu
- Genprotic Biopharma Private Limited, SPIC Bioprocess Laboratory, Anna University, Taramani Campus, Taramani, Chennai, Tamilnadu, 600113, India.
| | - Anandaraj Balaiah
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| |
Collapse
|
39
|
Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N. Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4. J Microbiol Biotechnol 2024; 34:436-456. [PMID: 38044750 PMCID: PMC10940756 DOI: 10.4014/jmb.2306.06050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
Collapse
Affiliation(s)
- Suleiman D Allison
- Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Moddibo Adama University, Yola 640230, Nigeria
| | - Nur AdeelaYasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| |
Collapse
|
40
|
Ekpenyong M, Asitok A, Ben U, Amenaghawon A, Kusuma H, Akpan A, Antai S. Application of the novel manta-ray foraging algorithm to optimize acidic peptidase production in solid-state fermentation using binary agro-industrial waste. Prep Biochem Biotechnol 2024; 54:226-238. [PMID: 37210635 DOI: 10.1080/10826068.2023.2214936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Peptidases, which constitute about 20% of the global enzyme market, have found applications in detergent, food and pharmaceutical industries, and could be produced on a large scale using low-cost agro-industrial waste. An acidophilic Bacillus cereus strain produced acidic peptidase on binary-agro-industrial waste comprising yam peels and fish processing waste at pH 4.5 with high catalytic activity. A five-variable central composite rotatable design of a response surface methodology was used to model bioprocess conditions for improved peptidase production in solid-state fermentation. Data generated was leveraged as the basis for applying the novel Manta-ray foraging optimization-linked feed-forward artificial neural network to predict bioprocess conditions optimally. Results obtained from the optimization experiments revealed a significant coefficient of determination of 0.9885 with low-performance error. The bioprocess predicted a peptidase activity of 1035.32 U/mL under optimized conditions set as 54.8 g/100 g yam peels, 23.85 g/100 g fish waste, 0.31 g/100 g CaCl2, 47.54% (v/w) moisture content, and pH 2. Peptidase activity was improved 5-fold, and was stable for 240 min between pH 2.5 and 3.5. Michaelis-Menten kinetics revealed a Km of 0.119 mM and a catalytic efficiency of 45462.19 mM-1 min-1. The bioprocess holds promise for sustainable enzyme-driven applications.
Collapse
Affiliation(s)
- Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Ubong Ben
- Department of Physics, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Andrew Amenaghawon
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin-City, Nigeria
| | - Heri Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Yogyakarta, Indonesia
| | - Anthony Akpan
- Department of Physics, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| |
Collapse
|
41
|
Arabacı N, Karaytuğ T. Alkaline Thermo- and Oxidant-Stable Protease from Bacillus pumilus Strain TNP93: Laundry Detergent Formulations. Indian J Microbiol 2023; 63:575-587. [PMID: 38031609 PMCID: PMC10682312 DOI: 10.1007/s12088-023-01115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
The study aims to produce a detergent-compatible and alkaline thermophilic protease from a Bacillus strain and to investigate its usability as a detergent bio-additive. The protease-producing bacterium was identified as Bacillus pumilus strain TNP93 according to the 16S rRNA sequence. The bacterium optimally synthesized the protease at 40 °C and pH 10 in 40 h. The raw protease displayed its optimum activity at pH 10 and 60 °C and its stability between pH 6-13 and 30-100 °C for 24 h. The molecular mass of the proteolytic band was estimated to be about 85 kDa. The protease was not inhibited by any of the metal ions used (Ba2+, Ca2+, Co2+, Cu2+, Mg2+, Mn2+, Zn2+). 97 and 90% of its original activity with 5 mM PMSF and EDTA remained. The activity was measured as 84, 124, and 95%, respectively, in the presence of 1% concentrations of Tween 20, Tween 80, and Triton X-100. In addition, all of its activity was preserved when the enzyme was exposed to 5% H2O2. The end products of casein were detected as tyrosine, aspartic acid, glycine, and cysteine by thin-layer chromatography. Considering the wash performance analysis, the mix of 1% commercial detergent and enzyme almost removed all of the protein-based stains (blood and egg yolk albumin). These remarkable findings indicate that the alkaline, thermo-, and oxidant-stable TNP93 protease is a valuable candidate for usage as a biological additive in various laundry detergents.
Collapse
Affiliation(s)
- Nihan Arabacı
- Arts and Sciences Faculty, Biology Department, Çukurova University, Adana, Türkiye
| | - Tuna Karaytuğ
- Institute of Natural and Applied Sciences, Department of Biology, Çukurova University, Adana, Türkiye
| |
Collapse
|
42
|
Egbune EO, Ezedom T, Odeghe OB, Orororo OC, Egbune OU, Ehwarieme AD, Aganbi E, Ebuloku CS, Chukwuegbo AO, Bogard E, Ayomanor E, Chisom PA, Edafetano FL, Destiny A, Alebe PA, Aruwei TK, Anigboro AA, Tonukari NJ. Solid-state fermentation production of L-lysine by Corynebacterium glutamicum (ATCC 13032) using agricultural by-products as substrate. World J Microbiol Biotechnol 2023; 40:20. [PMID: 37996724 DOI: 10.1007/s11274-023-03822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
To meet the growing demand for L-lysine, an essential amino acid with various applications, it is crucial to produce it on a large scale locally instead of relying solely on imports. This study aimed to evaluate the potential of using Corynebacterium glutamicum ATCC 13032 for L-lysine production from agricultural by-products such as palm kernel cake, soybean cake, groundnut cake, and rice bran. Solid-state fermentation was conducted at room temperature for 72 h, with the addition of elephant grass extract as a supplement. The results revealed that these agricultural by-products contain residual amounts of L-lysine. By employing solid-state fermentation with C. glutamicum (106 CFU/ml) in 100 g of various agricultural by-products, L-lysine production was achieved. Interestingly, the addition of elephant grass extract (1 g of elephant grass: 10 ml of water) further enhanced L-lysine production. Among the tested substrates, 100 g of groundnut cake moistened with 500 ml of elephant grass extract yielded the highest L-lysine concentration of 3.27 ± 0.02 (mg/gds). Furthermore, fermentation led to a substantial rise (p < 0.05) in soluble protein, with solid-state fermented soybean cake moistened with 500 ml of elephant grass extract exhibiting the highest amount of 7.941 ± 0.05 mg/gds. The activities of xylanase, amylase and protease were also significantly enhanced. This study demonstrates a viable biotechnological approach for locally producing L-lysine from agricultural by-products using solid-state fermentation with C. glutamicum. The findings hold potential for both health and industrial applications, providing a sustainable and economically feasible method for L-lysine production.
Collapse
Affiliation(s)
- Egoamaka O Egbune
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria.
- Tonukari Biotechnology Laboratory, Sapele, Delta State, Nigeria.
| | - Theresa Ezedom
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Otuke B Odeghe
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Osuvwe C Orororo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Olisemeke U Egbune
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
| | - Ayobola D Ehwarieme
- Department of Microbiology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Eferhire Aganbi
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- J. Mack Robinson College of Business, Georgia State University, 3348 Peachtree Rd NE, Atlanta, GA, 30326, USA
| | - Chijindu S Ebuloku
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Alma O Chukwuegbo
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Ebiyeiferu Bogard
- Department of Science Laboratory Technology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Edesiri Ayomanor
- Department of Science Laboratory Technology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Patricia A Chisom
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Fejiro L Edafetano
- Department of Science Laboratory Technology, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Albert Destiny
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Peace A Alebe
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Toboke-Keme Aruwei
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- Tonukari Biotechnology Laboratory, Sapele, Delta State, Nigeria
| |
Collapse
|
43
|
Yao H, Liu S, Liu T, Ren D, Zhou Z, Yang Q, Mao J. Microbial-derived salt-tolerant proteases and their applications in high-salt traditional soybean fermented foods: a review. BIORESOUR BIOPROCESS 2023; 10:82. [PMID: 38647906 PMCID: PMC10992980 DOI: 10.1186/s40643-023-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 04/25/2024] Open
Abstract
Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
44
|
Mousavi Ghahfarrokhi SS, Mahdigholi FS, Amin M. Collateral beauty in the damages: an overview of cosmetics and therapeutic applications of microbial proteases. Arch Microbiol 2023; 205:375. [PMID: 37935975 DOI: 10.1007/s00203-023-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Microbial proteases are enzymes secreted by a variety of microorganisms, including bacteria and fungi, and have attracted significant attention due to their versatile applications in the food and pharmaceutical industries. In addition, certain proteases have been used in the development of skin health products and cosmetics. This article provides a review of microbial proteases in terms of their classification, sources, properties, and applications. Moreover, different pharmacological and molecular investigations have been reviewed. Various biological activities of microbial proteases, such as Arazyme, collagenase, elastin, and Nattokinase, which are involved in the digestion of dietary proteins, as well as their potential anti-inflammatory, anti-cancer, antithrombotic, and immunomodulatory effects have been included. Furthermore, their ability to control infections and treat various disorders has been discussed. Finally, this review highlights the potential applications and future perspectives of microbial proteases in biotechnology and biomedicine, and proposes further studies to develop new perspectives for disease control and health-promoting strategies using microbial resources.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fateme Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Room No. 1-221, Faculty of Pharmacy, 16th Azar Street, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Falkenberg F, Kohn S, Bott M, Bongaerts J, Siegert P. Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822 T. FEBS Open Bio 2023; 13:2035-2046. [PMID: 37649135 PMCID: PMC10626276 DOI: 10.1002/2211-5463.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023] Open
Abstract
Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822T (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5% (w/v) SDS and 5% H2 O2 (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H2 O2 , suggest it has potential for biotechnological applications.
Collapse
Affiliation(s)
- Fabian Falkenberg
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Sophie Kohn
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Michael Bott
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum JülichGermany
| | - Johannes Bongaerts
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Petra Siegert
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| |
Collapse
|
46
|
Shettar SS, Bagewadi ZK, Kolvekar HN, Yunus Khan T, Shamsudeen SM. Optimization of subtilisin production from Bacillus subtilis strain ZK3 and biological and molecular characterization of synthesized subtilisin capped nanoparticles. Saudi J Biol Sci 2023; 30:103807. [PMID: 37744003 PMCID: PMC10514557 DOI: 10.1016/j.sjbs.2023.103807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increase and dissemination of multi-drug resistant bacteria have presented a major healthcare challenge, making bacterial infections a significant concern. The present research contributes towards the production of bioactive subtilisin from a marine soil isolate Bacillus subtilis strain ZK3. Custard apple seed powder (raw carbon) and mustard oil cake (raw nitrogen) sources showed a pronounced effect on subtilisin production. A 7.67-fold enhancement in the production was evidenced after optimization with central composite design-response surface methodology. Subtilisin capped silver (AgNP) and zinc oxide (ZnONP) nanoparticles were synthesized and characterized by UV-Visible spectroscopy. Subtilisin and its respective nanoparticles revealed significant biological properties such as, antibacterial activity against all tested pathogenic strains with potential against Escherichia coli and Pseudomonas aeruginosa. Prospective antioxidant behavior of subtilisin, AgNP and ZnONP was evidenced through radical scavenging assays with ABTS and DPPH. Subtilisin, AgNP and ZnONP revealed cytotoxic effect against cancerous breast cell lines MCF-7 with IC50of 83.48, 3.62 and 7.57 µg/mL respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the structure, surface and thermostability properties. The study proposes the potential therapeutic applications of subtilisin and its nanoparticles, a way forward for further exploration in the field of healthcare.
Collapse
Affiliation(s)
- Shreya S. Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Harsh N. Kolvekar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Dental Science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
47
|
Wang R, Wang Y, Song J, Tian C, Jing X, Zhao P, Xia Q. A novel method for silkworm cocoons self-degumming and its effect on silk fibers. J Adv Res 2023; 53:87-98. [PMID: 36572337 PMCID: PMC10658416 DOI: 10.1016/j.jare.2022.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Conventional hot-alkaline cocoon degumming techniques greatly weaken the physicochemical and mechanical properties of silk fibroin fiber, thus affecting the quality of silk fabric. Moreover, it causes massive energy waste and serious environmental pollution. OBJECTIVE This study aims to establish a novel cocoon self-degumming method by genetic modification of silkworm varieties and silk fibers. METHODS The self-degummed cocoon material was generated by specifically overexpressing trypsinogen protein in the sericin layer of silk thread; the effect of cocoon self-degumming method was evaluated by the degumming rate of sericin protein, the cleanliness and equivalent diameter of silk fibroin fiber; the basic characteristics of silk fibroin fiber degummed by cocoon self-degumming method and conventional hot-alkaline degumming technique were determined by electron microscopy, Fourier infrared spectroscopy, X-ray diffraction and tensile tests; the composition and biological activity of degummed sericin protein was respectively analyzed by liquid chromatograph-mass spectrometry and cytological experiments. RESULTS The genetically engineered self-degumming cocoon containing trypsinogen protein was successfully created, and the content of trypsinogen protein in silk was 47.14 ± 0.90 mg/g. The sericin protein in the self-degumming cocoon was removed out in water or 1 mM Tris-HCl buffer (pH = 8.0). Compared to alkaline-degummed silk fibroin, self-degummed silk fibroin had better cleanliness, thicker equivalent diameter, more complete silk structure and better mechanical property. In addition, sericin protein degummed from self-degumming cocoons significantly promoted cell proliferation and caused no obvious cytotoxicity. CONCLUSION Compared to conventional hot-alkaline degumming technique, the cocoon self-degumming method by genetically overexpressing trypsinogen protein in sericin layer of silk thread can self-degummed in a mild degumming condition, and gain silk fiber with better quality and more biologically active sericin protein products. This strategy can not only reduce the environmental impact, but also generate greater economic value, which will accelerate its application in the silk and pharmaceutical industries.
Collapse
Affiliation(s)
- Riyuan Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuancheng Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China; Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, People's Republic of China
| | - Jianxin Song
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Chi Tian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xinyuan Jing
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China; Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, People's Republic of China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China; Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
48
|
Wang S, Xue Y, Zhang P, Yan Q, Li Y, Jiang Z. CRISPR/Cas9 System-Mediated Multi-copy Expression of an Alkaline Serine Protease in Aspergillus niger for the Production of XOD-Inhibitory Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15194-15203. [PMID: 37807677 DOI: 10.1021/acs.jafc.3c04138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
CRISPR/Cas9 system-mediated multi-copy expression of an alkaline serine protease (AoproS8) from Aspergillus oryzae was successfully built in Aspergillus niger. Furthermore, AoproS8 was continuously knocked in the glaA, amyA, and aamy gene loci in A. niger to construct multi-copy expression strains. The yield of the AoproS8 3.0 strain was 2.1 times higher than that of the AoproS8 1.0 strain. Then, a high protease activity of 11,023.2 U/mL with a protein concentration of 10.8 mg/mL was obtained through fed-batch fermentation in a 5 L fermenter. This is the first report on the high-level expression of alkaline serine proteases in A. niger. AoproS8 showed optimal activity at pH 9.0 and 40 °C. It was used for the production of xanthine oxidase (XOD)-inhibitory peptides from eight food processing protein by-products. Among them, the duck hemoglobin hydrolysates showed the highest XOD-inhibitory activity with an IC50 value of 2.39 mg/mL. Thus, our work provides a useful way for efficient expression of proteases in A. niger and high-value utilization of protein by-products.
Collapse
Affiliation(s)
- Shounan Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yibin Xue
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe City 462000, Henan Province, China
| |
Collapse
|
49
|
Nwankwo C, Hou J, Cui HL. Extracellular proteases from halophiles: diversity and application challenges. Appl Microbiol Biotechnol 2023; 107:5923-5934. [PMID: 37566160 DOI: 10.1007/s00253-023-12721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Halophilic extracellular proteases offer promising application in various fields. Information on these prominent proteins including the synthesizing organisms, biochemical properties, domain organisation, purification, and application challenges has never been covered in recent reviews. Although extracellular proteases from bacteria pioneered the study of proteases in halophiles, progress is being made in proteases from halophilic archaea. Recent advances in extracellular proteases from archaea revealed that archaeal proteases are more robust and applicable. Extracellular proteases are composed of domains that determine their mechanisms of action. The intriguing domain structure of halophilic extracellular proteases consists of N-terminal domain, catalytic domain, and C-terminal extension. The role of C-terminal domains varies among different organisms. A high diversity of C-terminal domains would endow the proteases with diverse functions. With the development of genomics, culture-independent methods involving heterologous expression, affinity chromatography, and in vitro refolding are deployed with few challenges on purification and presenting novel research opportunities. Halophilic extracellular proteases have demonstrated remarkable potentials in industries such as detergent, leather, peptide synthesis, and biodegradation, with desirable properties and ability to withstand harsh industrial processes. KEY POINTS: • Halophilic extracellular proteases have robust properties suitable for applications. • A high diversity of C-terminal domains may endow proteases with diverse properties. • Novel protease extraction methods present novel application opportunities.
Collapse
Affiliation(s)
- Chidiebele Nwankwo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China
- Natural Sciences Unit, School of General Studies, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
50
|
Sisa A, Sotomayor C, Buitrón L, Gómez-Estaca J, Martínez-Alvarez O, Mosquera M. Evaluation of by-products from agricultural, livestock and fishing industries as nutrient source for the production of proteolytic enzymes. Heliyon 2023; 9:e20735. [PMID: 37867804 PMCID: PMC10585220 DOI: 10.1016/j.heliyon.2023.e20735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
This study presents an approach that utilizes low-value agro-industrial by-products as culture media for producing high-value proteolytic enzymes. The objective was to assess the impact of six agro-industrial by-products as culture media on the production of proteolytic enzymes. Bacillus subtilis strains, confirmed through comprehensive biochemical, morphological, and molecular analyses, were isolated and identified. Enzymatic activity was evaluated using azocasein and casein substrates, and the molecular sizes of the purified extract components were determined. The results demonstrated that the isolated bacteria exhibited higher metabolic and enzymatic activity when cultured in media containing 1 % soybean oil cake or feather meal. Furthermore, higher concentrations of the culture media were found to hinder the production of protease. Optimal protease synthesis on soybean oil cake and feather meal media was achieved after 4 days, using both the azocasein and casein methods. Semi-purification of the enzymatic extract obtained from Bacillus subtilis in feather meal and soybean oil cake resulted in a significant increase in azocaseinolytic and caseinolytic activities. Gel electrophoresis analysis revealed multiple bands in the fractions with the highest enzymatic activity in soybean oil cake, indicating the presence of various enzymes with varying molecular sizes. These findings highlight the potential of utilizing low-value agro-industrial by-products as efficient culture media for the sustainable and economically viable production of proteolytic enzymes with promising applications in various industries.
Collapse
Affiliation(s)
- Alisson Sisa
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Cristina Sotomayor
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Lucía Buitrón
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Joaquín Gómez-Estaca
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 6 José Antonio Novais St., 28040, Madrid, Spain
| | - Oscar Martínez-Alvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 6 José Antonio Novais St., 28040, Madrid, Spain
| | - Mauricio Mosquera
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| |
Collapse
|